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Abstract. Let I denote an ideal of a Noetherian ring R. The pur-
pose of this article is to introduce the concepts of quintasymptotic
sequences over I and quintasymptotic cograde of I, and to show
that they play a role analogous to quintessential sequences over I
and quintessential cograde of I. We show that, if R is local, then
the quintasymptotic cograde of I is unambiguously defined and be-
haves well when passing to certain related local rings. Also, we use
this cograde to characterize two classes of local rings.
Keywords: Quintasymptotic prime, quintasymptotic sequence,
quasi-unmixed ring.
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1. Introduction

Since the notion of regular sequences was first given, commutative
algebraists have been able to enrich their arsenal with powerful tools.
In the early 90’s several kinds of sequences have been considered by
various mathematicians working on different problems which they are
generalizations of regular sequences. D. Katz and L. J. Ratliff, Jr., in
[4] and [15] introduced interesting concepts of essential prime divisors,
essential sequences, and essential grade of an ideal I in a Noetherian ring
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R, and asymptotic prime divisors, asymptotic sequences, and asymptotic
grade of an ideal I in a Noetherian ring R; and therein they showed that
these concepts are excellent analogues of, associated prime divisors, R-
regular sequences, and the standard grade of I, in the classical theory,
respectively.

On the other hand, D. Rees introduced the important concept of an
asymptotic sequence over an ideal I in a Noetherian local ring R in
[17], and in [8], McAdam and Ratliff, showed that asymptotic sequences
over an ideal I in a Noetherian ring R and asymptotic cograde of I
(when R is local) have some useful properties; and several bounds on
this cograde were established in [8]. The main purpose of the present
article is to introduce the concepts of quintasymptotic sequences over
an ideal I in a Noetherian ring R and quintasymptotic cograde of I. We
show that, quintasymptotic sequences over I behave nicely when passing
to certain rings related to R and that the quintasymptotic cograde of
I is well defined (when R is local) and satisfies certain rather natural
inequalities. Also, we show that if R is local, then any two maximal
quintasymptotic sequences over I have the same length, and

qacogd(I) = min{dimR∗/IR∗ + z | z is a minimal prime of R∗}.
Finally, we show that, for every ideal I in a complete local ring R,
agd(I) + qacogd(I) = dimR if and only if, for every prime ideal p of R
with dimR/p = 1, agd(p) + qacogd(p) = dimR, if and only if R has a
unique minimal prime divisor of zero.

Throughout this paper, all rings considered will be commutative and
Noetherian and will have non-zero identity elements. Such a ring will
be denoted by R. For terminology, we follow [2], [5] and [10].

Let I be an ideal of R. We denote by R the Rees ring R[u, It] :=
⊕n∈ZI

ntn of R w.r.t. I, where t is an indeterminate and u = t−1.
Also, the radical of I, denoted by Rad(I), is defined to be the set
{x ∈ R : xn ∈ I for some n ∈ N}. For each R-module L, we denote by
mAssR L the set of minimal primes of AssR L. If (R,m) is Noetherian
local, then R∗ denotes the completion of R with respect to the m-adic
topology. Then R is said to be an unmixed (respectively, quasi-unmixed)
ring if for every p ∈ AssR∗ R∗ (respectively, p ∈ mAssR∗ R∗), the condi-
tion dimR∗/p = dimR is satisfied. More generally, if R is not necessarily
local, R is a locally unmixed (respectively, locally quasi-unmixed) ring if
for any p ∈ SpecR, Rp is an unmixed (respectively, quasi-unmixed)
ring. A prime ideal p of R is called a quintessential (respectively, quin-
tasymptotic) prime ideal of I precisely when there exists q ∈ AssR∗

p
R∗

p
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(respectively, q ∈ mAssR∗
p
R∗

p) such that Rad(IR∗
p + q) = pR∗

p. The set

of quintessential (respectively, quintasymptotic) primes of I is denoted
by Q(I) (respectively, Q∗(I)). Then the essential (respectively, asymp-
totic) primes of I, denoted by E(I) (respectively, A∗(I)), is defined to
be the set {q ∩ R | q ∈ Q(uR)} (respectively, {q ∩ R | q ∈ Q∗(uR)}).
Finally, we shall use A∗(I) to denote the ultimately constant value of the
sequence AssR R/In, which is a well defined finite set of prime ideals,
(cf. [1]).

A brief summary of the contents of this paper will now be given. Let
R be a commutative Noetherian ring and I an arbitrary ideal of R. In
the second section, the notion of the quintasymptotic sequences over I
is introduced, and it is shown that most of the basic properties of the
quintessential sequences (respectively, essential sequences) over I, given
in [16] (respectively, [4]), extend to the quintasymptotic sequences over
I. In fact, it is shown in this section that the quintasymptotic sequence
over I behaves nicely with respect to passing to certain rings related to
R. In the third section, the concept of quintasymptotic cograde of an
ideal is developed and it is shown that most of bounds on the essential,
asymptotic and quintessential cograde of I given in [4], [8] and [16] have a
valid analogous for the quintasymptotic cograde of I. Finally, in section
4 we characterize two classes of local rings by using the quintasymptotic
cograde.

2. Quintasymptotic sequences over an ideal

In this section we introduce the notion of quintasymptotic sequences
over an ideal I of a Noetherian ring R and we show that they have
most of basic properties enjoyed by quintessential sequences, essential
sequences and asymptotic sequences over I. We begin with the following
definitions.

