
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 40 (2014), No. 4, pp. 891–910

.

Title:

.

A strong convergence theorem for solutions of
zero point problems and fixed point problems

.

Author(s):

.

S. Y. Cho, X. Qin and L. Wang

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 4, pp. 891–910
Online ISSN: 1735-8515

A STRONG CONVERGENCE THEOREM FOR

SOLUTIONS OF ZERO POINT PROBLEMS AND FIXED

POINT PROBLEMS

S. Y. CHO, X. QIN AND L. WANG∗

(Communicated by Behzad Djafari-Rouhani)

Abstract. Zero point problems of the sum of two monotone map-
pings and fixed point problems of a strictly pseudocontractive map-
ping are investigated. A strong convergence theorem for the com-
mon solutions of the problems is established in the framework of
Hilbert spaces.
Keywords: Fixed point, inverse-strongly monotone mapping, max-
imal monotone operator, nonexpansive mapping.
MSC(2010): Primary: 47H09; Secondary: 47H10.

1. Introduction

Splitting methods have recently received much attention due to the
fact that many nonlinear problems arising in applied areas such as im-
age recovery, signal processing, and machine learning are mathematically
modeled as a nonlinear operator equation and this operator is decom-
posed as the sum of two (possibly simpler) nonlinear operators. The
central problem is to iteratively find a zero point of the sum of two
monotone operators, that is,

0 ∈ (A+B)(x). (1.1)

Many problems can be formulated as a problem of the form (1.1). For in-
stance, a stationary solution to the initial value problem of the evolution
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equation {
0 ∈ Fu+ ∂u

∂t ,

u0 = u(0),

can be recast as (1.1) when the governing maximal monotone F is of the
form F = A + B; for more details, see [10] and the references therein.
Fixed point theory as an important branch of nonlinear analysis has been
applied in the study of nonlinear phenomena. In particular, fixed point
techniques have been applied in such diverse fields as biology, chemistry,
economics, engineering, game theory, and physics. The aim of this paper
is to investigate zero point problems of the sum of two monotone map-
pings and fixed point problems of a strictly pseudocontractive mapping
in the framework of Hilbert spaces. The organization of this paper is
as follows. In Section 2, we provide some necessary preliminaries. In
Section 3, a viscosity iterative algorithm with mixed errors is investi-
gated. And, a strong convergence theorem is established. In Section 4,
applications of the main results are discussed.

2. Preliminaries

Throughout this paper, we always assume that H is a real Hilbert
space with inner product ⟨·, ·⟩ and norm ∥ · ∥, respectively. Let C be a
nonempty closed convex subset of H and ProjC the metric projection
from H onto C.

Let S : C → H be a mapping. We use Fix(S) to stand for the fixed
point set of S; that is, Fix(S) := {x ∈ C : x = Sx}.

Recall that S is said to be α-contractive iff there exists a constant
α ∈ (0, 1) such that

∥Sx− Sy∥ ≤ α∥x− y∥, ∀x, y ∈ C.

S is said to be nonexpansive iff

∥Sx− Sy∥ ≤ ∥x− y∥, ∀x, y ∈ C.

S is said to be κ-strictly pseudocontractive iff there exists a constant
κ ∈ [0, 1) such that

∥Sx− Sy∥2 ≤ ∥x− y∥2 + κ∥(x− Sx)− (y − Sy)∥2, ∀x, y ∈ C.

The class of κ-strictly pseudocontractive mappings was introduced by
Browder and Petryshyn [2]. Note that the class of κ-strictly pseudocon-
tractive mappings strictly includes the class of nonexpansive mappings.
That is, S is nonexpansive iff the coefficient κ = 0.
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Let A : C → H be a mapping. Recall that A is said to be monotone
iff

⟨Ax−Ay, x− y⟩ ≥ 0, ∀x, y ∈ C.

A is said to be ξ-strongly monotone iff there exists a constant ξ > 0 such
that

⟨Ax−Ay, x− y⟩ ≥ ξ∥x− y∥2, ∀x, y ∈ C.

A is said to be ξ-inverse-strongly monotone iff there exists a constant
ξ > 0 such that

⟨Ax−Ay, x− y⟩ ≥ ξ∥Ax−Ay∥2, ∀x, y ∈ C.

