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δ-DOUBLE DERIVATIONS ON C∗-ALGEBRAS

M. MIRZAVAZIRI* AND E. OMIDVAR TEHRANI

Communicated by Fereidoun Ghahramani

Abstract. Let A be an algebra and δ, ε : A → A be linear map-
pings. We say that a linear mapping d : A → A is a (δ, ε)-double
derivation if d(ab) = d(a)b + ad(b) + δ(a)ε(b) + ε(a)δ(b) for all
a, b ∈ A. By a δ-double derivation we mean a (δ, δ)-double deriva-
tion. Giving some elementary facts concerning double derivations,
we prove that if A is a C∗-algebra, δ : A → A is a ∗-linear map-
ping and d : A → A is a continuous δ-double derivation then δ is
continuous. We also show that if A is a C∗-algebra, δ : A → A is
a continuous linear mapping and d : A → A is a ∗-δ-double deriva-
tion then d is continuous. Similar facts concerning (δ, ε)-double
derivations on C∗-algebras are also given.

1. Introduction

Let A be a subalgebra of an algebra B, X be a B-bimodule and σ :
A → B be a linear mapping. A linear mapping d : A → X is called a
σ-derivation (see [5] and [6]) if

(1.1) d(ab) = d(a)σ(b) + σ(a)d(b) a, b ∈ A.

Clearly, if σ = id, the identity mapping on A, then a σ-derivation is
an ordinary derivation. On the other hand, each homomorphism d is a
d
2 -derivation. Thus, the theory of σ-derivations combines the theory of
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derivations and homomorphisms. If δ : A → A is an ordinary derivation
and σ : A → A is a homomorphism, then d = δσ is a σ-derivation.
Although, a σ-derivation is not necessarily of the form δσ, but it seems
that the generalized Leibniz rule, d(ab) = d(a)σ(b) + σ(a)d(b), comes
from this observation. Taking ideas from this fact, we motivate to con-
sider two derivations δ, ε : A → A to find a similar rule, for d = δε. In
this case, we see that d satisfies

(1.2) d(ab) = d(a)b + ad(b) + δ(a)ε(b) + ε(a)δ(b) a, b ∈ A.

Fortunately, this can be perceived as a generalization of the notion of a
σ-derivation. We say that a linear mapping d : A → A is a (δ, ε)-double
derivation if it satisfies (1.2).

The problem of automatic continuity of derivations is an important
problem in the theory of derivations. In 1960, H. Sakai [11] proved
that every derivation on a C∗-algebra is automatically continuous and
later in 1972, J. R. Ringrose [10] showed that every derivation from
a C∗-algebra into a Banach A-bimodule is continuous. The problem
of automatic continuity is also considered for σ-derivations. In 2006,
M. Mirzavaziri and M. S. Moslehian [5] acquired some results about
automatic continuity of σ-derivations. Suppose that A is a C∗-algebra
acting on a Hilbert space H. In [5], it is proved that if σ : A → B(H) is
a continuous ∗-linear mapping then every σ-derivation from A to B(H)
is automatically continuous. Moreover, the converse is established in [5]
in the sense that if d : A → B(H) is a continuous ∗-σ-derivation then
there exists a continuous mapping Σ : A → B(H) such that d is a ∗-Σ-
derivation. Here, we consider the same problem for double derivations.
Since the notion of a double derivation is a generalization of derivation,
homomorphism and σ-derivation, our results extend the previous facts.
Although our proof are similar to the previous arguments in some cases,
but they are essentially new.

The reader is referred to [8] and [9] for the definitions and elementary
properties of C∗-algebras, to [1],[2],[4],[5],[6] and [7] for various gener-
alized notions of derivations and to [3],[10],[11] and [12] for more infor-
mation on automatic continuity of derivations, inner derivations, point
derivations and higher derivations.
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2. Preliminaries

Definition 2.1. Let A be an algebra and δ, ε : A → A be linear map-
pings. A linear mapping d : A → A is called a (δ, ε)-double derivation
if

d(ab) = d(a)b + ad(b) + δ(a)ε(b) + ε(a)δ(b)
for all a, b ∈ A. By a δ-double derivation we mean a (δ, δ)-double deriva-
tion.

It is clear that each σ-derivation d : A → A is a (σ − id, d)-double
derivation. Moreover, every homomorphism ϕ : A → A is a (ϕ

2 − id, ϕ)-
double derivation.

Lemma 2.2. If δ is a derivation on A, then each δ-double derivation
d : A → A is of the form d = δ2 + ε, where ε : A → A is a derivation.