Definition 2.1. Let I and p be ideals of a Noetherian ring R such
that p is prime. Then p is called a quintasymptotic (respectively, quin-
tessential) prime ideal of I precisely when there exists z ∈ mAssR∗

p
R∗

p

(respectively, z ∈ AssR∗
p
R∗

p) such that Rad(IR∗
p + z) = pR∗

p. The set

of quitasymptotic (respectively, quintessential) primes of I is denoted by
Q∗(I) (respectively, Q(I)).

Definition 2.2. Let I denote an ideal of a Noetherian ring R. A se-
quence x = x1, . . . , xn of elements of R is called a quintasymptotic (re-
spectively, quintessential) sequence over I if, (I, (x)) ̸= R and for all
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1 ≤ i ≤ n, we have xi ̸∈
∪
{p ∈ Q∗((I, (x1, . . . , xi−1))) (respectively,

xi ̸∈
∪
{p ∈ Q((I, (x1, . . . , xi−1))). A quintasymptotic (respectively,

quintessential) sequence over (0) is simply called a quintasymptotic (re-
spectively, quintessential) sequence in R

A quintasymptotic (respectively, quintessential) sequence x = x1, . . . , xn

of elements ofR over I ismaximal if x1, . . . , xn, xn+1 is not a quintasymp-
totic (respectively, quintessential) sequence over I for any xn+1 ∈ R. If
R is local, then it is shown in Theorem 3.2 (respectively, [16, Theorem
3.2]) that all maximal quintasymptotic (respectively, quintessential) se-
quences over I have the same length. This allows us to introduce the
fundamental notion of quintasymptotic cograde (respectively, quintessen-
tial cograde), qacogd(I) (respectively, qecogd(I)), of I. Also, it is shown
in Corollary 2.15 (respectively, [9, Proposition 4.3]) that all maximal
quintasymptotic (respectively, quintessential) sequences coming from I
have the same length. Therefore, we define the fundamental notion of
quintasymptotic grade (respectively, quintessential grade), qagd(I) (re-
spectively, qegd(I)) of I.

The following lemma is needed in the proof of the main results of this
paper.

Lemma 2.3. Let I and J be ideals in a Noetherian ring R. Then the
following hold:

(i) If p is a minimal prime divisor of I, then p ∈ Q∗(I).
(ii) If Rad(I) = Rad(J), then Q∗(I) = Q∗(J).
(iii) Q∗(I) ⊆ A∗(I) ∩Q(I) and A∗(I) ∪Q(I) ⊆ E(I) ⊆ A∗(I).
(iv) If I ⊆ p ∈ Spec R and S is a multiplicatively closed subset of R

which is disjoint from p, then p ∈ Q∗(I) if and only if pRS ∈ Q∗(IRS).
(v) p ∈ Q∗(I) if and only if there is z ∈ mAssR R such that z ⊆ p and

p/z ∈ Q∗(I(R/z)).
(vi) If z ∈ mAssR R and p is a minimal prime over I + z, then p ∈

Q∗(I).
(vii) Let the ring T be a faithfully flat Noetherian extension of R.

Let q be a prime ideal in T such that p = q ∩ R. If q ∈ Q∗(IT ), then
p ∈ Q∗(I) and q ∈ Q∗(pT ). Moreover, if p ∈ Q∗(I) and q is minimal
over pT , then q ∈ Q∗(IT ).

(viii) Let the ring T be a finite module extension of R. If p ∈ Q∗(I),
then there is a q ∈ Q∗(IT ) such that q∩R = p. Moreover, if all minimal
primes in T lies over a minimal prime in R, then the converse holds.
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(ix) Q∗((I,X)R[X]) = {(p, X)R[X] | p ∈ Q∗(I)}.

Proof. (i) and (ii) follow readily from definition. (iii)-(viii) are proved
in [7, Lemmas 2.1, 3.4 and Propositions 3.6, 3.8]. To prove (ix), let p ∈
Q∗(I). Then by (iv),(v) and (vii), we may assume that R is a complete
local domain with maximal ideal p. Then, in view of [11, Propositions
6 and 7], R and R[X] are locally unmixed. Thus Q∗(J) = Q(J) for all
ideals J in R and in R[X]. Therefore (p, X)R[X] ∈ Q∗((I,X)R[X]), by
[16, Lemma 2.7]. The other inclusion is similar. □

The next result is a consequence of Lemma 2.3(i) and Definition 2.2.

Corollary 2.4. Let I be an ideal in a Noetherian ring R and let x =
x1, . . . , xn be a sequence of elements of R.

(i) If x is a quintasymptotic sequence over I, then height(I, (x)) ≥
height I+n. Therefore by the Generalized Principal Ideal Theorem if x
is a quintasymptotic sequence in R, then height((x)) = n.

(ii) The sequence x is a maximal quintasymptotic sequence over I if
and only if x is a quintasymptotic sequence over I and for each maximal
ideal m in R containing (I, (x)) it holds that m ∈ Q∗((I, (x))).

The following proposition shows that the quintasymptotic sequences
over an ideal are well behaved when passing to localization.

Proposition 2.5. Let I be an ideal in a Noetherian ring R and let
x = x1, . . . , xn be a sequence of elements of R. Then the following
statements hold:

(i) If x is a quintasymptotic sequence over I and S a multiplicatively
closed subset of R such that (I, (x))RS ̸= RS, then the image of x in RS

is a quintasymptotic sequence over IRS. The converse holds if for all
p ∈

∪
{q ∈ Q∗((I, (x1, . . . , xi))); i = 0, . . . , n− 1}, we have pRS ̸= RS.