It is not hard to see that ξ-inverse-strongly monotone mappings are
Lipschitz continuous. Indeed, we have

ξ∥Ax−Ay∥2 ≤ ⟨Ax−Ay, x− y⟩ ≤ ∥Ax−Ay∥∥x− y∥.
This shows that ∥Ax−Ay∥ ≤ 1

ξ∥x− y∥. Recall that the classical varia-

tional inequality, denoted by V I(C,A), is to find u ∈ C such that

⟨Au, v − u⟩ ≥ 0, ∀v ∈ C. (2.1)

One can see that the variational inequality (2.1) is equivalent to a fixed
point problem. The element u ∈ C is a solution of the variational
inequality (2.1) iff u ∈ C satisfies the equation

u = ProjC(u− λAu),

where λ > 0 is a constant. This alternative equivalent formulation has
played a significant role in the studies of the variational inequalities and
related optimization problems. If A is α-inverse-strongly monotone and
λ ∈ (0, 2α], then the mapping PC(I − λA) is nonexpansive. Indeed, we
have

∥(I − λA)x− (I − λA)y∥2

= ∥(x− y)− λ(Ax−Ay)∥2

= ∥x− y∥2 − 2λ⟨x− y,Ax−Ay⟩+ λ2∥Ax−Ay∥2

≤ ∥x− y∥2 − λ(2α− λ)∥Ax−Ay∥2.
This shows that PC(I − λA) is nonexpansive.

A multivalued operator B : H → 2H with the domain Dom(B) =
{x ∈ H : Bx ̸= ∅} and the range Ran(B) = {Bx : x ∈ Dom(B)} is
said to be monotone if for x1 ∈ Dom(B), x2 ∈ Dom(B), y1 ∈ Bx1 and
y2 ∈ Bx2, we have ⟨x1 − x2, y1 − y2⟩ ≥ 0. A monotone operator B is
said to be maximal if its graph Graph(B) = {(x, y) : y ∈ Bx} is not
properly contained in the graph of any other monotone operator. Let I
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denote the identity operator on H and let B : H → 2H be a maximal
monotone operator. Then we can define, for each λ > 0, a nonexpansive
single valued mapping Jλ : H → H by Jλ = (I + λB)−1. It is called the
resolven of B. We know that B−10 = Fix(Jλ) for all λ > 0 and Jλ is
firmly nonexpansive; for more details, see [6], [7], [13-15] and [19] and
the references therein.

In [9], Kamimura and Takahashi investigated the problem of finding
zero points of a maximal monotone operator by considering the following
iterative algorithm

x1 ∈ H, xn+1 = αnx+ (1− αn)Jλnxn, ∀n ≥ 1, (2.2)

where {αn} is a sequence in (0, 1), {λn} is a positive sequence, B : H →
2H is a maximal monotone and Jλn = (I+λnB)−1. They showed that the
sequence {xn} generated in (2.2) converges strongly to some z ∈ B−1(0)
provided that the control sequence satisfies some restrictions. Further,
using this result, they also investigated the case that B = ∂f, where
f : H → (−∞,∞] is a proper lower semicontinuous convex function.
Convergence theorems are established in the framework of real Hilbert
spaces; for more details, see [9].

In [8], Iiduka and Takahashi investigated the problem of finding a
common solution of the variational inequality (2.1) and a fixed point
problem involving nonexpansive mappings by considering the following
iterative algorithm

x1 ∈ C, xn+1 = αnx+(1−αn)SProjC(xn−λnAxn), ∀n ≥ 1, (2.3)

where {αn} is a sequence in (0, 1), {λn} is a positive sequence, S : C →
C is a nonexpansive mapping and A : C → H is an inverse-strongly
monotone mapping. They showed that the sequence {xn} generated in
(2.3) converges strongly to some z ∈ V I(C,A) ∩ Fix(S) provided that
the control sequence satisfies some restrictions; for more details, see [8].

Recently, Takahahsi, Takahahsi and Toyoda studied zero point prob-
lems of the sum of two monotone mappings and fixed point problems of a
nonexpansive mapping by considering the following iterative algorithm:
x1 ∈ C and

xn+1 = βnxn + (1− βn)S(αnx+ (1− αn)Jλn(xn − λnAxn)), ∀n ≥ 1,
(2.4)
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where {αn} and {βn} are sequences in (0, 1), {λn} is a positive sequence,
S : C → C is a nonexpansive mapping and A : C → H is an inverse-
strongly monotone mapping. They showed that the sequence {xn} gen-
erated in (2.4) converges strongly to some z ∈ (A + B)−1(0) ∩ Fix(S)
provided that the control sequence satisfies some restrictions; for more
details, see [20].

