
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 40 (2014), No. 4, pp. 961–965

.

Title:

.

Frobenius kernel and Wedderburn’s little theorem

.

Author(s):

.

M. Amiri and M. Ariannejad

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 4, pp. 961–965
Online ISSN: 1735-8515

FROBENIUS KERNEL AND WEDDERBURN’S LITTLE

THEOREM

M. AMIRI AND M. ARIANNEJAD∗

(Communicated by Omid Ali S. Karamzadeh)

Dedicated to Professor Saieed Akbari

Abstract. We give a new proof of the well known Wedderburn’s
little theorem (1905) that a finite division ring is commutative. We
apply the concept of Frobenius kernel in Frobenius representation
theorem in finite group theory to build a proof.
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1. Introduction

In 1905, Wedderburn proved that [8] “Any division algebra with
finitely many elements is commutative”. All over the past century, new
proofs of this theorem have been given by a number of mathematicians.
One can find a good survey of these proofs in [1]. Another approach to
this theorem applying Frobenius groups can be found in [2]. Two recent
new proofs can be found in [4, 7]. Two of the most famous proofs of this
theorem are due to Witt [9, 6] and B.L. van der Waerden ([3], p. 97).
Here we give a new proof of this theorem based on a famous theorem of
Frobenius. First we recall this latter theorem and one of its corollaries
([5], p. 196]).
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Theorem A. (Frobenius). Let G be a finite group and let H be a sub-
group of G. Also suppose that the condition H ∩ (gHg−1) = {e} holds
for all g ∈ G \H (Hence NG(H) = H). Then

F = G \
∪

g∈G

g(H∗)g−1, where H∗ = H \ {e}

is a normal subgroup of G and we have G = FH, whereF ∩H = {e}.
We call G a Frobenius group with respect to H, and F is called the
Frobenius kernel of G.

Proposition B. a) Let G be a Frobenius group for H with Frobenius
kernel F . If N ⊴G, then either N ≤ F or F ≤ N .

b) If G is a Frobenius group, then its Frobenius kernel is the maximal
nilpotent normal subgroup (known as Fitting subgroup of G and denoted
by Fit(G)).

c) If G is a Frobenius group for H1 and H2, then H1 and H2 are conju-
gate in G.

2. Results

We begin with the following lemma which has a main role in this
study.

Lemma 2.1. Let D be a finite division ring with center F such that any
proper subdivision ring of D is commutative. Also let the intersection of
any two maximal subfield of D be equal to F . If T is a maximal subfield
of D, then N(T ∗) = T ∗.

Proof. Let y ∈ N(T ∗)\T ∗. Since T is a finite field, there exists an
element x ∈ T such that T ∗ =< x > and for an integer j ̸= 1 we have
yxy−1 = xj . Consequently for any integer n the equality ynx = xj

n
yn

holds. As T/F is a Galois extension, for any prime divisor s of [T : F ]
there exists a subfield K of T with dimension [K : F ] = s. Since K
is finite, for some element b ∈ K we have K∗ =< b > and K = F (b).
Clearly there exists an integer u such that b = xu. Let L be a maximal
subfield of D containing y. This implies that L ̸= T . Consider yF ∗ ∈
D∗/F ∗ and let w = o(yF ∗) be the order of y = yF ∗ in the quotient
group D∗/F ∗. Clearly w ̸= 1. Let p be a prime divisor of w and put
m = p−1w. Let z = ym. Hence o(zF ∗) = p. Now note that D = F (x, y).
Since z, b ∈ D\F , the centralizers of z and b are maximal subfields of D.
Since x ∈ CD(b) and y ∈ CD(z) we have CD(b) ̸= CD(z). By assumption



