Bulletin of the

Iranian Mathematical Society

$$
\text { Vol. } 40 \text { (2014), No. 4, pp. 911-920 }
$$

Title:
Higher order close-to-convex functions associated with Attiya-Srivastava operator

Author(s):

S. Hussain, M. Arif and S. Nawaz Malik

HIGHER ORDER CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH ATTIYA-SRIVASTAVA OPERATOR

S. HUSSAIN*, M. ARIF AND S. NAWAZ MALIK
(Communicated by Gholam Hossein Esslamzadeh)

Abstract

In this paper, we introduce a new $\operatorname{class} T_{k}^{s, a}[A, B, \alpha, \beta]$ of analytic functions by using a newly defined convolution operator. This class contains many known classes of analytic and univalent functions as special cases. We derived some interesting results including inclusion relationships, a radius problem and sharp coefficient bound for this class. Keywords: Close-to-convex functions, bounded boundary rotation, Attiya-Srivastava operator. MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.

1. Introduction

Let \mathcal{A} contain the the functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $E=\{z:|z|<1\}$. Let \mathcal{S}^{*}, C and \mathcal{K} denote the subclasses of \mathcal{A} containing starlike, convex and close-toconvex univalent functions defined in E.
A function f analytic in E, is subordinate to a function F if there exists a Schwarz function $h(z)$, analytic in E with $h(0)=0$ and $|h(z)|<|z|$ in E, such that $f(z)=F(h(z))$.

[^0]In [12], the class $P[A, B, \alpha]$ of generalized Janowski functions was introduced. For arbitrary fixed numbers $A, B, \alpha,-1 \leq B<A \leq 1$, $0 \leq \alpha<1$, a function p, analytic in E with $p(0)=1$ is in the class $P[A, B, \alpha]$, if and only if

$$
p(z) \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z} \Leftrightarrow p(z)=\frac{1+[(1-\alpha) A+\alpha B] h(z)}{1+B h(z)}
$$

If we take $\alpha=0$, then the class $P[A, B, \alpha]$ reduces to the class $P[A, B]$ defined by Janwoski in [5]. We note that $p \in P[A, B, \alpha]$ if and only if there exists $p_{1} \in P[A, B]$ such that, for $z \in E$.

$$
\begin{equation*}
p(z)=(1-\alpha) p_{1}(z)+\alpha \tag{1.2}
\end{equation*}
$$

One can easily verify that $P[A, B] \subset P(\beta), \beta=\frac{1-A}{1-B}$. Quite recently, in [8], Noor introduced the class $P_{k}[A, B, \alpha]$, and studied some new classes of analytic functions connected with the class $P_{k}[A, B, \alpha]$. A function $q(z)$ analytic in E with $q(0)=1$ and

$$
\begin{equation*}
q(z)=\left(\frac{k}{4}+\frac{1}{2}\right) q_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) q_{2}(z) \tag{1.3}
\end{equation*}
$$

is in class $P_{k}[A, B, \alpha]$, if and only if, $q_{1}, q_{2} \in P[A, B, \alpha],-1 \leq B<A \leq$ $1,0 \leq \alpha<1, k \geq 2$. It was given in [8] that

$$
P_{k}[A, B, \alpha] \subset P_{k}(\beta), \beta=\frac{1-A_{1}}{1-B}, A_{1}=(1-\alpha) A+\alpha B
$$

Also note that $P_{k}[1,-1,0] \equiv P_{k}$, as defined by Pinchuk in [11].
The convolution or Hadamard product is defined as

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

where

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

We consider the function

$$
\begin{equation*}
\Psi(s, a ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(a+n)^{s}} \tag{1.4}
\end{equation*}
$$

where $a \in \mathbb{C} \backslash Z_{0}^{-}, s \in \mathbb{C}$. The function $\Psi(s, a ; z)$ contain many wellknown functions as its special cases, such as the Riemann and Hurwitz Zeta functions; for more details, see $[13,14,17]$ and references therein.