Motivated by the above results, we investigate zero point problems
of the sum of two monotone mappings and fixed point problems of a
strictly pseudocontractive mapping. To obtain our main results, we
need the following tools.

Recall that a space is said to satisfy Opial’s condition [12] if, for any
sequence {xn} ⊂ H with xn ⇀ x, where ⇀ denotes the weak conver-
gence, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

holds for every y ∈ H with y ̸= x. Indeed, the above inequality is
equivalent to the following

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥.

Lemma 2.1. [1] Let C be a nonempty, closed, and convex subset of H,
A : C → H a mapping, and B : H ⇒ H a maximal monotone operator.
Then F (Jλ(I − λA)) = (A+B)−1(0).

Lemma 2.2. [18] Suppose that H is a real Hilbert space and 0 < p ≤
tn ≤ q < 1 for all n ≥ 1. Suppose further that {xn} and {yn} are
sequences of H such that

lim sup
n→∞

∥xn∥ ≤ r, lim sup
n→∞

∥yn∥ ≤ r

and

lim
n→∞

∥tnxn + (1− tn)yn∥ = r

hold for some r ≥ 0. Then limn→∞ ∥xn − yn∥ = 0.

Lemma 2.3. [3] Let C be a nonempty, closed, and convex subset of H.
Let S : C → C be a nonexpansive mapping. Then the mapping I − S is
demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ x̄
and xn − Sxn → 0, then x̄ ∈ F (S).
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Lemma 2.4 [11] Assume that {αn} is a sequence of nonnegative real
numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real
Hilbert space H, A : C → H a ξ-inverse-strongly monotone mapping,
S : C → H a κ-strictly pseudocontractive mapping, T : C → H an
α-contractive mapping and B a maximal monotone operator on H. As-
sume that F = Fix(S)∩ (A+B)−1(0) ̸= ∅. Let {αn}, {βn} and {γn} be
real number sequences in (0, 1). Let {λn} be a positive real number se-
quence. Let {xn} be a sequence in C generated in the following iterative
process

x1 ∈ C,

yn = ProjC(αnTxn + (1− αn)Jλn(xn − λnAxn)),

xn+1 = βnxn + (1− βn)ProjC(γnyn + (1− γn)Syn), ∀n ≥ 1,

where Jλn = (I + λnB)−1. Assume that the sequences {αn}, {βn}, {γn}
and {λn} satisfy the following restrictions:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) 0 < a ≤ βn ≤ b < 1;
(c) κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0;
(d) 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0,

where a, b, c, d and e are some real numbers. Then the sequence {xn}
converges strongly to x = ProjFTx.

Proof. First, we show that {xn} is bounded. Notice that I − λnA is
nonexpansive. Indeed, we have

∥(I − λnA)x− (I − λnA)y∥2

= ∥(x− y)− λn(Ax−Ay)∥2

= ∥x− y∥2 − 2λn⟨x− y,Ax−Ay⟩+ λn
2∥Ax−Ay∥2

≤ ∥x− y∥2 − λn(2ξ − λn)∥Ax−Ay∥2.
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In view of the restriction (d), we find that I − λnA is nonexpansive.
Fixing p ∈ F , we find from Lemma 2.1 that

p = Sp = Jλn(p− λnAp).

Put zn = Jλn(xn − λnAxn). Since Jλn and I − λnA are nonexpansive,
we have

∥zn − p∥ ≤ ∥(xn − λnAxn)− (p− λnAp)∥
≤ ∥xn − p∥.

(3.1)

Define Gnx = ProjC(γnx + (1 − γn)Sx), ∀x ∈ C. It follows from the
restriction (c) that

∥Gnyn − p∥2

≤ ∥(γnyn + (1− γn)Syn)− (γnp+ (1− γn)Sp)∥2

≤ ∥γn(yn − p) + (1− γn)(Syn − Sp)∥2

= γn∥yn − p∥2 + (1− γn)∥Syn − Sp∥2

− γn(1− γn)∥(yn − p)− (Syn − Sp)∥2

≤ γn∥yn − p∥2 + (1− γn)(∥yn − p∥2

+ κ∥(yn − p)− (Syn − Sp)∥2)
− γn(1− γn)∥(yn − p)− (Syn − Sp)∥2

= ∥yn − p∥2 − (1− γn)(γn − κ)∥(yn − p)− (Syn − Sp)∥2

≤ ∥yn − p∥2.

