ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 4, pp. 961–965

Title:

Frobenius kernel and Wedderburn's little theorem

Author(s):

M. Amiri and M. Ariannejad

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 40 (2014), No. 4, pp. 961–965 Online ISSN: 1735-8515

FROBENIUS KERNEL AND WEDDERBURN'S LITTLE THEOREM

M. AMIRI AND M. ARIANNEJAD*

(Communicated by Omid Ali S. Karamzadeh)

Dedicated to Professor Saieed Akbari

ABSTRACT. We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.

Keywords: Division ring, maximal subfield, Frobenius representation theorem.

MSC(2010): Primary: 12E15; Secondary: 17A35, 17C60.

1. Introduction

In 1905, Wedderburn proved that [8] "Any division algebra with finitely many elements is commutative". All over the past century, new proofs of this theorem have been given by a number of mathematicians. One can find a good survey of these proofs in [1]. Another approach to this theorem applying Frobenius groups can be found in [2]. Two recent new proofs can be found in [4, 7]. Two of the most famous proofs of this theorem are due to Witt [9, 6] and B.L. van der Waerden ([3], p. 97). Here we give a new proof of this theorem based on a famous theorem of Frobenius. First we recall this latter theorem and one of its corollaries ([5], p. 196]).

O2014 Iranian Mathematical Society

Article electronically published on August 23, 2014.

Received: 8 Jun 2012, Accepted: 14 July 2013.

^{*}Corresponding author.

⁹⁶¹

Theorem A. (Frobenius). Let G be a finite group and let H be a subgroup of G. Also suppose that the condition $H \cap (gHg^{-1}) = \{e\}$ holds for all $g \in G \setminus H$ (Hence $N_G(H) = H$). Then

$$F = G \setminus \bigcup_{g \in G} g(H^*)g^{-1}$$
, where $H^* = H \setminus \{e\}$

is a normal subgroup of G and we have G = FH, where $F \cap H = \{e\}$. We call G a Frobenius group with respect to H, and F is called the Frobenius kernel of G.

Proposition B. a) Let G be a Frobenius group for H with Frobenius kernel F. If $N \leq G$, then either $N \leq F$ or $F \leq N$.

b) If G is a Frobenius group, then its Frobenius kernel is the maximal nilpotent normal subgroup (known as Fitting subgroup of G and denoted by Fit(G)).

c) If G is a Frobenius group for H_1 and H_2 , then H_1 and H_2 are conjugate in G.

2. Results

We begin with the following lemma which has a main role in this study.

Lemma 2.1. Let D be a finite division ring with center F such that any proper subdivision ring of D is commutative. Also let the intersection of any two maximal subfield of D be equal to F. If T is a maximal subfield of D, then $N(T^*) = T^*$.

Proof. Let $y \in N(T^*) \setminus T^*$. Since T is a finite field, there exists an element $x \in T$ such that $T^* = \langle x \rangle$ and for an integer $j \neq 1$ we have $yxy^{-1} = x^j$. Consequently for any integer n the equality $y^n x = x^{j^n} y^n$ holds. As T/F is a Galois extension, for any prime divisor s of [T:F] there exists a subfield K of T with dimension [K:F] = s. Since K is finite, for some element $b \in K$ we have $K^* = \langle b \rangle$ and K = F(b). Clearly there exists an integer u such that $b = x^u$. Let L be a maximal subfield of D containing y. This implies that $L \neq T$. Consider $yF^* \in D^*/F^*$ and let $w = o(yF^*)$ be the order of $\overline{y} = yF^*$ in the quotient group D^*/F^* . Clearly $w \neq 1$. Let p be a prime divisor of w and put $m = p^{-1}w$. Let $z = y^m$. Hence $o(zF^*) = p$. Now note that D = F(x, y). Since $z, b \in D \setminus F$, the centralizers of z and b are maximal subfields of D.

Amiri and Ariannejad

 $C_D(b) \cap C_D(z) = F$, hence $zb \neq bz$ and we have D = F(b, z). Since $zb = b^{j^m}z$, every element of D has a representation as $\sum c_i z^i$, where $c_i \in F(b)$. Note that for all t in $1 \leq t \leq p-1$ we have $b^{j^{tm}} \neq b$, otherwise, $z^tb = b^{j^{tm}}z^t = bz^t$, which implies $z^t \in F$. This contradicts the fact that the order of zF^* is p. Now the set $\{1, z, z^2, \dots, z^{p-1}\}$ is a basis of D over F(b). Consequently [D:F] = [D:F(b)][F(b):F] = ps. This implies that [T:F] = s and [L:F] = p. This also implies that every subfield of D has dimension p or s. Now let $C_D(v)$ be the centralizer of an element $v \in D \setminus F$. Clearly $C_D(v)$ is a maximal subfield of D. Let q be the cardinality of F, then for some positive integers f and e, the class equation of the finite group D^* shows that:

$$q^{ps}-1=q-1+f(\frac{q^{ps}-1}{q^p-1})+e(\frac{q^{ps}-1}{q^s-1}).$$

Equivalently:

$$q^{ps} - 1 - (q-1) = \frac{q^{ps} - 1}{(q^p - 1)(q^s - 1)} (f(q^s - 1) + e(q^p - 1)).$$

