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Abstract. For a polynomial p(z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤
µ ≤ n of degree n, having all zeros in |z| ≤ k, k ≤ 1, Dewan et al
[K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial
inequalities to the polar derivative, J. Math. Anal. Appl. 352
(2009) 807-815] proved that

max
|z|=1

|Dαp(z)| ≥
n

1 + kµ
{(|α|−Aµ) max

|z|=1
|p(z)|+

|α|kµ +Aµ

kn
min
|z|=k

|p(z)|},

where |α| ≥ kµ and Aµ =
n(|an|− m

kn )k2µ+µ|an−µ|kµ−1

n(|an|− m
kn )|kµ−1+µ|an−µ| . In this paper

we improve and extend the above inequality. Our result generalizes
certain well-known polynomial inequalities.
Keywords: Polar derivative, polynomial inequalities, maximum
modulus, restricted zeros of polynomials.
MSC(2010): Primary: 30A10; Secondary: 30C10, 30D15.

1. Introduction and statement of results

Let p(z) be a polynomial of degree n, then according to the well known
Bernstein’s inequality [3] on the derivative of a polynomial, we have that

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|.(1.1)

This result is best possible and equality holds for a polynomial that has
all zeros at the origin.

Article electronically published on August 23, 2014.

Received: 07 March 2012, Accepted: 16 July 2013.

c⃝2014 Iranian Mathematical Society

967



On the polar derivative of a polynomial 968

If we restrict to the class of polynomials which have all zeros in |z| ≤ 1,
then it has been proved by Turan [10] that

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|.(1.2)

The inequality (1.2) is sharp and equality holds for a polynomial that
has all zeros on |z| = 1.
As an extension to (1.2) Malik [8] proved that if p(z) has all zeros in
|z| ≤ k, where k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 + k
max
|z|=1

|p(z)|.(1.3)

This result is best possible and equality holds for p(z) = (z − k)n.

On the other hand, for the class of polynomials p(z) = anz
n +∑n

ν=µ an−νz
n−ν , 1 ≤ µ ≤ n of degree n, having all zeros in |z| ≤ k, k ≤

1, Aziz and Shah [2] demonstrated

max
|z|=1

|p′(z)| ≥ n

1 + kµ
{max
|z|=1

|p(z)|+ 1

kn−µ
min
|z|=k

|p(z)|}.(1.4)

Let Dαp(z) denote the polar derivative of the polynomial p(z) of degree
n with respect to α ∈ C. Then Dαp(z) = np(z) + (α − z)p′(z). The
polynomial Dαp(z) is of degree at most n − 1 and it generalizes the
ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α
] = p′(z).

Shah [9] extended (1.2) to the polar derivative of p(z) and proved that
if all zeros of the polynomial p(z) lie in |z| ≤ 1, then for every α with
|α| ≥ 1, we have

max
|z|=1

|Dαp(z)| ≥
n

2
(|α| − 1)max

|z|=1
|p(z)|.(1.5)

This result is best possible and equality holds if p(z) = (z − 1)n with
α ≥ 1.
Aziz and Rather [1] sharpened the inequality (1.5) by proving that if all
the zeros of p(z) lie in |z| ≤ 1, then for every α with |α| ≥ 1, one obtains

max
|z|=1

|Dαp(z)| ≥
n

2
{(|α| − 1)max

|z|=1
|p(z)|+ (|α|+ 1) min

|z|=1
|p(z)|}.(1.6)
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This result is best possible and equality is attained for p(z) = (z − 1)n

with α ≥ 1.

Further, Aziz and Rather [1] generalized the inequality (1.3) to the
polar derivative of a polynomial. In fact, they proved that if all zeros of
p(z) lie in |z| ≤ k, k ≤ 1, then for every α with |α| ≥ k, we get

max
|z|=1

|Dαp(z)| ≥
n

1 + k
(|α| − k)max

|z|=1
|p(z)|.(1.7)

This result is best possible and equality holds for p(z) = (z − k)n with
α ≥ k.
As a refinement to inequality (1.7), Govil [6] proved that if p(z) be a
polynomial of degree n having all zeros in |z| ≤ k, where k ≤ 1, and

L = n|an|k2+|an−1|
n|an|+|an−1| , then for every α with |α| ≥ k, we have

max
|z|=1

|Dαp(z)| ≥
n

1 + k
{(|α| − L)max

|z|=1
|p(z)|+ (|α|k + L)

kn
min
|z|=k

|p(z)|}.

(1.8)

As an extension to the inequality (1.8), Dewan et al [4] proved that
if p(z) = anz

n +
∑n

ν=µ an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree

n, having all zeros in |z| ≤ k, k ≤ 1, then for all α ∈ C with |α| ≥ kµ,
it yields

max
|z|=1

|Dαp(z)| ≥
n

1 + kµ
{(|α| −Aµ)max

|z|=1
|p(z)|+ (|α|kµ +Aµ)

kn
min
|z|=k

|p(z)|},

(1.9)

where Aµ =
n(|an|− m

kn
)k2µ+µ|an−µ|kµ−1

n(|an|− m
kn

)|kµ−1+µ|an−µ| .