(ii) If x is a maximal quintasymptotic sequence over I, then for each
maximal ideal m in R containing (I, (x)) it holds that the image of x
in Rm is a maximal quintasymptotic sequence over IRm. The converse
holds if the xi are contained in the Jacobson radical of R.

Proof. (i) follows from Lemma 2.3(iv). The first statement in (ii) follows
from part (i) and Corollary 2.4(ii). For the last statement in (ii) it will
first be shown that x is a quintasymptotic sequence over I. To this
end, suppose the contrary is true. Then there exists i such that xi ∈ p
for some p ∈ Q∗((I, (x1, . . . , xi−1))). Let m be a maximal ideal in R
containing p. Then the hypotheses implies that (I, (x))R ⊆ m, and
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so the hypotheses and Lemma 2.3(iv) imply that the image of xi is in
pRm ∈ Q∗((I, (x1, ..., xi−1))Rm). But this implies that the image of x in
Rm is not quintasymptotic sequence over IRm, in contradiction to the
hypotheses. Therefore, x is a quintasymptotic sequence over I. If m is
a maximal ideal in R containing (I, (x)), then by Corollary 2.4(ii) and
Lemma 2.3(iv) we have m ∈ Q∗((I, (x))), and so by Corollary 2.4(ii), x
is a maximal quintasymptotic sequence over I. □

The following result shows that the quintasymptotic sequences over
an ideal I of a Noetherian ring R are well behaved when passing to the
factor rings modulo minimal primes of R.

Proposition 2.6. Let I be an ideal in a Noetherian ring R and let
x = x1, . . . , xn be a sequence of elements of R. Then the following
statements hold:

(i) x is a quintasymptotic sequence over I if and only if the image of x
in R/z is a quintasymptotic sequence over I(R/z) for all z ∈ mAssR R.

(ii) x is a maximal quintasymptotic sequence over I if and only if the
image of x in R/z is a quintasymptotic sequence over I(R/z) for all
z ∈ mAssR R, and for all maximal ideals m in R containing (I, (x)),
there exists z ∈ mAssR R such that z ⊆ m and m/z ∈ Q∗((I, (x))(R/z)).

Proof. It follows readily from Lemma 2.3(v) and Corollary 2.4(ii). □
The next result shows that the quintasymptotic sequences over an

ideal are well behaved when passing to faithfully flat Noetherian exten-
sion rings of R. Before bringing it, let us recall the following definition.

Definition 2.7. Let R ⊆ T be Noetherian rings.
(i) We say that R is dominated by T if, for every proper ideal I of R,

we have IT ̸= T and every maximal ideal of T lies over a maximal ideal
of R.

(ii) We say that the Theorem of Transition holds for rings R and T if,
R is dominated by T and if q is a primary ideal of R such that Rad(q)
is a maximal ideal, say m, then lengthTT/qT is finite and that

lengthTT/qT = (lengthTT/mT )(lengthRR/q).

Proposition 2.8. Let R ⊆ T be a faithfully flat extension of Noetherian
rings. Let I be an ideal of R and let x = x1, . . . , xn be a sequence of
elements of R. Then the following hold:

(i) x is a quintasymptotic sequence over I if and only if x is a quin-
tasymptotic sequence over IT .
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(ii) If R ⊆ T satisfy the Theorem of Transition, then x is a maximal
quintasymptotic sequence over I if and only if x is a maximal quinta-
symptotic sequence over IT .

Proof. (i) follows immediately from Lemma 2.3(vii). In order to prove
(ii), let x be a maximal quintasymptotic sequence over I and n a maximal
ideal of T containing (I, (x))T . Then by (i), x is a quintasymptotic
sequence over IT . Let m := n∩R. Since R is dominated by T , it follows
that m is a maximal ideal containing (I, (x)), and so m ∈ Q∗((I, (x))), by
Corollary 2.4(ii). Therefore, n ∈ Q∗((I, (x))T ) by Lemma 2.3(vii) and
hence, x is a maximal quintasymptotic sequence over IT , by Corollary
2.4(ii).

Now, let x be a maximal quintasymptotic sequence over IT . Then by
(i), x is a quintasymptotic sequence over I. Let m be a maximal ideal
of R containing (I, (x)) and let n be a maximal ideal in T containing
mT . Then n ∈ Q∗((I, (x))T ) by Corollary 2.4(ii). On the other hand,
m = n ∩ R, and so m ∈ Q∗((I, (x))) by Lemma 2.3(vii). Therefore, x is
a maximal quintasymptotic sequence over I, by Corollary 2.4(ii). □

The next result shows that the quintasymptotic sequences over an
ideal are well behaved when passing to finite extension rings of R.

Proposition 2.9. Let R ⊆ T be Noetherian rings, with T a finitely
generated R-module. Let I be an ideal of R and let x = x1, . . . , xn be a
sequence of elements of R. Then the following statements hold:

(i) If x is a quintasymptotic sequence over IT , then x is a quinta-
symptotic sequence over I.

(ii) If every minimal prime of T lies over a minimal prime in R, then
x is a quintasymptotic sequence over I if and only if x is a quintasymp-
totic sequence over IT .

(iii) If every minimal prime of T lies over a minimal prime in R,
then x is a maximal quintasymptotic sequence over I if and only if x
is a quintasymptotic sequence over IT and for each maximal ideal m
in R that contains (I, (x)), there exists a prime ideal n in T such that
m = n ∩R and n ∈ Q∗((I, (x))T ).