963 Amiri and Ariannejad

CD(b) ∩ CD(z) = F , hence zb ̸= bz and we have D = F (b, z). Since
zb = bj

m
z, every element of D has a representation as

∑
ciz

i, where

ci ∈ F (b). Note that for all t in 1 ≤ t ≤ p − 1 we have bj
tm ̸= b,

otherwise, ztb = bj
tm
zt = bzt, which implies zt ∈ F . This contradicts

the fact that the order of zF ∗ is p. Now the set {1, z, z2, · · · , zp−1} is a
basis of D over F (b). Consequently [D : F ] = [D : F (b)][F (b) : F ] = ps.
This implies that [T : F ] = s and [L : F ] = p. This also implies
that every subfield of D has dimension p or s. Now let CD(v) be the
centralizer of an element v ∈ D\F . Clearly CD(v) is a maximal subfield
of D. Let q be the cardinality of F , then for some positive integers f
and e, the class equation of the finite group D∗ shows that:

qps − 1 = q − 1 + f(
qps − 1

qp − 1
) + e(

qps − 1

qs − 1
).

Equivalently:

qps − 1− (q − 1) =
qps − 1

(qp − 1)(qs − 1)
(f(qs − 1) + e(qp − 1)).

Since qs − 1 and qp − 1 divide qps − 1 (the cardinality of D∗), D∗ has
subgroups with these cardinalities. If we let d to be the greatest common
divisor of qp − 1 and qs − 1, then we have

qps − q =
(qps − 1)d

(qp − 1)(qs − 1)
(
f(qs − 1)

d
+

e(qp − 1)

d
).

Note that (qps−1)d
(qp−1)(qs−1) ≥ q and (qp−1)(qs−1)

d is the least common multiple

of (qp − 1) and (qs − 1). These facts imply that qps − 1 has a divisor h,
which is greater than or equal to q. Now since h divides qps−q, it should
also divides qps−1−qps+q = q−1, which is a clear contradiction. This
contradiction shows that N(T ∗) = T ∗ and the claim is fulfilled. □

We apply the above Lemma to present a new proof of the Wedder-
burn’s little theorem based on the Frobenius kernel in Frobenius repre-
sentation theorem.

Theorem 2.2 (Wedderburn). Any finite division ring is commutative.

Proof. The proof is by induction on the size of D. The first step in
size 2 is clear. Now suppose the claim holds for all division rings with
elements fewer than |D|. Let Z(D) = F be the center of D. If D ̸=
F , then we have at least two maximal subfields containing two non-
commutative elements. Let T be a proper maximal subfield of D. We
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have two separate cases: either all pairs of maximal subfields of D have
F as their intersection or there are at least two maximal subfields whose
intersection strictly contains F .

Case 1. By the Lemma we have N(T ∗) = T ∗. Put D∗ = D∗/F ∗ and
T ∗ = T ∗/F ∗. If for an element d ∈ D, we have dTd−1 ∩ T ̸= F , then
since dTd−1 is a maximal subfield of D the equality dTd−1 = T holds.
This implies that d ∈ T . So for all d ∈ D \T we have dTd−1 ∩T = F or

dT ∗d−1∩T ∗ = F ∗ = 1. This equality shows that the main conditions for
D∗ to be a Frobenius group hold ( see Theorem A). So, we may consider
D∗ = K T ∗ to be the Frobenius representation of D∗ with kernel K,
where T ∗ ∩ K = {1}. Since K ̸= {1} there exists a nontrivial element
z ∈ K. Let S be the maximal subfield of D containing z. The same
process for S instead of T leads to a Frobenius representation D∗ = L S∗

with kernel L where S∗ ∩ L = {1}. By Proposition B above, we have
K = Fit(D∗) = L. Consequently 1 ̸= z ∈ S∗ ∩K = S∗ ∩ L = {1}. This
is a clear contradiction.

Case 2. Let S and T be two maximal subfields of D with S ∩ T ̸= F .
Consider z ∈ (S ∩ T ) \F . Since S ̸= T there exist at least two elements
x ∈ T and y ∈ S, where xy ̸= yx and the induction process yields
D = F (x, y). Now we have zx = xz and zy = yz. This implies that
z ∈ F which is a contradiction. □

Now, we would like to pose some open problems for readers interested
in pursuing the concepts introduced in this note. We believe the follow-
ing question is considerable: whether in a non commutative division
ring all maximal subfields are equal to their normalizers. We propose
the following.

Conjecture. Let D be a division ring. Then D is commutative if and
only if for all maximal subfields T of D, we have N(T ∗) = T ∗.
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