Using the technique of convolution and the function $\Psi(s, a ; z)$, Srivastava and Attiya [16] consider the convolution operator $J_{s, a}: \mathcal{A} \rightarrow \mathcal{A}$ as

$$
\begin{equation*}
J_{s, a} f(z)=\Phi(s, a, z) * f(z), z \in E, \quad f \in \mathcal{A}, \tag{1.5}
\end{equation*}
$$

where $*$ denotes the convolution and

$$
\begin{equation*}
\Phi(s, a, z)=(1+a)^{s}\left[\Psi(s, a, z)-a^{-s}\right]=z+\sum_{n=2}^{\infty}\left(\frac{a+1}{a+n}\right)^{s} z^{n} . \tag{1.6}
\end{equation*}
$$

Therefore, using (1.5) and (1.6), we obtain

$$
\begin{equation*}
J_{s, a} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{a+1}{a+n}\right)^{s} a_{n} z^{n} . \tag{1.7}
\end{equation*}
$$

For special values of a, s, the operator $J_{s, a}$ contain many known operators, see $[1,2]$. From (1.7), it is clear that the operators $J_{s, a}$ satisfies the following recursive relations

$$
\begin{equation*}
z\left(J_{s+1, a} f(z)\right)^{\prime}=(a+1) J_{s, a} f(z)-a J_{s+1, a} f(z) \tag{1.8}
\end{equation*}
$$

For $f \in \mathcal{A}, a>-1$ and s real, in [8] Noor introduced and studied the following class of analytic functions

$$
R_{k}^{s, a}[A, B, \alpha]=\left\{f \in \mathcal{A}: \frac{z\left(J_{s, a} f(z)\right)^{\prime}}{J_{s, a} f(z)} \in P_{k}[A, B, \alpha]\right\}
$$

and a related class $V_{k}^{s, a}[A, B, \alpha]$ by using the Alexander type relation as

$$
f \in V_{k}^{s, a}[A, B, \alpha] \Leftrightarrow z f^{\prime} \in R_{k}^{s, a}[A, B, \alpha] .
$$

In this paper we study the mapping properties of a new class of analytic function using the methods from convolution theory and AttiyaSrivastava operator. Using the operator $J_{s, a}$, we introduce the following new class of analytic functions.

Definition 1.1. Let $f \in \mathcal{A}, a>-1$ and let s be real. Then $f \in$ $T_{k}^{s, a}[A, B, \alpha, \beta]$, if and only if, there exists $g \in R_{2}^{s, a}[1-2 \beta,-1,0]$ such that

$$
\frac{z\left(J_{s, a} f(z)\right)^{\prime}}{J_{s, a} g(z)} \in P_{k}[A, B, \alpha]
$$

where $-1 \leq B<A \leq 1,0 \leq \alpha, \beta<1$ and $k \geq 2$.
We note that for special values of s, α and k we obtain several known classes of analytic and univalent functions, see $[8,14,16]$ and the references therein, for example $T_{k}^{0,0}[1,-1,0, \beta]=T_{k}(\beta)$ and $T_{2}^{0,0}[1,-1,0, \beta]=$ $K(\beta)$, the class of close-to-convex functions of order β.

2. Preliminary results

Lemma 2.1 ([6]). Let h be convex in the open unit disk E and let $F: E \rightarrow \mathbb{C}$ with $\operatorname{Re} F(z)>0, z \in E$. If p is analytic in E, then

$$
p(z)+F(z) z p^{\prime}(z) \prec h(z)
$$

implies that

$$
p(z) \prec h(z) .
$$

Lemma 2.2 ([10]). Let $p \in P[A, B]$. Then

$$
\frac{1-A r}{1-B r} \leq \operatorname{Re} p(z) \leq|p(z)| \leq \frac{1+A r}{1+B r}
$$