Proof. It follows readily from Lemma 2.3 (viii) and Corollary 2.4(ii). □

The next proposition is concerned with the quintasymptotic sequences
over I and IR[X], where X is an indeterminate over R.
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Proposition 2.10. Let I be an ideal in a Noetherian ring R and let x =
x1, . . . , xn be a sequence of elements of R. Then the following statements
are equivalent:

(i) The sequence x is a (respectively, maximal) quintasymptotic se-
quence over I.

(ii) The sequence x1, . . . , xi, X, xi+1, . . . , xn is a (respectively, maxi-
mal) quintasymptotic sequence over IR[X] for some i = 0, 1, . . . , n.

(iii) The sequence x1, . . . , xi, X, xi+1, . . . , xn is a (respectively, maxi-
mal) quintasymptotic sequence over IR[X] for every i = 0, 1, . . . , n.

Proof. In view of Lemma 2.3(vii), for j = 0, 1, . . . , i, we have

Q∗((I, (x1, . . . , xj))R[X]) = {pR[X] | p ∈ Q∗((I, (x1, . . . , xj))},
(note that, for an ideal J in R, the prime divisors of JR[X] are pR[X]
such that p is a prime divisor of J). Also, it is clear that X is not in any
prime divisor of (I, (x1, . . . , xi))R[X]. Moreover, for k = 0, 1, . . . , n− i,
we have

Q∗((I, (x1, . . . , xi, X, xi+1, . . . , xi+k))R[X]) =

{(p, X)R[X] | p ∈ Q∗((I, (x1, . . . , xi+k)))},
by Lemma 2.3(ix). Now, the result follows from this and Corollary
2.4(ii). Note that the maximal ideals of R[X] containing (I,X)R[X] are
the ideals (m, X)R[X] such that m is a maximal ideal of R containing
I. □

The following result is concerned with quintasymptotic sequences over
ideals with the same radical.

Proposition 2.11. Let I and J be ideals in a Noetherian ring R such
that Rad(I) = Rad(J), and let x = x1, . . . , xn be a sequence of elements
of R. Then the following statements hold:

(i) x is a quintasymptotic sequence over I if and only if x is a quin-
tasymptotic sequence over J .

(ii) x is a maximal quintasymptotic sequence over I if and only if x
is a maximal quintasymptotic sequence over J .

Proof. As Rad(I) = Rad(J), it follows that

Rad((I, (x1, . . . , xi))) = Rad((J, (x1, . . . , xi))),

for all i = 0, 1, . . . , n, and in view of Lemma 2.3(ii), we have

Q∗((I, (x1, . . . , xi))) = Q∗((J, (x1, . . . , xi))),

for all i = 0, 1, . . . , n. Therefore (i) is true by Definition 2.2.
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Now, let x be a maximal quintasymptotic sequence over I. Then by
(i), x is a quintasymptotic sequence over J . Let m be a maximal ideal
of R containing (J, (x)). Then, (I, (x)) ⊆ m. Since x is a maximal
quintasymptotic sequence over I, it follows from Corollary 2.4(ii) that
m ∈ Q∗((I, (x))). Therefore m ∈ Q∗((J, (x))), and so by Corollary
2.4(ii), x is a maximal quintasymptotic sequence over J . The converse
will be proved similarly. □

The next remark, which gives us some additional basic information
concerning quintasymptotic sequences over an ideal, follows immediately
from the Definition 2.2 and Lemma 2.3(ii).

Remark 2.12. Let I be an ideal in a Noetherian ring R and let x =
x1, . . . , xn be a sequence of elements of R. Then the following statements
are equivalent:

(i) x1, . . . , xn is a quintasymptotic sequence over I.
(ii) x1

m1 , . . . , xn
mn is a quintasymptotic sequence over I for some

positive integers mi.
(iii) x1

m1 , . . . , xn
mn is a quintasymptotic sequence over I for all pos-

itive integers mi.
(iv) There exists an integer i ∈ {0, . . . , n − 1} such that x1, . . . , xi is

a quintasymptotic sequence over I and xi+1, . . . , xn is quintasymptotic
sequence over (I, (x1, . . . , xi)).

(v) For all i ∈ {0, . . . , n−1}, x1, . . . , xi is a quintasymptotic sequence
over I and xi+1, . . . , xn is a quintasymptotic sequence over (I, (x1, . . . , xi)).

In the remainder of this section, we examine the quintasymptotic se-
quences over the zero ideal. Before bringing the next results we recall
that a sequence x = x1, . . . , xn of elements of R is called an asymp-
totic (respectively, essential) sequence over I if, (I, (x)) ̸= R and for all
1 ≤ i ≤ n, we have xi ̸∈

∪
{p ∈ A∗((I, (x1, . . . , xi−1))) (respectively,

xi ̸∈
∪
{p ∈ E((I, (x1, . . . , xi−1))). An asymptotic (respectively, essen-

tial) sequence over (0) is simply called an asymptotic (respectively, es-
sential) sequence in R. An asymptotic (respectively, essential) sequence
x = x1, . . . , xn of elements of R over I is maximal if x1, . . . , xn, xn+1

is not an asymptotic (respectively, essential) sequence over I for any
xn+1 ∈ R. If R is local, then it is shown in [3, Theorem 1.9] (respectively,
[4, Theorem 4.1]) that all maximal asymptotic (respectively, essential)
sequences over I have the same length. This allows us to introduce
the fundamental notion of asymptotic cograde (respectively, essential
cograde), acogd(I) (respectively, ecogd(I)), of I. Also, it is shown in
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[15, Theorem 3.1] (respectively, [4, Proposition 3.10]) that all maximal
asymptotic (respectively, essential) sequences coming from I have the
same length. Therefore, we define the fundamental notion of asymptotic
grade (respectively, essential grade), agd(I) (respectively, egd(I)) of I.

