ISSN: 1017-060X (Print) 2 _ ISSN: 1735-8515 (Online)
>

.
M

ATHEMATICAL,

Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 4, pp. 967-976

Title:

On the polar derivative of a polynomial

Author(s):

A. Zireh

Published by Iranian Mathematical Society
http://bims.ims.ir




Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 4, pp. 967-976
Online ISSN: 1735-8515
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ABSTRACT. For a polynomial p(z) = anz" + 3 7_ an—v2" ", 1<
u < n of degree n, having all zeros in |z| < k, k < 1, Dewan et al
[K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial
inequalities to the polar derivative, J. Math. Anal. Appl. 352
(2009) 807-815] proved that

alkt + A .
[l A in p(a)1),

max |D,
ax | Dap( ko |zl=k

|z

n
A 2 17 (el =Aw) max [p(z)] +

_ m yp2p n—1
where |a| > k* and A, = n%h—'“%%zcjﬂiﬂﬁ”\
we improve and extend the above inequality. Our result generalizes
certain well-known polynomial inequalities.
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. In this paper

1. Introduction and statement of results

Let p(z) be a polynomial of degree n, then according to the well known
Bernstein’s inequality [3] on the derivative of a polynomial, we have that

(1.1) max [p/(2)] < nmax [p(2)].
|z]=1 |z]=1

This result is best possible and equality holds for a polynomial that has

all zeros at the origin.
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If we restrict to the class of polynomials which have all zeros in |z| < 1,
then it has been proved by Turan [10] that

(12) /()| > § ma (2|

The inequality (1.2) is sharp and equality holds for a polynomial that
has all zeros on |z| = 1.

As an extension to (1.2) Malik [8] proved that if p(z) has all zeros in
|z| <k, where k < 1, then

(1.3) ﬁglp'(@\ Tk e x|p(2)]-

This result is best possible and equality holds for p(z) = (z — k).
On the other hand, for the class of polynomials p(z) = a,2z" +

ZZ:M ap—pz2" Y, 1 < pu < n of degree n, having all zeros in |z| < k, k <
1, Aziz and Shah [2] demonstrated

n 1
1.4 / >
(1) maxlf(2)] > 7 maxp(:)] + gy min

in |p(z2)]}.

Let D,p(z) denote the polar derivative of the polynomial p(z) of degree
n with respect to a € C. Then D,p(z) = np(z) + (o — 2)p'(z). The
polynomial D,p(z) is of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that
D

lim ap(z)] =7'(2).

a—00 o
Shah [9] extended (1.2) to the polar derivative of p(z) and proved that

if all zeros of the polynomial p(z) lie in |z| < 1, then for every a with
la| > 1, we have

(1.5) max [Dap(2)] = 5 (Jof = 1)g1|ax p(2)].

This result is best possible and equality holds if p(z) = (z — 1)" with
a>1.

Aziz and Rather [1] sharpened the inequality (1.5) by proving that if all
the zeros of p(z) lie in |z| < 1, then for every a with |«| > 1, one obtains

M\S

(1.6) - max|Dap(z)] 2 5{(jol = 1ymax|p(z)] + (jof + 1) min [p(2)]}-
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This result is best possible and equality is attained for p(z) = (z — 1)"
with o« > 1.

Further, Aziz and Rather [1] generalized the inequality (1.3) to the
polar derivative of a polynomial. In fact, they proved that if all zeros of
p(z) lie in |z| <k, k < 1, then for every a with |a| > k, we get

n
1. D, > — —k .

(1.7 max| Dap(2)] = 1 (o] - k) max ()

This result is best possible and equality holds for p(z) = (z — k)™ with
a> k.

As a refinement to inequality (1.7), Govil [6] proved that if p(z) be a
polynomial of degree n having all zeros in |z| < k, where &k < 1, and

I = nlan|k®+|an—_1|

T Tan ] then for every a with |a| > k, we have

(1.8)
n (lofk+1L) .
max|Dap(z)| 2 777 A(lel = L)y max|p(z)] + =2 min |p(z)[}-

As an extension to the inequality (1.8), Dewan et al [4] proved that
if p(z) = ap2™ + ZZ:M an—p2" ", 1 < p <n, be a polynomial of degree
n, having all zeros in |z| < k, k < 1, then for all & € C with |a| > k*,
it yields

(1.9)

max | Dop(:)]| >
=1

|z

n
e (] = Ay maxp(e)] + S0 i
n(lan|— 57 ) K2 +plan— k41

n(lan|—gm)kF Hplan—p]

In fact, except the case p = 1, the inequality (1.9) is always sharper
than the inequality (1.8).