Proof. (1.2), (1.3) and Lemma 2.2, the following Lemma can easily be proved.
Lemma 2.3. Let $p \in P[A, B, \alpha]$. Then

$$
\frac{1-\{(1-\alpha) A-\alpha B\} r}{1-B r} \leq \operatorname{Rep}(z) \leq|p(z)| \leq \frac{1+\{(1-\alpha) A+\alpha B\} r}{1+B r}
$$

Lemma 2.4 ([15]). Let ψ be convex and let g be starlike in E. Then for F analytic in E with $F(0)=1, \frac{\psi * F g}{\psi * g}$ is contained in the convex hull of $F(E)$.

Lemma 2.5. Let $p_{1}, p_{2} \in P_{k}[A, B, \alpha]$. Then for any positive real numbers, δ_{1}, δ_{2}

$$
\frac{1}{\delta_{1}+\delta_{2}}\left[\delta_{1} p_{1}+\delta_{2} p_{2}\right] \in P_{k}[A, B, \alpha] .
$$

Proof. Let

$$
\begin{equation*}
p_{1}(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}(z)=\left(\frac{k}{4}+\frac{1}{2}\right) q_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) q_{2}(z) \tag{2.2}
\end{equation*}
$$

where $h_{i}, q_{i} \in P[A, B, \alpha]$ for $i=1,2$. From (2.1) and (2.2), we have

$$
\begin{aligned}
\frac{1}{\delta_{1}+\delta_{2}}\left[\delta_{1} p_{1}+\delta_{2} p_{2}\right]= & \left(\frac{k}{4}+\frac{1}{2}\right)\left\{\frac{\delta_{1}}{\delta_{1}+\delta_{2}} h_{1}(z)+\frac{\delta_{2}}{\delta_{1}+\delta_{2}} q_{1}(z)\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{\frac{\delta_{1}}{\delta_{1}+\delta_{2}} h_{2}(z)+\frac{\delta_{2}}{\delta_{1}+\delta_{2}} q_{2}(z)\right\} .
\end{aligned}
$$

Since $P[A, B, \alpha]$ is a convex set, so $\left\{\frac{\delta_{1}}{\delta_{1}+\delta_{2}} h_{i}(z)+\frac{\delta_{2}}{\delta_{1}+\delta_{2}} q_{i}(z)\right\} \in P[A, B, \alpha]$.
Hence $\frac{1}{\delta_{1}+\delta_{2}}\left[\delta_{1} p_{1}+\delta_{2} p_{2}\right] \in P_{k}[A, B, \alpha]$ for $i=1,2$.
Note. For $\alpha=0, k=2$, this result was proved in [7].
Lemma 2.6. Let $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in P_{k}[A, B, \alpha]$. Then for $n \geq 1$,

$$
\begin{equation*}
\left|c_{n}\right| \leq \frac{k}{2}(1-\alpha)(A-B) . \tag{2.3}
\end{equation*}
$$

This result is sharp.
Proof. The proof is straightforward by using (1.3), (1.4) and coefficient bound for $P[A, B]$, see [5].

3. Main results

Theorem 3.1. Let $f \in \mathcal{A}, a>0$ and let s be real. Then

$$
\begin{equation*}
T_{k}^{s, a}[A, B, \alpha, \beta] \subset T_{k}^{s+1, a}[A, B, \alpha, \beta] \tag{3.1}
\end{equation*}
$$

Proof. Let $f \in T_{k}^{s, a}[A, B, \alpha, \beta]$. Then there exists $g \in R_{2}^{s, a}[1-2 \beta,-1,0]$ such that

$$
\begin{equation*}
\frac{z\left(J_{s, a} f\right)^{\prime}}{J_{s, a} g} \in P_{k}[A, B, \alpha] \tag{3.2}
\end{equation*}
$$