The next proposition is a consequence of [4, Theorem 3.1] and [16,
Proposition 4.1].

Proposition 2.13. Let R be a Noetherian ring such that AssR∗
p
R∗

p has
no embedded prime ideals for all p ∈ SpecR. Let I be an ideal of R and
let x = x1, . . . , xn be a sequence of elements of R. Then Q∗(I) = Q(I) ⊆
A∗(I) = E(I). Moreover, the following statements are equivalent:

(i) x is a quintasymptotic sequence in R;
(ii) x is an asymptotic sequence in R;
(iii) x is a quintessential sequence in R;
(iv) x is an essential sequence in R.

Proof. It is easy to see that Q∗(I) = Q(I). Also, by [4, Theorem 3.1] we
have Q(I) ⊆ A∗(I) = E(I). Now, in view of [16, Proposition 4.1] and
[4, Proposition 3.10], we have (iii) ⇐⇒ (iv) and (ii) ⇐⇒ (iii), and the
first statement shows that (i) ⇐⇒ (iii). □

Now we show that the quintasymptotic grade of I is well defined and
equals with asymptotic grade of I.

Proposition 2.14. Let I be an ideal of a Noetherian ring R. If I is
generated by a quintasymptotic sequence of elements of R, then Q∗(I) =
A∗(I).

Proof. In view of Lemma 2.3(iii) it suffices to show that A∗(I) ⊆ Q∗(I).
To do this, let x = x1, . . . , xn be a quintasymptotic sequence of elements
of R and I = (x). Let p ∈ A∗(I). Then pRp ∈ A∗(IRp). Further, if

pRp ∈ Q∗(IRp), then by Lemma 2.3(iv), p ∈ Q∗(I). Also by Proposition
2.5, IRp is generated by a quintasymptotic sequence in Rp. Thus, we
may assume that R is a local ring with maximal ideal p. Moreover,
pR∗ ∈ A∗(IR∗) by [6, Proposition 3.18], and if pR∗ ∈ Q∗(IR∗), then p ∈
Q∗(I), by Lemma 2.3(vii). Also, IR∗ is generated by a quintasymptotic
sequence in R∗ by Proposition 2.8. Therefore, we may assume that (R, p)
is a complete local ring. Finally, by [6, Proposition 3.18] there exists
z ∈ mAssR R such that p/z ∈ A∗(I(R/z)), and if p/z ∈ Q∗(I(R/z)),
then p ∈ Q∗(I), by Lemma 2.3(v). Also, I(R/z) is generated by a
quintasymptotic sequence in R/z by Proposition 2.6. Consequently, we
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may assume that (R, p) is a complete local domain. Now, since by [11,
Proposition 6] R is locally unmixed, it follows from Proposition 2.13 that
I is generated by a quintessential sequence in R and Q∗(I) = Q(I) ⊆
A∗(I) = E(I). Whence by [4, Theorem 2.5], we have Q∗(I) = A∗(I), as
required. □
Corollary 2.15. Let R be a Noetherian ring and let x = x1, . . . , xn
be a sequence of elements of R. Then x is an asymptotic sequence in
R if and only if x is a quintasymptotic sequence in R. In particular
agd(I) = qagd(I) for all ideals I in R.

Proof. It follows from Lemma 2.3(iii) and Proposition 2.14. □
Corollary 2.16. Let R be a Noetherian ring such that AssR∗

m
R∗

m has
no embedded prime ideals for all maximal ideals m in R. Let I be an
ideal of R and let x = x1, . . . , xn be a sequence of elements of R. Then
the following statements are equivalent:

(i) x is a quintasymptotic sequence in R.
(ii) x is an asymptotic sequence in R.
(iii) x is a quintessential sequence in R
(iv) x is an essential sequence in R.
In particular, qagd(I) = agd(I) = qegd(I) = egd(I).

Proof. It follows from Corollary 2.15, [16, Proposition 4.1] and [4, Propo-
sition 3.10]. □
Remark 2.17. It has been shown in [6, Lemma 6.13] that, if p ∈ A∗(I),
x = x1, . . . , xn is an asymptotic sequence over I and q a minimal prime
divisor of (p, (x)), then q ∈ A∗((I, (x))). Also, this statement is proved
in [4, Theorem 5.1] for essential primes and essential sequences. But
the statement is not true for quintasymptotic primes and quintasymp-
totic sequences. Because otherwise, it is easy to show that it holds for
quintessential primes and quintessential sequences, and this contradicts
[4, Example 7.3].

The next corollary is a weaker result compared to the above remark
for quintasymptotic primes and quintasymptotic sequences.

Corollary 2.18. Let x = x1, . . . , xn be a quintasymptotic sequence in
a Noetherian ring R. Let 1 ≤ i < n and p ∈ Q∗((x1, . . . , xi)). If q is a
minimal prime divisor of (p, (xi+1, . . . , xn)), then q ∈ Q∗((x)).

Proof. By Proposition 2.14, we haveQ∗((x1, . . . , xj)) = A∗((x1, . . . , xj)),
for all 1 ≤ j ≤ n. Therefore, xi+1, . . . , xn is an asymptotic sequence over
x1, . . . , xi, and so the conclusion follows from [6, Lemma 6.13]. □
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3. Quintasymptotic cograde

In this section we show that the quintasymptotic cograde of an ideal
in a Noetherian local ring is unambiguously defined and behaves well
when passing to certain related local rings. We begin with the following
useful lemma which is proved by L. J. Ratliff, Jr.