Proof. Let ε = d− δ2. Then,

ε(ab) = (d− δ2)(ab)
= d(a)b + ad(b) + 2δ(a)δ(b)− δ(δ(a)b + aδ(b))
= d(a)b + ad(b) + 2δ(a)δ(b)− δ2(a)b− 2δ(a)δ(b)− aδ2(b)
= (d− δ2)(a)b + a(d− δ2)(b)
= ε(a)b + aε(b).

Hence ε is a derivation. �

Remark 2.3. Lemma 2.2 shows that if A is an algebra such that each
derivation defined on A is automatically continuous and δ is a derivation
then each δ-double derivation is also automatically continuous.

3. δ-double derivations

Recall that if Y and Z are normed spaces and T : Y → Z is a linear
mapping, then the set of all z such that there is a sequence {yn} in Y
with yn → 0 and Tyn → z is called the separating space S(T ) of T .
Clearly, S(T ) = ∩∞n=1{T (y) : ‖y‖ < 1/n} is a closed linear space. If Y
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and Z are Banach spaces, by the closed graph theorem, T is continuous
if and only if S(T ) = {0}. Also, recall that if E is a subset of an algebra
B, the right annihilator ran(E) of E (resp., the left annihilator lan(E)
of E) is defined to be {b ∈ B : Eb = {0}} (resp., {b ∈ B : bE = {0}}).
The set ann(E) := ran(E) ∩ lan(E) is called the annihilator of E.

Lemma 3.1. Let A be a C∗-algebra acting on a Hilbert space H. If
d : A → A is a continuous δ-double derivation then S(δ) ⊆ ann(δ(A)).

Proof. Let A ∈ S(δ). Thus, there is a sequence {An} ⊆ A such that
An → 0 and δ(An) → A. For each B ∈ A we have,

lim
n→∞

d(AnB) = lim
n→∞

And(B) + lim
n→∞

d(An)B + lim
n→∞

2δ(An)δ(B).

Since d is continuous, we obtain 0 = Aδ(B). Similarly, 0 = δ(B)A and
so A ∈ ann(δ(A)). �

Theorem 3.2. Let A be a C∗-algebra acting on a Hilbert space H,
δ : A → A be a ∗-linear mapping and d : A → A be a continuous
δ-double derivation. Then, δ is continuous.

Proof. Let d be continuous, L0 =
⋃

A∈A δ(A)(H) and L be the closed
linear span of L0. Then, H = L⊕K, where K = L⊥. By Lemma 3.2. in
[4], we have,

K =
⋂

A∈A
ker δ(A).

Assume that {An} ⊆ A, An → 0 and δ(An) → A. Then, for each
` ∈ L0 there is a B ∈ A and there is an h ∈ H such that ` = δ(B)(h).
Now, since S(δ) ⊆ ann(δ(A)), A(`) = A(δ(B)(h)) = (Aδ(B))(h) = 0,
then A = 0 on L0 and so A = 0 on L. On the other hand,

A(k) = lim
n→∞

(δ(An))(k) = 0.

Thus, A = 0 on K and so A = 0 on H. Therefore, S(δ) = {0} and δ is
continuous. �

Theorem 3.3. Let A be a C∗-algebra, δ : A → A be a continuous
linear mapping and d : A → A be a ∗-δ-double derivation. Then, d is
continuous.
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Proof. We may assume that A is unital. In fact, if A has no identity,
we shall consider the unitization A1 of A with unit 1 and define d(1) =
δ(1) = 0. Then, d and δ can be uniquely extended to linear mappings
d1 and δ1 on A1. Moreover, d1 is a δ1-double derivation since

d1[(a + α)(b + β)]= d1[ab + αb + aβ + αβ]
= d1(ab) + αd1(b) + d1(a)β + 0
= ad1(b) + d1(a)b + 2δ1(a)δ1(b) + αd1(b) + d1(a)β
= (a + α)d1(b) + d1(a)(b + β) + 2δ1(a)δ1(b)
= (a + α)d1(b + β)+d1(a + α)(b + β)+2δ1(a + α)δ1(b + β).

Thus, it is sufficient to prove that a ∗-δ-double derivation d on a unital
C∗-algebra A is continuous if so is δ. For this, we show that the ∗-
linear mapping D : A → A defined by D(a) = d(a) − ad(1) for each
a ∈ A is continuous. Suppose that δ is continuous and a is a self-adjoint
element in A. Also, let ϕ be a state on A such that ϕ(a) = ‖a‖. Put
‖a‖1− a = h2(h > 0, h ∈ A). Then, ϕ(h2) = 0 and

| − ϕ(D(a))− ϕ(2(δ(h))2)|
= |ϕ(D(h2 − ‖a‖1))− ϕ(2(δ(h))2)|
= |ϕ(D(h2))− ϕ(2(δ(h))2)|
= |ϕ(d(h2)− h2d(1))− ϕ(2(δ(h))2)|
= |ϕ(hd(h)) + ϕ(d(h)h)− ϕ(h2d(1))|
6 ϕ(h2)1/2ϕ(d(h)2)1/2 + ϕ(d(h)2)1/2ϕ(h2)1/2 + ϕ(h4)1/2ϕ(d(1)2)1/2

= 0.