We set

$$
\begin{align*}
\frac{z\left(J_{s+1, a} f\right)^{\prime}}{J_{s+1, a} g} & =H(z) \tag{3.3}\\
& =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \tag{3.4}
\end{align*}
$$

where p is analytic in E and $p(0)=1$. Observe that

$$
\begin{equation*}
\frac{z\left(J_{s, a} f\right)^{\prime}}{J_{s, a} g}=\frac{J_{s, a}\left(z f^{\prime}\right)}{J_{s, a} g} . \tag{3.5}
\end{equation*}
$$

By using (1.8), and making some simplification, we obtain

$$
\begin{equation*}
\frac{z\left(J_{s, a} f\right)^{\prime}}{J_{s, a} g}=\frac{\frac{z\left(J_{s+1, a}\left(z f^{\prime}\right)\right)^{\prime}}{J_{s+1, a} g}+a \frac{z\left(J_{a, s+1} f\right)^{\prime}}{J_{a, s+1} g}}{\frac{z\left(J_{s+1, a} g\right)^{\prime}}{J_{s+1, a} g}+a} . \tag{3.6}
\end{equation*}
$$

By logarithmic differentiation of (3.3), and some simplifications, we have

$$
\begin{equation*}
\frac{z\left(J_{s+1, a}\left(z f^{\prime}\right)\right)^{\prime}}{J_{s+1, a} g}=H(z) h(z)+z H^{\prime}(z), \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=\frac{z\left(J_{s, a} g(z)\right)^{\prime}}{J_{s, a} g(z)} . \tag{3.8}
\end{equation*}
$$

Since $g \in R_{2}^{s, a}[1-2 \beta,-1,0]$, by using a result given in [8], $g \in R_{2}^{s+1, a}[1-$ $2 \beta,-1,0] \subset S^{*}(\beta)$ which implies $\operatorname{Reh}(z)>\beta$. From (3.6) - (3.10), we obtain

$$
\begin{equation*}
\frac{z\left(J_{s, a} f\right)^{\prime}}{J_{s, a} g}=H(z)+\frac{z H^{\prime}(z)}{h(z)+a} . \tag{3.9}
\end{equation*}
$$

Thus (3.4) and (3.9) together imply

$$
\begin{align*}
\frac{z\left(J_{s, a} f\right)^{\prime}}{J_{s, a} g}= & \left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{h(z)+a}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{h(z)+a}\right\} . \tag{3.5}
\end{align*}
$$

From (3.2) and (3.10), we have

$$
\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{h(z)+a}\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{h(z)+a}\right\} \in P_{k}[A, B, \alpha],
$$

which gives that

$$
h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h(z)+a} \prec \frac{1+A_{1} z}{1+B z}, \quad i=1,2,
$$

where $A_{1}=(1-\alpha) A+\alpha B$. Since $\operatorname{Re}\left\{\frac{1}{h(z)+a}\right\}>0, z \in E$, so using Lemma 2.1, we have

$$
h_{i}(z) \prec \frac{1+A_{1} z}{1+B z}, \quad i=1,2,
$$

which implies that the function H defined by (3.3) belongs to $P_{k}[A, B, \alpha]$ and hence $f \in T_{k}^{s+1, a}[A, B, \alpha, \beta]$.

Theorem 3.2. Let $f \in V_{k}^{s, a}[A, B, \alpha]$ and $g \in R_{k}^{a, s}[A, B, \alpha]$. Let $H(z)$ be defined as

$$
\begin{equation*}
J_{s, a} H(z)=\int_{0}^{z}\left[\left(J_{s, a} f(t)\right)^{\prime}\right]^{\delta_{1}}\left[\frac{J_{s, a} g(t)}{t}\right]^{\delta_{2}} d t \tag{3.11}
\end{equation*}
$$

where δ_{1} and δ_{2} are positive reals with $\delta_{1}+\delta_{2}=1$. Then $H \in V_{k}^{s, a}[A, B, \alpha]$. Proof. From (3.11), we have

$$
\left(J_{s, a} H(z)\right)^{\prime}=\left[\left(J_{s, a} f(z)\right)^{\prime}\right]^{\delta_{1}}\left[\frac{J_{s, a} g(z)}{z}\right]^{\delta_{2}} .
$$