(3.2)

Notice that

∥yn − p∥ = ∥ProjC(αnTxn + (1− αn)zn)− p∥
≤ αn∥Txn − p∥+ (1− αn)∥zn − p∥
≤ (1− αn(1− α))∥xn − p∥+ αn∥Tp− p∥.

(3.3)

Substituting (3.3) into (3.2), we obtain that

∥Gnyn − p∥ ≤ (1− αn(1− α))∥xn − p∥+ αn∥Tp− p∥. (3.4)

This in turn implies that

∥xn+1 − p∥ ≤ βn∥xn − p∥+ (1− βn)∥Gnyn − p∥
≤

(
1− αn(1− α)(1− βn)

)
∥xn − p∥

+ αn(1− βn)∥Tp− p∥.
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Putting M = max{∥x1 − p∥, ∥Tp−p∥
1−α }, we find that ∥xn − p∥ ≤ M for all

n ≥ 1. Indeed, it is clear that ∥x1−p∥ ≤ M . Suppose that ∥xm−p∥ ≤ M
for some positive integer m. It follows that

∥xm+1 − p∥ ≤
(
1− αm(1− α)(1− βm)

)
∥xm − p∥

+ αm(1− βn)∥Tp− p∥
≤

(
1− αm(1− α)(1− βm)

)
M

+ αm(1− βn)(1− α)M

= M.

This competes the proof that {xn} is bounded. Notice that

∥zn+1 − zn∥ ≤ ∥(xn+1 − λn+1Axn+1)− (xn − λnAxn)∥
+ ∥Jλn+1(xn − λnAxn)− Jλn(xn − λnAxn)∥

≤ ∥xn+1 − xn∥+ |λn+1 − λn|∥Axn∥
+ ∥Jλn+1(xn − λnAxn)− Jλn(xn − λnAxn)∥,

(3.5)

and

∥yn+1 − yn∥ ≤ ∥(αn+1Txn+1 + (1− αn+1)zn+1)

− (αnTxn + (1− αn)zn)∥
≤ αn+1∥Txn+1 − Txn∥+ (1− αn+1)∥zn+1 − zn∥
+ |αn+1 − αn|∥zn − Txn∥

≤ αn+1α∥xn+1 − xn∥+ (1− αn+1)∥zn+1 − zn∥
+ |αn+1 − αn|∥zn − Txn∥.

(3.6)

Substituting (3.5) into (3.6), we arrive at

∥yn+1 − yn∥
≤ (1− αn+1(1− α))∥xn+1 − xn∥
+ (1− αn+1)|λn+1 − λn∥∥Axn∥
+ (1− αn+1)∥Jλn+1(xn − λnAxn)− Jλn(xn − λnAxn)∥
+ |αn+1 − αn|∥zn − Txn∥.

(3.7)

Put un = xn − λnAxn. Since B is monotone, we see that

⟨Jλn+1un − Jλnun,
un − Jλn+1un

λn+1
− un − Jλnun

λn
⟩ ≥ 0.
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It follows that

⟨Jλn+1un − Jλnun, (1−
λn+1

λn
)(un − Jλnun)⟩ ≥ ∥Jλn+1un − Jλnun∥2.

This in turn implies that

∥Jλn+1un − Jλnun∥ ≤ |λn+1 − λn|
λn

∥un − Jλnun∥. (3.8)

Substituting (3.8) into (3.7), we find that

∥yn+1 − yn∥ ≤ (1− αn+1(1− α))∥xn+1 − xn∥
+ (1− αn+1)|λn+1 − λn∥∥Axn∥

+ (1− αn+1)
|λn+1 − λn|

λn
∥un − Jλnun∥

+ |αn+1 − αn|∥zn − Txn∥.