The following result, proposes a refinement to inequalities (1.9) and
(1.8). In a precise set up, we have:

where A4, =

Theorem 1.1. Let p(z) = an2” + 3 ), an—2"", 1 < i < n be a
polynomial of degree n having all zeros in |z| < k, where k < 1, then for
all o € C with || > Ay,

(1.10)
n (o +1)A
max | Dap(z)] 2 1+Au{(la!—Au)|r§1‘g>l< P+ min |p(2)]},
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nlan|— 77 )2 tplan—p K4~
n(lan|=g7) Ik~ +ulan—pu|

where A, =

Remark. Theorem 1.1 is in general a refinement to inequality (1.9).
To see this, we have to show that

n (| B* + Ay)

— A A bt b ey 75

T g vl = Aw) maxp(z)| + =—=—Z—— min

n (lo| +1)A,

— A e — A

T A”{(\a\ p) max|p(2)] + =7 min

Equivalently,

ﬁﬂM”MWhﬁ_WHD%

AT 1+ A, )
(la] = A (k — A,)
ﬂ+k%ﬂ+AJlﬁgm@»

Since by the assumption we have || > A, and Lemma 2.8 proposes
k* > A, it implies

|rzrlli_r;€ Ip(2)]
(1.11) < max p(2),

but the inequality (1.11) is true by Lemma 2.7 and hence we have the
result.

If we take £ = 1 in Theorem 1.1, then inequality (1.10) reduces to
inequality (1.6).

Taking ¢ = 1 in Theorem 1.1, gives the following statement parallel
to (1.8).

Corollary 1.2. Let p(z) be a polynomial of degree n, having all zeros
in |z| <k, k<1, then for every a € C with |a| > k,

(1.12)
n (|a| 1)*11 :
>
‘r?'a)l( |Dap(2)] 1 X {(Ja] — A1) Ir;a|a>1< Ip(2)| + i QI% Ip(2)]},

n(lan|— 7 )k +an—1|

where Al = n(‘an‘fkﬂn)“i’lan—ll .

If we divide both sides of the inequality in (1.10) by |a| and make
|a| = oo, we obtain the following improvement of inequality (1.4)
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Corollary 1.3. Let p(2) = anz" + 337, an—2""", 1 < p < n be a
polynomial of degree n having all zeros in |z| < k, k <1, then
n Ay

1.1 '(2)] > i
(1.13) max [p'(2)] = 1 Au{ﬁi}f Ip(2)| + L min p()[

where A, is defined as in Theorem 1.1.

2. Lemmas

For a proof of the theorem, the following lemmas are needed. The
first lemma is due to Laguerre [7].

Lemma 2.1. If all zeros of ann'" degree polynomial p(z) lie in a circular
region C' and w is any zero of Dap(z), then at most one of the points w
and o may lie outside C.

Lemma 2.2. Ifp(z) = a,2" + ZZ:M n_p2" ;1 < p < n, is a polyno-

mial of degree n having all its zeros in | z |[< k <1 and q(z) = z”p(%)
then on | z |=1

(2.1) [ d(2) [<su |P'(2) ],
and

My On—p
2.2 =] < k¥
(2.2) | a, | < &%,

nlan 62+ plan_ k4~
nlan &P T+alan—p]

where s, =

The above lemma is due to Aziz and Rather [1].

Lemma 2.3. If p(z) = ap2" + ZZ:M p—p2" 71 < p < mn, is a polyno-
mial of degree n having all its zeros in | z |[< k <1 then on |z |=1
n

2. '(2)] >
(23) W) 2 1)
Proof. Since q(z) = 2"p(2), we have
1 1
/ _ n—1_/"\ ___n—=2 s/~
¢'(z) =nz"""p(2) = 2"V (D).
Equivalently
_ n 1 n—1_y 1
¢ (2) = n2"p(2) = 2" (),
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which implies for |z| =1
(2.4) | d'(2) |=] np(2) — 2p'(2) | -
Now using the inequalities (2.1) and (2.4) for | z |[= 1 we get

Inp(2)| = Inp(2) — 2p'(2) + 29/ (2)] < Inp(2) — 2p'(2)] + |20/ (2)]

=1d'(2)| +1P'(2)] < (s + DIP'(2)]-

The proof is complete. O
Lemma 2.4. If p(z) = an2™ + EZ:M n_p2" 7Y, 1 < u <mn, is a poly-
nomial of degree n, having all zeros in the closed disk | z |[< k, k <1,

then for every real or complex number o with |a| > s, and |z| = 1, we
have

(2.5) [Dap(2)| >

T Su(la! = su)lp(2)],

where s,, is defined as in Lemma 2.2.

Proof. Let q(z) = 2"p(1/Z), then |¢'(2)| = |np(z) — 2p/(2)| on |z| = 1.
Thus on |z] = 1, we get
[Dap(2)] = np(2) + (a — 2)p(2)] = |ap/(2) + np(2) — 2p'(2)] =
lap'(2)] — Inp(2) — 2p'(2)],
which implies that
(2.6) [Dap(2)] = |allp'(2)] = 1d'(2)].
By combining (2.1) and (2.6), we obtain
[ Dap(2)| = (laf = s,)Ip'(2)],
which along with Lemma 2.3, yields

[Dap(2)| =

o (el = su)lp(a)

[l
Lemma 2.5. Ifp(z) =Y., _qa,2" is a polynomial of degree n, p(z) # 0

in |z| < k, (k > 0), then m < |p(2)| for |z|] < k, and in particular
m < |ag|, where m = min |p(z)|.

|z|=k
The above lemma is due to Gardner, Govil and Musukula [5].