Hence, ϕ(D(a)) = −ϕ(2(δ(h))2). Suppose that {an} is a sequence of
self-adjoint elements in A such that an → 0 and D(an) → b(6= 0). Let
ϕn be a state on A such that ϕn(b + an) = ‖b + an‖, and let ϕ0 be an
accumulation point of {ϕn} in the state space of A. Then, we have,

|ϕnj (b + anj )− ϕ0(b)| 6 |ϕnj (b + anj )− ϕnj (b)|+ |ϕnj (b)− ϕ0(b)|
6 ‖b + anj − b‖+ |ϕnj (b)− ϕ0(b)| → 0

for some subsequence {nj} of {n}. Hence, ϕ0(b) = ‖b‖ and so

ϕ0(D(b)) = −ϕ0(2(δ(hb))2),

where ‖b‖1− b = h2
b . Also, if ‖b + anj‖1− (b + anj ) = h2

b+anj
then

−ϕnj (2(δ(hb+anj
))2) = ϕnj

(D(b+anj
)) = ϕnj

(D(b)+D(anj
)) → ϕ0(D(b)+b).
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Note that h2
b+anj

→ h2
b and hb+anj

and hb are positive so that hb+anj
→

hb. Now, since δ is continuous, one can show that the left hand side of
the above equality tends to −ϕ0(2(δ(hb))2). Therefore,

−ϕ0(2(δ(hb))2) = ϕ0(D(b) + b) = −ϕ0(2(δ(hb))2) + ϕ0(b),

that is, ϕ0(b) = 0, which is a contradiction. So the closed graph theorem
shows that D is continuous and therefore d is continuous. �

Recall that if T is a linear mapping and we define T ∗ by T ∗(a) =
T (a∗)∗ for all a ∈ A, then T ∗ is also linear.

Lemma 3.4. Let A ⊆ A, δ : A → A be a linear mapping and d : A → A
be a δ-double derivation. Then, d∗ is a δ∗-double derivation.

Proof. For each a, b ∈ A,

d∗(ab) = d(b∗a∗)∗

= [b∗d(a∗) + d(b∗)a∗ + 2δ(b∗)δ(a∗)]∗

= d∗(a)b + ad∗(b) + 2δ∗(a)δ∗(b).

Hence, d∗ is a δ∗-double derivation.

Proposition 3.5. Let A be a C∗-algebra, δ : A → A be a ∗-linear
mapping and d : A → A be a δ-double derivation. Then, d is of the
form d1 +d2, where d1 is a ∗-δ-double derivation and d2 is a derivation.

Proof. We can write,

d =
d + d∗

2
+

d− d∗

2
.

Put d1 = d+d∗

2 and d2 = d−d∗

2 . Then, d1 is a ∗-δ-double derivation and
d2 is a derivation, since for each a, b ∈ A,

d1(ab) =
d + d∗

2
(ab)

=
1
2
(ad(b) + d(a)b + 2δ(a)δ(b) + ad∗(b) + d∗(a)b + 2δ∗(a)δ∗(b))

= a
d + d∗

2
(b) +

d + d∗

2
(a)b +

1
2
(4δ(a)δ(b))

= ad1(b) + d1(a)b + 2δ(a)δ(b)
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and

d2(ab) =
d− d∗

2
(ab)

=
1
2
(ad(b) + d(a)b + 2δ(a)δ(b)− ad∗(b)− d∗(a)b− 2δ∗(a)δ∗(b))

= a
d− d∗

2
(b) +

d− d∗

2
(a)b.

�

Corollary 3.6. Let A be a C∗-algebra, δ : A → A be a continuous
∗-linear mapping and d : A → A be a δ-double derivation. Then, d is
continuous.

We also have the following two results.

Theorem 3.7. Let A be a C∗-algebra, δ, ε : A → A be two continuous
linear mappings and d : A → A be a ∗-(δ, ε)-double derivation. Then, d
is continuous.

Theorem 3.8. Let A be a C∗-algebra, δ, ε : A → A be two continuous
∗-linear mappings and d : A → A be a (δ, ε)-double derivation. Then, d
is continuous.
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