(3.9)

On the other hand, we see that the mappign Gn : C → C is nonexpan-
sive. Indeed, we see from the restriction (c) that

∥Gnx−Gny∥2 ≤ ∥γn(x− y) + (1− γn)(Sx− Sy)∥2

= γn∥x− y∥2 + (1− γn)∥Sx− Sy∥2

− γn(1− γn)∥(x− y)− (Sx− Sy)∥2

≤ γn∥x− y∥2 + (1− γn)(∥x− y∥2

+ κ∥(x− y)− (Sx− Sy)∥2)
− γn(1− γn)∥(x− y)− (Sx− Sy)∥2

= ∥x− y∥2 − (1− γn)(γn − κ)∥(x− y)− (Sx− Sy)∥2

≤ ∥x− y∥2, ∀x, y ∈ C.

This shows that Gn is nonexpansive. Therefore, we have

∥Gn+1yn+1 −Gnyn∥
≤ ∥Gn+1yn+1 −Gn+1yn +Gn+1yn −Gnyn∥
≤ ∥yn+1 − yn∥+ ∥ProjC(γn+1yn + (1− γn+1)Syn)

− ProjC(γnyn + (1− γn)Syn)∥
≤ ∥yn+1 − yn∥+ |γn+1 − γn|∥yn − Syn∥.

(3.10)
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Substituting (3.9) into (3.10), we find that

∥Gn+1yn+1 −Gnyn∥
≤ (1− αn+1(1− α))∥xn+1 − xn∥
+ (1− αn+1)|λn+1 − λn∥∥Axn∥

+ (1− αn+1)
|λn+1 − λn|

λn
∥un − Jλnun∥

+ |αn+1 − αn|∥zn − Txn∥+ |γn+1 − γn|∥yn − Syn∥
≤ ∥xn+1 − xn∥+ |λn+1 − λn∥∥Axn∥

+
|λn+1 − λn|

λn
∥un − Jλnun∥

+ |αn+1 − αn|∥zn − Txn∥+ |γn+1 − γn|∥yn − Syn∥.

This yields from the restrictons (a), (c), and (d) that

lim sup
n→∞

(∥Gn+1yn+1 −Gnyn∥ − ∥xn+1 − xn∥) ≤ 0.

It follows from Lemma 2.2 that

lim
n→∞

∥Gnyn − xn∥ = 0. (3.11)

In view of

xn+1 − xn = (1− βn)(Gnyn − xn),

we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.12)

Since ∥ · ∥2 is convex, we see from (3.2) that

∥xn+1 − p∥2 ≤ βn∥xn − p∥2 + (1− βn)∥Gnyn − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥yn − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥αn(Txn − p)

+ (1− αn)(Jλn(xn − λnAxn)− p)∥2

≤ βn∥xn − p∥2 + αn(1− βn)∥Txn − p∥2

+ (1− αn)(1− βn)∥Jλn(xn − λnAxn)− p∥2

≤ ∥xn − p∥2 + αn∥Txn − p∥2

− λn(2ξ − λn)(1− βn)∥Axn −Ap∥2.

(3.13)
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Notice that

λn(2ξ − λn)(1− βn)∥Axn −Ap∥2

≤ ∥xn − p∥2 + αn∥Txn − p∥2 − ∥xn+1 − p∥2

≤ (∥xn − p∥+ ∥xn+1 − p∥)∥xn+1 − xn∥+ αn∥Txn − p∥2.

In view of the restrictions (a), (c), and (d), we obtain from (3.12) that

lim
n→∞

∥Axn −Ap∥ = 0. (3.14)

Notice that

∥zn − p∥2

= ∥Jλn(xn − λnAxn)− Jλn(p− λnAp)∥2

≤ ⟨(xn − λnAxn)− (p− λnAp), zn − p⟩

=
1

2

(
∥(xn − λnAxn)− (p− λnAp)∥2 + ∥zn − p∥2

− ∥(xn − λnAxn)− (p− λnAp)− (zn − p)∥2

≤ 1

2

(
∥xn − p∥2 + ∥zn − p∥2 − ∥xn − zn − λn(Axn −Ap)∥2

)
≤ 1

2

(
∥xn − p∥2 + ∥zn − p∥2 − ∥xn − zn∥2 − λ2

n∥Axn −Ap∥2

+ 2λn∥xn − zn∥∥Axn −Ap∥
)

≤ 1

2

(
∥xn − p∥2 + ∥zn − p∥2 − ∥xn − zn∥2

+ 2λn∥xn − yn∥∥Axn −Ap∥
)
.