In the lines of Lemma 2.5, by using Maximum Modulus Principle one
can easily prove the following.
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Lemma 2.6. Ifp(z) =Y., _,a,z" is a polynomial of degree n, p(z) # 0
in|z| <k (k>1), then

(2.7) lrzr‘ur;ﬁ Ip(2)] < max Ip(2)],

and in particular ‘H|llrll€ Ip(2)| < |aol-

z|l=
Lemma 2.7. If p(z) = >, _,a,z" is a polynomial of degree n having
all zeros in |z| < k, (k <1), then

(28) min |p(2)] < K max p(z)].

and in particular r1f|111]}C Ip(2)| < k"|an].

Proof. Since the polynomial p(z) has all zeros in |z| < k, the polynomial
q(2) = 2"p(L) = @+ @12+ - +a12" " +@pz" has no zero in |z| < f.
Thus by applying Lemma 2.6 for the polynomial ¢(z), we get

(2.9) min |¢(z)| < max |¢(2)].

|Z|:g |z|=1

Since min |g(z)| = % \H|nrllc Ip(2)| and lmlax lg(2)| = Tn|ax |p(2)|, then (2.9)
|2l=% = =

implies that |rrlun Ip(2)| < llmlax Ip(2)]. O
= z|=1

The following lemma is due to Dewan el al [4].

Lemma 2.8. If p(2) = an2" +3_)_, an—z""", 1 < p < m, is a poly-
nomial of degree n having all zeros in |z| < k, (k <1), then

(2.10) A < KM,

where Ay, is as defined in Theorem 1.1.

3. Proof of the theorem

Proof of the Theorem 1.1. By the assumptions p(z) = a,, 2 +Z Q2"

has all its zeros in | z |< k < 1. If p(z) has a zero on | z |— k then
m = |H\lirllc | p(2) |= 0, and in this case s, = A,. Thus the result follows
zZl=

from Lemma 2.4. Henceforth, we suppose that all the zeros of p(z) lie
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in |z|] < k <1 sothat m > 0. Now m < |p(z)| for |z| = k, therefore, if A
is any real or complex number such that |A| < 1, then
Amz"

R
Since all the zeros of p(z) liein | z |< k , it follows by Rouche ’s Theorem,
that all the zeros of

| <Ip(z) | for  |z]=k

A mz™
F() = p(z) - 2
also lie in | z |< k. Hence, by Lemma 2.1, the polynomial
Amn o 2"
(3.1) Dy F(z) = Dap(z) — —
has all its zeros in | z |< k, for |o| > k. This implies
mn o 2" !
(3.2) | Dap(2) [ 2| ——7— 1| for  [z[zk

Because, if (3.2) is not true then there is some point z = z with | zo |> &,
such that

mn a 20t
’Dap(20)|<|T0|'
k™D
We choose \ = aipff)l), so that | A\ |< 1 and with this choice of A,
mnoz,

from (3.1), we have Dy F(z9) = 0 for | zo |> k, which contradicts the
fact that all zeros of Do F'(z) lie in | z |< k. Therefore (3.2) must hold.
Now consider the polynomial

A mz" Am. . — e
F(z) =p(z) — = [an, — o 12" + Z Ap—yZ
v=p

that has all zeros in | z |[< k < 1. By applying Lemma 2.4 to F(z) we
have for |a| > s,

ol — 5

D F(2)|> = =1.
| (Z)I_nlJﬁ%I (2) | for |z
Or,
(3.3)
Amz" la| — SL Amz"
| Dalp(e) = S 2w 1) = S| for (211,
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where
Amo g 1
n‘an_ikn !k”+ulan_ulk“
(34) 3/ =
H Am .
n’an—k—n“{:“ +N‘an—u‘
Using Lemma 2.7 we have | a,, |[> — m , therefore, the term | a,, — /\k—T
can be substituted by |a,| — 7%, because
Am | A |m
(3'5) ‘a”_kin |Z|an‘ —7 Z\an —k7.

Now combiningthe (3.4), (3.5), we get

(3.6) s, < Ay
By combining (3.3) and (3.6), one can obtain
mnaz" ! la] — A m z"
I Wbt I SO bt ey o4 _
Lol = Ay | m | 2"

3.7 —
(37) W) - 1A P

_ ol A, m

=T 8 | - 0]

Making use of the inequality (3.2), we can take a relevant choice of A
for which

(3.8)

mna 2"t mn\a\

| Dap(z) = A0 |=| Dap(z) | — | A

Now combining the right hand side (3.7) and (3.8), we can rewrite (3.7)
as

for |z|=1.

] ol = Ay
D — > -
| Dap() |~ | A| A G =N
or equivalently,
Slal— Au [ Almn (ol + DA,

Letting | A |— 1, the result follows. O
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