Logarithmic differentiation implies

$$
\begin{aligned}
\frac{z\left(J_{s, a} H(z)\right)^{\prime}}{J_{s, a} H(z)} & =\delta_{1} \frac{\left(z\left(J_{s, a} f(z)\right)^{\prime}\right)^{\prime}}{\left(J_{s, a} f(z)\right)^{\prime}}+\delta_{2} \frac{z\left(J_{s, a} g(z)\right)^{\prime}}{J_{s, a} g(z)} \\
& =\delta_{1} p_{1}(z)+\delta_{2} p_{2}(z), \text { for all } p_{1}, p_{2} \in P_{k}[A, B, \alpha] .
\end{aligned}
$$

Then by using Lemma 2.5, $\left\{\delta_{1} p_{1}(z)+\delta_{2} p_{2}(z)\right\} \in P_{k}[A, B, \alpha]$. Hence from (3.15), $\frac{z\left(J_{s, a} H(z)\right)^{\prime}}{J_{s, a} H(z)} \in P_{k}[A, B, \alpha]$ and consequently $H \in V_{k}^{s, a}[A, B, \alpha]$.

Theorem 3.3. Let $\psi \in \mathcal{C}$ and $f \in R_{2}^{a, s}[A, B, \alpha]$. Then $\psi * f \in R_{2}^{a, s}[A, B, \alpha]$.
Proof. Let $F(z)=\psi * f$. Then by using some properties of convolution we have

$$
\begin{align*}
\frac{\left(J_{s, a} F(z)\right)^{\prime}}{J_{s, a} F(z)} & =\frac{\psi * z\left(J_{s, a} f(z)\right)^{\prime}}{\psi * J_{s, a} f(z)} \tag{3.7}\\
& =\frac{\psi * \frac{z\left(J_{s, a} f(z)\right)^{\prime}}{J_{s, a} f(z)} J_{s, a} f(z)}{\psi * J_{s, a} f(z)} \\
& =\frac{\psi * p(z) J_{s, a} f(z)}{\psi * J_{s, a} f(z)},
\end{align*}
$$

where $p(z)=\frac{z\left(J_{s, a} f(z)\right)^{\prime}}{J_{s, a} f(z)}$. Since $f \in R_{2}^{a, s}[A, B, \alpha]$, therefore $\frac{z\left(J_{s, a} f(z)\right)^{\prime}}{J_{s, a} f(z)} \in$ $P[A, B, \alpha] \subset P\left[A_{1}, B, \alpha\right] \subset P$ and hence $J_{s, a} f(z) \in \mathcal{S}^{*}$. Then by Lemma 2.4, $F(z)$ lies in the convex hull of $p(z)$ and consequently, $F \in R_{2}^{a, s}[A, B, \alpha]$.

By $\mathcal{S}^{*}(\alpha),(0 \leq \alpha<1)$, we mean the starlike functions of order α and $f \in \mathcal{S}_{s, a}^{*}(\alpha)$; if and only if, $J_{s, a} f \in \mathcal{S}^{*}(\alpha)$.