It follows that

∥zn− p∥2 ≤ ∥xn− p∥2−∥xn− zn∥2+2λn∥xn− yn∥∥Axn−Ap∥. (3.15)

This implies that

∥yn − p∥2 ≤ αn∥Txn − p∥2 + (1− αn)∥zn − p∥2

≤ αn∥Txn − p∥2 + ∥xn − p∥2 − (1− αn)∥xn − zn∥2

+ 2λn∥xn − yn∥∥Axn −Ap∥.
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Therefore, we have

∥xn+1 − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥Gnyn − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥yn − p∥2

≤ ∥xn − p∥2 + αn∥Txn − p∥2

− (1− αn)(1− βn)∥xn − zn∥2

+ 2λn(1− βn)∥xn − yn∥∥Axn −Ap∥.

It follows that

(1− αn)(1− βn)∥xn − zn∥2

≤ ∥xn − p∥2 + αn∥Txn − p∥2 − ∥xn+1 − p∥2

+ 2λn(1− βn)∥xn − yn∥∥Axn −Ap∥
≤ (∥xn − p∥+ ∥xn+1 − p∥)∥xn − xn+1∥+ αn∥Txn − p∥2

+ 2λn(1− βn)∥xn − yn∥∥Axn −Ap∥.

By virtue of the restrictions (a), (b), and (d), we find from (3.12) and
(3.14) that

lim
n→∞

∥xn − zn∥ = 0. (3.16)

Notice that yn − zn = αn(Txn − zn). It follows that

lim
n→∞

∥zn − yn∥ = 0. (3.17)

Put

Gx = ProjC(γx+ (1− γ)Sx), ∀x ∈ C,

where γ = limn→∞ γn. It is no hard to see that G : C → C is nonex-
pansive with Fix(G) = Fix(S). Notice that

∥Gyn − yn∥
≤ ∥Gyn −Gnyn∥+ ∥Gnyn − xn∥+ ∥xn − zn∥+ ∥zn − yn∥
≤ ∥(γyn + (1− γ)Syn)− (γnyn + (1− γn)Syn)∥
+ ∥Gnyn − xn∥+ ∥xn − zn∥+ ∥zn − yn∥

≤ |γ − γn|∥yn − Syn∥+ ∥Gnyn − xn∥+ ∥xn − zn∥+ ∥zn − yn∥.

From (3.11), (3.16), and (3.17), we find that

lim
n→∞

∥Gyn − yn∥ = 0. (3.18)
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Notice that

∥Gzn − zn∥ ≤ ∥Gzn −Gyn∥+ ∥Gyn − yn∥+ ∥yn − zn∥
≤ ∥Gyn − yn∥+ 2∥yn − zn∥.

It follows from (3.17) and (3.18) that

lim
n→∞

∥Gzn − zn∥ = 0. (3.19)

Since ProjFT is contractive, we see that there exists a unique fixed
point, say x. Next, we show that lim supn→∞⟨Tx − x, zn − x⟩ ≤ 0. To
show this, we can choose a subsequence {zni} of {zn} such that

lim sup
n→∞

⟨Tx− x, zn − x⟩ = lim
i→∞

⟨Tx− x, zni − x⟩.

Since zni is bounded, we can choose a subsequence {znij
} of {zni} which

converges weakly to some point h. We may assume, without loss of
generality, that zni converges weakly to h. Now, we are in a position
to show h ∈ Fix(G). Assume that h /∈ Fix(G). In view of Opial’s
condition, we find from (3.19) that

lim inf
i→∞

∥zni − h∥ < lim inf
i→∞

∥zni −Gh∥

= lim inf
i→∞

∥zni −Gzni +Gzni −Gh∥

≤ lim inf
i→∞

∥zni − h∥.

This is a contradiction. That is, h = Gh. This shows that h ∈ Fix(S).
Since zn = Jλn(xn − λnAxn), we find that

xn − λnAxn ∈ (I + λnB)zn.

That is,
xn − zn

λn
−Axn ∈ Bzn.

Since B is monotone, we get, for any (µ, ν) ∈ B, that

⟨zn − µ,
xn − zn

λn
−Axn − ν⟩ ≥ 0.

Replacing n by ni and letting i → ∞, we obtain from (3.16) that

⟨h− µ,−Ah− ν⟩ ≥ 0.