Lemma 3.1. Let (R,m) be a complete Noetherian local ring that has
only one prime divisor of zero and let I be an ideal of R. Then ecogd(I) =
dimR/I and egd(I) + ecogd(I) = dimR.

Proof. See [16, Lemma 3.1]. □
Theorem 3.2. Let I denote an ideal in a Noetherian local ring (R,m).
Then any two maximal quintasymptotic sequences over I have the same
length. In fact,

qacogd(I) =min{dimR∗/IR∗ + z | z ∈ mAssR∗ R∗}
=min{dimR∗/z − height(IR∗ + z/z) | z ∈ mAssR∗ R∗}.

Proof. Let x = x1, . . . , xn be a maximal quintasymptotic sequence over
I. Then by Proposition 2.8, x is a maximal quintasymptotic sequence
over IR∗. Also by Proposition 2.6, the image of x in R∗/z is a quin-
tasymptotic sequence over IR∗ + z/z, for all z ∈ mAssR∗ R∗ and this
image is a maximal quintasymptotic sequence over IR∗ + z/z for such
z. Now, as R∗/z is a complete local domain, it follows that the image
of x in R∗/z is a quintessential sequence over IR∗ + z/z, and so for all
z ∈ mAssR∗ R∗, we have n ≤ qecogd(IR∗ + z/z); and the equality holds
for some such z. Therefore,

n = min{qecogd(IR∗ + z/z) | z ∈ mAssR∗ R∗}.
On the other hand, in view of Lemma 3.1,

qecogd(IR∗ + z/z) = dimR∗/IR∗ + z.

Consequently, it follows that qacogd(I) is unambiguously defined and

qacogd(I) = min{dimR∗/IR∗ + z | z ∈ mAssR∗ R∗}.
Finally, the last equality follows from the fact that:

dimR∗/IR∗ + z = dim(R∗/z)/(IR∗ + z/z)

and

height(IR∗ + z/z) + dim(R∗/z)/(IR∗ + z/z) = dimR∗/z.
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□

The following theorem shows that qacogd(I) behaves nicely when
passing to certain related rings and ideals.

Theorem 3.3. Let I and J be ideals in a Noetherian local ring (R,m).
Then

(i) If I ⊆ J , then qacogd(J) ≤ qacogd(I).
(ii) If Rad(I) = Rad(J), then qacogd(I) = qacogd(J).
(iii) qacogd(I) = min{qacogd(I + z/z) | z ∈ mAssR R}.
(iv) If T is a faithfully flat Noetherian extension of R, then qacogd(I)≤

qacogd(ITn) for all prime ideals n in T lying over m and equality holds
if heightm = height n. In particular qacogd(I) = qacogd(IR∗)

(v) If T is a finite extension ring of R such that every minimal prime
of T lies over a minimal prime of R, then qacogd(I) ≤ qacogd(ITn) for
all prime ideals n in T lying over m, and equality holds for some such n.

(vi) qacogd(I) = qacogd((I,X)R[X](m,X)).

Proof. (i) and (ii) follow from Theorem 3.2 and (iii) follows from Theo-
rem 3.2 and Proposition 2.6. In order to prove (iv), let x = x1, . . . , xn
be a maximal quintasymptotic sequence over I and let n be a prime
ideal in T lying over m. As (I, (x))T ⊆ n, it follows that x is a quin-
tasymptotic sequence over ITn, by Propositions 2.5 and 2.8. Whence
qacogd(I) ≤ qacogd(ITn), by Theorem 3.2. Now, if heightm = height n,
then n is a minimal prime over mT . Thus nTn ∈ Q∗((I, (x))Tn) by
Lemma 2.3(iv),(vii). Therefore, qacogd(I) = qacogd(ITn), by Theorem
3.2.

For (v), let x = x1, . . . , xn be a maximal quintasymptotic sequence
over I and let n be a prime ideal in T lying over m. Since n contains
(I, (x))T , it follows that x is a quintasymptotic sequence over ITn, by
Propositions 2.5 and 2.9. Whence qacogd(I) ≤ qacogd(ITn) for all prime
ideals n in T lying over m, by Theorem 3.2. Also, by Proposition 2.9,
there exists a maximal ideal n′ in T such that n′ ∈ Q∗((I, (x))T ). Thus
n′Tn′ ∈ Q∗((I, (x))Tn′) by Lemma 2.3(iv), and hence x is a maximal quin-
tasymptotic sequence over ITn′ . Therefore, qacogd(I) = qacogd(ITn′)
by Theorem 3.2. Finally, (v) follows immediately from Proposition 2.10
and Theorem 3.2. □

In remainder of this section we give several bounds on quintasymptotic
cograde of an ideal.
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Theorem 3.4. Let I be an ideal in a Noetherian local ring R. Then the
following hold:

(i) qacogd(I) ≤ dimR/I.
(ii) qacogd(I) ≥ min{dimR∗/q | q ∈ Q∗(IR∗)}.