Theorem 3.4. Let $f \in R_{k}^{s, a}[A, B, \alpha]$ and $A_{1}=(1-\alpha) A+\alpha B$ then $f \in \mathcal{S}_{s, a}^{*}\left(\frac{1-A_{1}}{1-B}\right)$ for $|z|<r$, with r given by

$$
\begin{equation*}
r=\frac{2 N}{M+\sqrt{M^{2}-4 L N}}, \tag{3.14}
\end{equation*}
$$

where

$$
\begin{align*}
L & =\left[\left\{\frac{k}{2} \alpha B^{2}-(1-\alpha) A B\right\}(1-B)+\left(1-A_{1}\right) B^{2}\right] \tag{3.8}\\
M & =(1-B)\left[\frac{k}{2}\{B-(1-\alpha) A\}+\alpha B\right] \\
N & =A_{1}-B=(1-\alpha)(A-B) .
\end{align*}
$$

Proof. Let $f \in R_{k}^{s, a}[A, B, \alpha]$. Then $\frac{z\left(\left(J_{s, a} f\right)^{\prime}\right.}{J_{s, a}} \in P_{k}[A, B, \alpha]$. Let

$$
\frac{z\left(\left(J_{s, a} f\right)^{\prime}\right.}{J_{s, a} f}=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) .
$$

Then $p_{i} \in P[A, B, \alpha]$ for $i=1,2$. Now consider

$$
\operatorname{Re}\left\{\frac{z\left(\left(J_{s, a} f\right)^{\prime}\right.}{J_{s, a} f}-\frac{1-A_{1}}{1-B}\right\}=\left(\frac{k}{4}+\frac{1}{2}\right) \operatorname{Re} p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) \operatorname{Re} p_{2}(z)-\frac{1-A_{1}}{1-B} .
$$

Using Lemma 2.3, and making some simplifications, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(\left(J_{s, a} f\right)^{\prime}\right.}{J_{s, a} f}-\frac{1-A_{1}}{1-B}\right\} \geq \frac{L r^{2}+M r+N}{(1-B)\left(1-B^{2} r^{2}\right)}, \tag{3.16}
\end{equation*}
$$

where L, M, N are given by (3.15). Clearly the right hand side of (3.16) is positive for $|z|<r$. Hence $f \in \mathcal{S}_{a, s}^{*}\left(\frac{1-A_{1}}{1-B}\right)$ for $|z|<r$, where r is given by (3.17).

For $\alpha=0, A=1, B=-1, s=0, a=s$, we obtain the radius of starlike-ness for the class of bounded radius rotations.

Theorem 3.5. Let $f \in T_{k}^{s, a}[A, B, \alpha, \beta]$ be of the form (1.1). Then for $n \geq 2$,

$$
\begin{equation*}
\left|a_{n}\right| \leq\left|\left(\frac{a+n}{a+1}\right)^{s}\right| \frac{k(1-\beta)(A-B)}{2(n-1)!} \prod_{j=2}^{\infty}(j-2 \beta) . \tag{3.9}
\end{equation*}
$$

This bound is sharp.
Proof. For $f \in T_{k}^{s, a}[A, B, \alpha, \beta]$, we have by definition

$$
\begin{equation*}
\frac{z\left(J_{s, a} f(z)\right)^{\prime}}{J_{s, a} g(z)}=p(z) \tag{3.18}
\end{equation*}
$$

where $J_{s, a} g(z) \in R_{2}[1-2 \beta,-1,0] \equiv S^{*}(\beta)$ and $p(z) \in P_{k}[A, B, \alpha]$. If $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ and $J_{s, a} g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then from (3.18), we have

$$
z\left(z+\sum_{n=2}^{\infty}\left(\frac{a+1}{a+n}\right)^{s} a_{n} z^{n}\right)^{\prime}=\left(z+\sum_{n=2}^{\infty} b_{n} z^{n}\right)\left(1+\sum_{n=1}^{\infty} c_{n} z^{n}\right)
$$

This implies that

$$
z+\sum_{n=2}^{\infty}\left(\frac{a+1}{a+n}\right)^{s} n a_{n} z^{n}=z+\sum_{n=2}^{\infty}\left(\sum_{k=0}^{n} b_{n} c_{n-k}\right) z^{n}, \quad b_{0}=0, \quad b_{1}=c_{0}=1
$$