This means −Ah ∈ Bh, that is, 0 ∈ (A + B)(h). Hence we get h ∈
(A+B)−1(0). This completes the proof that h ∈ F . It follows that

lim sup
n→∞

⟨Tx− x, zn − x⟩ = ⟨Tx− x, h− x⟩ ≤ 0.
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Notice that

∥xn+1 − x∥2

≤ βn∥xn − x∥2 + (1− βn)∥Gnyn − x∥2

≤ βn∥xn − x∥2 + (1− βn)∥yn − x∥2

≤ βn∥xn − x∥2 + (1− βn)∥αn(Txn − x) + (1− αn)(zn − x)∥2

≤ βn∥xn − x∥2 + (1− βn)((1− αn)
2∥zn − x∥2

+ 2αn⟨Txn − x, zn − x⟩)
≤ (1− αn(1− βn))∥xn − x∥2 + 2αn(1− βn)⟨Txn − x, zn − x⟩.

In view of Lemma 2.4, we find that limn→∞ ∥xn−x∥ = 0. This completes
the proof. □

If both the mapping T and S are self mappings, then we have from
Theorem 3.1 the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a real
Hilbert space H, A : C → H a ξ-inverse-strongly monotone mapping,
S : C → C a κ-strictly pseudocontractive mapping, T : C → C an α-
contractive mapping and B a maximal monotone operator on H such
that the domain of B is included in C. Assume that F = Fix(S) ∩
(A + B)−1(0) ̸= ∅. Let {αn}, {βn} and {γn} be real number sequences
in (0, 1). Let {λn} be a positive real number sequence. Let {xn} be a
sequence in C generated in the following iterative process

x1 ∈ C,

yn = αnTxn + (1− αn)Jλn(xn − λnAxn),

xn+1 = βnxn + (1− βn)(γnyn + (1− γn)Syn), ∀n ≥ 1,

where Jλn = (I + λnB)−1. Assume that the sequences {αn}, {βn}, {γn}
and {λn} satisfy the following restrictions:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) 0 < a ≤ βn ≤ b < 1;
(c) κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0;
(d) 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0,

where a, b, c, d and e are some real numbers. Then the sequence {xn}
converges strongly to x = ProjFTx.

If Ty = x, for all y ∈ C, where x is a fixed element in C and γn =
κ = 0, then we find from Corollary 3.2 the following result.
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Corollary 3.3. Let C be a nonempty closed convex subset of a real
Hilbert space H, A : C → H a ξ-inverse-strongly monotone mapping, S :
C → H a nonexpansive mapping, and B a maximal monotone operator
on H such that the domain of B is included in C. Assume that F =
Fix(S) ∩ (A + B)−1(0) ̸= ∅. Let {αn}, {βn} and {γn} be real number
sequences in (0, 1). Let {λn} be a positive real number sequence. Let
{xn} be a sequence in C generated in the following iterative process

x1 ∈ C,

yn = αnx1 + (1− αn)Jλn(xn − λnAxn),

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,

where Jλn = (I + λnB)−1. Assume that the sequences {αn}, {βn}, {γn}
and {λn} satisfy the following restrictions:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) 0 < a ≤ βn ≤ b < 1;
(c) 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0,

where a, b, d and e are some real numbers. Then the sequence {xn}
converges strongly to x = ProjFx1.

4. Applications

Let H be a Hilbert space and f : H → (−∞,+∞] a proper con-
vex lower semicontinuous function. Then the subdifferential ∂f of f is
defined as follows:

∂f(x) = {y ∈ H : f(z) ≥ f(x) + ⟨z − x, y⟩, z ∈ H}, ∀x ∈ H.

From Rockafellar [16,17], we know that ∂f is maximal monotone. It is
easy to verify that 0 ∈ ∂f(x) if and only if f(x) = miny∈H f(y). Let IC
be the indicator function of C, i.e.,

IC(x) =

{
0, x ∈ C,

+∞, x /∈ C.
(4.1)

Since IC is a proper lower semicontinuous convex function on H, we see
that the subdifferential ∂IC of IC is a maximal monotone operator.

Lemma 4.1 [20] Let C be a nonempty closed convex subset of a real
Hilbert space H, ProjC the metric projection from H onto C, ∂IC the
subdifferential of IC , where IC is as defined in (4.1) and Jλ = (I +
λ∂IC)

−1. Then

y = Jλx ⇐⇒ y = ProjCx, x ∈ H, y ∈ C.
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Now, we consider a variation inequality problem.