Proof. For (i) we have,

dimR/I = dimR∗/IR∗ ≥ min{dimR∗/IR∗ + z | z ∈ mAssR∗ R∗},

and so, by Theorem 3.2, we have qacogd(I) ≤ dimR/I.
In order to prove (ii), in view of Theorem 3.2, there exists a minimal

prime z of R∗ such that qacogd(I) = dimR∗/IR∗ + z. Thus there exists
a minimal prime divisor q of IR∗ + z such that qacogd(I) = dimR∗/q.
Hence, by Lemma 2.3(vi), q ∈ Q∗(IR∗), and so the result follows. □
Lemma 3.5. Let I and J be ideals in a Noetherian ring R and let
p ∈ SpecR such that I ⊆ J ⊆ p and p ∈ Q∗(I). Then p ∈ Q∗(J).

Proof. It follows from Definition 2.1. □

Proposition 3.6. Let I be an ideal in a Noetherian local ring (R,m)
and let y1, . . . , yk be an asymptotic sequence of elements of R such that
yj ∈ I for all j(1 ≤ j ≤ k). Then there is a maximal quintasymptotic
sequence over I, say x1, . . . , xn, such that y1, . . . , yk, x1, . . . , xn is an
asymptotic sequence in R. In particular qacogd(I) + agd(I)) ≤ agd(m).

Proof. Let n be the length of a maximal quintasymptotic sequence over
I. If n = 0 we are done. If n > 0, then m /∈ Q∗(I), and so by Lemma
3.5, m /∈ Q∗((y1, . . . , yk)). Pick x1 ∈ m with x1 /∈ ∪{p | p ∈ Q∗(I)}
and x1 /∈ ∪{p | p ∈ Q∗((y1, . . . , yk))}. Now, x1 is a quintasymptotic
sequence over I and the length of a maximal quintasymptotic sequence
over (I, (x1)) is n− 1. Since the choice of x1 assures that y1, . . . , yk, x1
is an asymptotic sequence in R, we now may use induction. □

The next result determines when the inequality in Proposition 3.6 is
equality.

Theorem 3.7. Let I be an ideal in a Noetherian local ring (R,m). Then
the following statements are equivalent:

(i) qacogd(I) + agd(I) = agd(m).
(ii) For all z ∈ mAssR∗ R∗ with agd(m) = dimR∗/z, we have agd(I) =

height(IR∗ + z/z) and qacogd(I) = dimR∗/z − height(IR∗ + z/z).
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(iii) There exists z ∈ mAssR∗ R∗ such that agd(I) = height(IR∗ + z/z)
and qacogd(I) = dimR∗/z − height(IR∗ + z/z).

Proof. To prove (i) =⇒ (ii), let qacogd(I) + agd(I) = agd(m) and let
z ∈ mAssR∗ R∗ such that agd(m) = dimR∗/z. Then by Theorem 3.2
and [6, Proposition 6.10], we have

qacogd(I) ≤ dimR∗/z − height(IR∗ + z/z) ≤ agd(m)− agd(I) = qacogd(I).

Therefore, agd(I) = height(IR∗ + z/z) and qacogd(I) = dimR∗/z −
height(IR∗ + z/z).

In order to prove the implication (ii) =⇒ (iii), it suffices to show
that, there exists z ∈ mAssR∗ R∗ such that agd(m) = dimR∗/z. To this
end we use [6, Proposition 6.10]. Finally, the implication (iii) =⇒ (i) is
obvious, by [6, Proposition 6.10] and Proposition 3.6. □

Now we give some lower bounds on qacogd(I).

Remark 3.8. Let I be an ideal in a Noetherian ring R. Then the
following hold:

(i) It follows from the Lemma 2.3(iii), Corollary 2.15 and [4, Propo-
sition 3.10], that

egd(I) = qeg(I) ≤ qagd(I) = agd(I).

(ii) If R is local, then by the Lemma 2.3(iii), we have,

ecogd(I) ≤ qecogd(I) ≤ qacogd(I) and
ecogd(I) ≤ acogd(I) ≤ qacogd(I).

Corollary 3.9. Let I be an ideal in a Noetherian local ring (R,m).
Then, for all large n, qacogd(I) ≥ egd(m/In).

Proof. This is clear by [16, Theorem 5.5] and Remark 3.8. □
Corollary 3.10. Let I be an ideal in a Noetherian local ring (R,m).
Then, for all large n, qacogd(I) ≥ grade(m/In).

Proof. This is clear by Corollary 3.9 and Lemma 2.3(iii). □
Corollary 3.11. Let I be an ideal in a Noetherian local ring (R,m)
such that for all large n, (R/In)∗ has no imbedded prime divisors of
zero. Then qacogd(I) ≥ agd(m/In), for all large n.

Proof. This is clear by Corollaries 3.9 and 2.16. □
This section will be closed with the another lower bound for qacogd(I)

in connection with analytic spread. Let us, firstly, recall the impor-
tant notion of the analytic spread of I in a local ring (R,m), which
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was introduced by Northcott and Rees in [12] and is defined as l(I) :=
dim R/(m, u)R.

Theorem 3.12. Let I be an ideal in a Noetherian local ring (R,m).
Then,

qacogd(I) ≥ agd(m)− l(I).

Proof. By Theorem 3.2 there exists z ∈ mAssR∗ R∗ such that

qacogd(I) = height(mR∗/z)− height IR∗ + z/z.

Also, by [6, Proposition 6.10], we have agd(m) ≤ height(mR∗/z). On
the other hand, by [4, Remark 5.5.4] and [6, Lemma 6.5],

height(IR∗ + z/z) ≤ l(IR∗ + z/z) ≤ l(I).

Now the desired result follows. □

4. Quintasymptotic cograde and unmixedness

In this section we use quintasymptotic cograde to obtain some char-
acterizations of quasi-unmixed rings and another related class of local
rings. We begin with the quasi-unmixed case.