Since $q^s - 1$ and $q^p - 1$ divide $q^{ps} - 1$ (the cardinality of D^*), D^* has subgroups with these cardinalities. If we let d to be the greatest common divisor of $q^p - 1$ and $q^s - 1$, then we have

$$q^{ps} - q = \frac{(q^{ps} - 1)d}{(q^p - 1)(q^s - 1)} \left(\frac{f(q^s - 1)}{d} + \frac{e(q^p - 1)}{d}\right).$$

Note that $\frac{(q^{ps}-1)d}{(q^p-1)(q^s-1)} \ge q$ and $\frac{(q^p-1)(q^s-1)}{d}$ is the least common multiple of (q^p-1) and (q^s-1) . These facts imply that $q^{ps}-1$ has a divisor h, which is greater than or equal to q. Now since h divides $q^{ps}-q$, it should also divides $q^{ps}-1-q^{ps}+q=q-1$, which is a clear contradiction. This contradiction shows that $N(T^*) = T^*$ and the claim is fulfilled. \Box

We apply the above Lemma to present a new proof of the Wedderburn's little theorem based on the Frobenius kernel in Frobenius representation theorem.

Theorem 2.2 (Wedderburn). Any finite division ring is commutative.

Proof. The proof is by induction on the size of D. The first step in size 2 is clear. Now suppose the claim holds for all division rings with elements fewer than |D|. Let Z(D) = F be the center of D. If $D \neq F$, then we have at least two maximal subfields containing two non-commutative elements. Let T be a proper maximal subfield of D. We

963

have two separate cases: either all pairs of maximal subfields of D have F as their intersection or there are at least two maximal subfields whose intersection strictly contains F.

Case 1. By the Lemma we have $N(T^*) = T^*$. Put $\overline{D^*} = D^*/F^*$ and $\overline{T^*} = T^*/F^*$. If for an element $d \in D$, we have $dTd^{-1} \cap T \neq F$, then since dTd^{-1} is a maximal subfield of D the equality $dTd^{-1} = T$ holds. This implies that $d \in T$. So for all $d \in D \setminus T$ we have $dTd^{-1} \cap T = F$ or $\overline{dT^*d^{-1}} \cap \overline{T^*} = \overline{F^*} = \overline{1}$. This equality shows that the main conditions for $\overline{D^*}$ to be a Frobenius group hold (see Theorem A). So, we may consider $\overline{D^*} = \overline{K} \ \overline{T^*}$ to be the Frobenius representation of $\overline{D^*}$ with kernel \overline{K} , where $\overline{T^*} \cap \overline{K} = \{\overline{1}\}$. Since $\overline{K} \neq \{\overline{1}\}$ there exists a nontrivial element $\overline{z} \in \overline{K}$. Let S be the maximal subfield of D containing z. The same process for S instead of T leads to a Frobenius representation $\overline{D^*} = \overline{L} \ \overline{S^*}$ with kernel \overline{L} where $\overline{S^*} \cap \overline{L} = \{\overline{1}\}$. By Proposition B above, we have $\overline{K} = Fit(\overline{D^*}) = \overline{L}$. Consequently $\overline{1} \neq \overline{z} \in \overline{S^*} \cap \overline{K} = \overline{S^*} \cap \overline{L} = \{\overline{1}\}$. This is a clear contradiction.

Case 2. Let *S* and *T* be two maximal subfields of *D* with $S \cap T \neq F$. Consider $z \in (S \cap T) \setminus F$. Since $S \neq T$ there exist at least two elements $x \in T$ and $y \in S$, where $xy \neq yx$ and the induction process yields D = F(x, y). Now we have zx = xz and zy = yz. This implies that $z \in F$ which is a contradiction.

Now, we would like to pose some open problems for readers interested in pursuing the concepts introduced in this note. We believe the following question is considerable: whether in a non commutative division ring all maximal subfields are equal to their normalizers. We propose the following.

Conjecture. Let *D* be a division ring. Then *D* is commutative if and only if for all maximal subfields *T* of *D*, we have $N(T^*) = T^*$.

Acknowledgments

The authors would like to express their best gratitude to the referee for his/her valuable comments which helped to improve the work.

References

 M. Adam and B. J. Mutschler, On Wedderburn's theorem about finite division algebras, http://www.mathematik.uni-bielefeld.de/LAG/man/099.pdf.

Amiri and Ariannejad

- [2] S. Ebey and K. Sitaram, Frobenius groups and Wedderburn's theorem, Amer. Math. Monthly 76 (1969) 526-528.
- [3] B. Farb and R. Keith Dennis, Noncommutative Algebra, Graduate Texts in Mathematics, 144, 1993, Springer-Verlag, New York, 1993.
- [4] T. Grundhöfer, Commutativity of finite groups according to Wedderburn and Witt, Arch. Math. 70 (1998), no. 6, 425–426.
- [5] B. Huppert, Character Theory of Finite Groups, De Gruyter Expositions in Mathematics, 25, Walter de Gruyter & Co., Berlin, 1998.
- [6] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 131, 2nd Edition, Springer-Verlag, New York, 2001.
- [7] N. Lichiardopol, A new proof of Wedderburn's theorem, Amer. Math. Monthly 110 (2003), no. 8, 736–737.
- [8] J. H. M. Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc. 6 (1905), no. 3, 349–352.
- [9] E. Witt, Collected Papers, Springer-Verlag, Berlin, 1998.

(M. Amiri) Department of Mathematics, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran

E-mail address: m.amiri@znu.ac.ir

(M. Ariannejad) Department of Mathematics, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran

E-mail address: arian@znu.ac.ir

965