Theorem 4.1. Let C be a nonempty closed convex subset of a real
Hilbert space H, A : C → H a ξ-inverse-strongly monotone mapping,
S : C → H a κ-strictly pseudocontractive mapping, and T : C → H an
α-contractive mapping. Assume that F = Fix(S) ∩ V I(C,A) ̸= ∅. Let
{αn}, {βn} and {γn} be real number sequences in (0, 1). Let {λn} be a
positive real number sequence. Let {xn} be a sequence in C generated in
the following iterative process

x1 ∈ C,

yn = ProjC(αnTxn + (1− αn)ProjC(xn − λnAxn)),

xn+1 = βnxn + (1− βn)ProjC(γnyn + (1− γn)Syn), ∀n ≥ 1.

Assume that the sequences {αn}, {βn}, {γn} and {λn} satisfy the fol-
lowing restrictions:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) 0 < a ≤ βn ≤ b < 1;
(c) κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0;
(d) 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0,

where a, b, c, d and e are some real numbers. Then the sequence {xn}
converges strongly to x = ProjFTx.

Proof. Put Bx = ∂IC . Next, we show that V I(C,A) = (A+ ∂IC)
−1(0).

Notice that

x ∈ (A+ ∂IC)
−1(0) ⇐⇒ 0 ∈ Ax+ ∂ICx

⇐⇒ −Ax ∈ ∂ICx

⇐⇒ ⟨Ax, y − x⟩ ≥ 0

⇐⇒ x ∈ V I(C,A).

From Lemma 4.1, we can conclude the desired conclusion immediately.
□

Let F be a bifunction of C × C into R, where R denotes the set of
real numbers. Recall the following equilibrium problem.

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (4.2)

In this work, we use EP (F ) to denote the solution set of the equilibrium
problem (4.2).
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To study the equilibrium problems (4.2), we may assume that F sat-
isfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and weakly lower semi-
continuous.

Putting F (x, y) = ⟨Ax, y − x⟩ for every x, y ∈ C, we see that the
equilibrium problem (4.2) is reduced to the variational inequality (2.1).

The following lemma can be found in [4] and [5].

Lemma 4.2. Let C be a nonempty closed convex subset of H and let
F : C × C → R be a bifunction satisfying (A1)-(A4). Then, for any
r > 0 and x ∈ H, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

Further, define

Trx = {z ∈ C : F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C} (4.3)

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(c) F (Tr) = EP (F );
(d) EP (F ) is closed and convex.

Lemma 4.3 [20] Let C be a nonempty closed convex subset of a real
Hilbert space H, F a bifunction from C × C to R which satisfies (A1)-
(A4) and AF a multivalued mapping of H into itself defined by

AFx =

{
{z ∈ H : F (x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(4.4)

Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C,
EP (F ) = A−1

F (0) and

Trx = (I + rAF )
−1x, ∀x ∈ H, r > 0,
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where Tr is defined as in (4.3).

The following result is now derived based on Theorem 3.1 and Lemma
4.3.

Theorem 4.4. Let C be a nonempty closed convex subset of a real
Hilbert space H, S : C → H a κ-strictly pseudocontractive mapping,
T : C → H an α-contractive mapping and FB a bifunction from C × C
to R which satisfies (A1)-(A4). Assume that F = Fix(S)∩EP (FB) ̸= ∅.
Let {αn}, {βn} and {γn} be real number sequences in (0, 1). Let {λn} be
a positive real number sequence. Let {xn} be a sequence in C generated
in the following iterative process

x1 ∈ C,

yn = ProjC(αnTxn + (1− αn)zn),

xn+1 = βnxn + (1− βn)ProjC(γnyn + (1− γn)Syn), ∀n ≥ 1,

where zn ∈ C such that

FB(zn, u) +
1

λn
⟨u− zn, zn − xn⟩ ≥ 0, ∀u ∈ C.

Assume that the sequences {αn}, {βn}, {γn} and {λn} satisfy the fol-
lowing restrictions:

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) 0 < a ≤ βn ≤ b < 1;
(c) κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0;
(d) 0 < d ≤ λn ≤ e < ∞, limn→∞ |λn+1 − λn| = 0,

where a, b, c, d and e are some real numbers. Then the sequence {xn}
converges strongly to x = ProjFTx.
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