Equating coefficients of z^{n}, we have

$$
\left(\frac{a+1}{a+n}\right)^{s} n a_{n}=\sum_{k=0}^{n} b_{n} c_{n-k}
$$

which implies that

$$
\left|\left(\frac{a+1}{a+n}\right)^{s}\right| n\left|a_{n}\right| \leq \sum_{k=0}^{n}\left|b_{n}\right|\left|c_{n-k}\right|
$$

Now using the coefficient bounds $\left|b_{n}\right| \leq \frac{1}{(n-1)!} \prod_{j=2}^{\infty}(j-2 \beta)$, (see [4]) and $\left|c_{n-k}\right| \leq \frac{k}{2}(1-\beta)(A-B)$ by Lemma 2.6 , we can have the required result. Sharpness follows from the function f_{0} for which

$$
\frac{z\left(J_{s, a} f_{0}(z)\right)^{\prime}}{J_{s, a} g_{0}(z)}=\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+A_{1} z}{1+B z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-A_{1} z}{1-B z}
$$

where $g_{0}(z)=\frac{1}{1-\beta}\left\{\frac{z}{(1-z)^{2}}-\beta\right\}$ and $A_{1}=(1-\alpha) A+\alpha B$.
Note that for $s=0, a=s, \alpha=0, A=1, B=-1$, we obtain the coefficient estimate for the class T_{k} studied by Noor in [9].

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. (2) 17 (1915), no. 1, 12-22.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446.
[3] N. E. Cho and J. A. Kim, Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation, Comput. Math. Appl. 52 (2006), no. 3-4, 323-330.
[4] A. W. Goodman, Univalent Functions, Vol. I, II, Mariner Publishing Company, Tempa, 1983.
[5] W. Janowski, Some extremal problems for certain families of analytic functions, I, Ann. Polon. Math. 28 (1973) 297-326.
[6] S. S. Miller, Differential inequalities and caratheodory functions, Bull. Amer. Math. Soc. 81 (1975) 70-81.
[7] K. I. Noor, On some univalent integral operators, J. Math. Anal. Appl. 128 (1987), no. 2, 586-592.
[8] K. I. Noor, Applications of certain operators to the classes related with generalized Janowski functions, Integral Transforms Spec. Funct. 21 (2010), no. 7-8, 557-567.
[9] K. I. Noor, On generalization of close-to-convexity, Int J. Math. Math Sci. 15, 279-290 (1992) DOI 10.1155S016117129200036X.
[10] R. Parvatham and T. N. Shanmugham, On analytic functions with reference to an integral operator, Bull. Austral. Math. Soc. 28 (1983), no. 2, 207-215.
[11] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math. 10 (1971), 6-16.
[12] Y. Polatoglu, M. Bolcal, A. Sen and E. Yavuz, A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paed. Nyire 22 (2006), 27-31.
[13] J. K. Prajapat, S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), no. 1, 129-137.
[14] D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 933-943.
[15] S. Ruscheweyh and T. Shiel-small, Hadamard product of schlicht functions and polya-schoenberg conjecture, Comment. Math. Helv. 48 (1973) 119-135.
[16] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), no. 3-4, 207-216.
[17] H. M. Srivastava, D. G. Yang and N. E. Xu, Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms. Spec. Funct. 20 (2009), no. 7-8, 581-606.
(Saqib Hussain) Department of Mathematics, COMSATS Institute of Information Technology, Abbotabad, Pakistan

E-mail address: saqib_math@yahoo.com
(Muhammad Arif) Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan

E-mail address: marifmaths@yahoo.com
(Sarfraz Nawaz Malik) Department of Mathematics, COMSATS Institute if Information Technology, Wah Cantt, Pakistan

E-mail address: snmalik110@yahoo.com

[^0]: Article electronically published on August 23, 2014.
 Received: 21 February 2012, Accepted: 5 July 2013.

 * Corresponding author.