Proposition 4.1. Let (R,m) be a Noetherian local ring. Then the fol-
lowing are equivalent:

(i) R is quasi-unmixed.
(ii) agd(I) = height I for all ideals I of R.
(iii) agd(m) = heightm.
(iv) qacogd(0) = dimR.
(v) qacogd(I) = dimR/I for every ideal I of R generated by an as-

ymptotic sequence of elements of R.

Proof. Since by [13, Lemma 2.5] every quasi-unmixed local ring is lo-
cally quasi-unmixed ring, it follows from [6, Corollary 5.8] that (i)-(iii)
are equivalent. Assume that (ii) holds and let x = x1, . . . , xn be an
asymptotic sequence in R and let I := (x). Then there are elements
xn+1, . . . , xr in R such that x1, . . . , xn, xn+1, . . . , xr is a maximal as-
ymptotic sequence in R, and so qacogd(I) = r − n. By assumption
and Corollary 2.4(i), we have height I = n and heightm = r. Hence
n + dimR/I ≤ dimR = heightm = r, and so dimR/I ≤ r − n =
qacogd(I). Now, the implication (ii) =⇒ (v) follows from Theorem 3.4.
The implications (v) =⇒ (iv) and (iv) =⇒ (iii) obviously are true. □
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Theorem 4.2. Let (R,m) be a Noetherian local ring. Consider the
following conditions:

(i) qacogd(I) = dimR/I for every ideal I of R.
(ii) agd(I) + qacogd(I) = dimR for every ideal I of R.
(iii) agd(p) + qacogd(p) = dimR for every prime ideal p of R with

dimR/p = 1.
(iv) R is quasi-unmixed and there exists a unique minimal prime di-

visor in R.
Then (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv).

Proof. (i) =⇒ (iv): If (i) holds and I = (0), then by Proposition 4.1, R
is a quasi-unmixed ring. Let p and q be distinct minimal prime divisors
in R. Then, by [10, 34.5], we have

dimR/p = dimR/q = dimR.

Let z be a minimal prime divisor of qR∗ such that dimR∗/z = dimR∗/qR∗,
and so dimR∗/z = dimR. Thus z ∈ mAssR∗ R∗. Therefore, by Theorem
3.2, we have

qacogd(p) ≤ dimR∗/pR∗ + z.

As p and q are distinct, it yields that

dimR∗/pR∗ + z < dimR∗/qR∗ = dimR/q = dimR/p.

Hence qacogd(p) < dimR/p, which is a contradiction.
(i) =⇒ (ii): If (i) holds, then R is a quasi-unmixed ring, and so

agd(I) = height I, by Proposition 4.1. Thus (ii) is true by [10, 34.5]. It
is clear that (ii) =⇒ (iii).

In order to prove the implication (iii) =⇒ (i), suppose, the con-
trary, that (i) is not true. Then, there is an ideal I of R such that
qacogd(I) ̸= dimR/I and dimR/I ≤ dimR/J for every ideal J of R
with qacogd(J) ̸= dimR/J . Now, suppose dimR/I = d. Then by The-
orem 3.4(i), d > 0. If d = 1, then qacogd(I) = 0 by Theorem 3.4(i),
and so by Theorem 3.3(i), qacogd(p) = 0, for all prime ideals p in R
containing I, which is a contradiction. Therefore d > 1 and by [14,
Proposition 2.2] there exists infinitely many prime ideals p in R such
that I ⊆ p and dimR/p = d − 1. Let P be the set of these prime
ideals. Then, by Theorem 3.2 there exist z ∈ mAssR∗ R∗ such that
qacogd(I) = dimR∗/IR∗ + z. Let

Q = {q ∈ SpecR∗ | there is p ∈ P with pR∗ + z ⊆ q

and dimR∗/pR∗ + z = dimR∗/q}.
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We now show that Q is infinite and dimR∗/q = d− 1 for all q ∈ Q. To
do this, let q ∈ Q. Then there exists p ∈ P such that pR∗ + z ⊆ q and
dimR∗/pR∗ + z = dimR∗/q. By the choice of d we have qacogd(p) =
dimR/p = d− 1. Therefore,

d− 1 = qacogd(p) ≤ dimR∗/pR∗ + z = dimR∗/q.

In other hand, we have

dimR∗/q ≤ dimR∗/pR∗ = dimR/p = d− 1.

Therefore, dimR∗/q = d − 1 and q is a minimal prime divisor of pR∗.
Consequently, there are infinitely many q, as there are infinitely many
p. Since

d− 1 = dimR∗/q ≤ dimR∗/pR∗ + z ≤

dimR∗/IR∗ + z = qacogd(I) < dimR/I = d,

it follows that dimR∗/IR∗ + z = d − 1. Hence q is a minimal prime
divisor of IR∗ + z, and therefore, IR∗ + z has infinitely many minimal
prime divisors, which is a contradiction. That is, (i) holds. □

Theorem 4.3. Let R be a complete Noetherian local ring. Then the
following conditions are equivalent:

(i) qacogd(I) = dimR/I, for every ideal I of R.
(i) agd(I) + qacogd(I) = dimR, for every ideal I of R.
(iii) agd(p) + qacogd(p) = dimR, for every prime ideal p of R with

dimR/p = 1.
(iv) R has a unique minimal prime divisor of zero.

Proof. In view of Theorem 4.2, it suffices to show that (iv) =⇒ (i); and
this follows from Theorem 3.2. □
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