In fact, except the case µ = 1, the inequality (1.9) is always sharper
than the inequality (1.8).
The following result, proposes a refinement to inequalities (1.9) and
(1.8). In a precise set up, we have:

Theorem 1.1. Let p(z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n be a

polynomial of degree n having all zeros in |z| ≤ k, where k ≤ 1, then for
all α ∈ C with |α| ≥ Aµ,

max
|z|=1

|Dαp(z)| ≥
n

1 +Aµ
{(|α| −Aµ)max

|z|=1
|p(z)|+ (|α|+ 1)Aµ

kn
min
|z|=k

|p(z)|},

(1.10)
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where Aµ =
n(|an|− m

kn
)k2µ+µ|an−µ|kµ−1

n(|an|− m
kn

)|kµ−1+µ|an−µ| .

Remark. Theorem 1.1 is in general a refinement to inequality (1.9).
To see this, we have to show that

n

1 + kµ
{(|α| −Aµ)max

|z|=1
|p(z)|+ (|α|kµ +Aµ)

kn
min
|z|=k

|p(z)|} <

n

1 +Aµ
{(|α| −Aµ)max

|z|=1
|p(z)|+ (|α|+ 1)Aµ

kn
min
|z|=k

|p(z)|}.

Equivalently,

min
|z|=k

|p(z)|

kn
(
|α|kµ +Aµ

1 + kµ
− (|α|+ 1)Aµ

1 +Aµ
) <

(|α| −Aµ)(k
µ −Aµ)

(1 + kµ)(1 +Aµ)
max
|z|=1

|p(z).

Since by the assumption we have |α| ≥ Aµ and Lemma 2.8 proposes
kµ ≥ Aµ, it implies

min
|z|=k

|p(z)|

kn
< max

|z|=1
|p(z),(1.11)

but the inequality (1.11) is true by Lemma 2.7 and hence we have the
result.

If we take k = 1 in Theorem 1.1, then inequality (1.10) reduces to
inequality (1.6).

Taking µ = 1 in Theorem 1.1, gives the following statement parallel
to (1.8).

Corollary 1.2. Let p(z) be a polynomial of degree n, having all zeros
in |z| ≤ k, k ≤ 1, then for every α ∈ C with |α| ≥ k,

max
|z|=1

|Dαp(z)| ≥
n

1 +A1
{(|α| −A1)max

|z|=1
|p(z)|+ (|α|+ 1)A1

kn
min
|z|=k

|p(z)|},

(1.12)

where A1 =
n(|an|− m

kn
)k2+|an−1|

n(|an|− m
kn

)|+|an−1| .

If we divide both sides of the inequality in (1.10) by |α| and make
|α| → ∞, we obtain the following improvement of inequality (1.4)
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Corollary 1.3. Let p(z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n be a

polynomial of degree n having all zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 +Aµ
{max
|z|=1

|p(z)|+ Aµ

kn
min
|z|=k

|p(z)|},(1.13)

where Aµ is defined as in Theorem 1.1.

2. Lemmas

For a proof of the theorem, the following lemmas are needed. The
first lemma is due to Laguerre [7].

Lemma 2.1. If all zeros of an nth degree polynomial p(z) lie in a circular
region C and w is any zero of Dαp(z), then at most one of the points w
and α may lie outside C.

Lemma 2.2. If p(z) = anz
n +

∑n
ν=µ an−νz

n−ν ; 1 ≤ µ ≤ n, is a polyno-

mial of degree n having all its zeros in | z |≤ k ≤ 1 and q(z) = znp(1z )
then on | z |= 1

| q′(z) |≤ sµ | p′(z) | ,(2.1)

and
µ

n
|an−µ

an
| ≤ kµ,(2.2)

where sµ =
n|an|k2µ+µ|an−µ|kµ−1

n|an|kµ−1+µ|an−µ| .

The above lemma is due to Aziz and Rather [1].

Lemma 2.3. If p(z) = anz
n +

∑n
ν=µ an−νz

n−ν ; 1 ≤ µ ≤ n, is a polyno-

mial of degree n having all its zeros in | z |≤ k ≤ 1 then on | z |= 1

|p′(z)| ≥ n

1 + sµ
|p(z)|(2.3)

Proof. Since q(z) = znp(1z ), we have

q′(z) = nzn−1p(
1

z
)− zn−2p′(

1

z
).

Equivalently

zq′(z) = nznp(
1

z
)− zn−1p′(

1

z
),
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which implies for |z| = 1

| q′(z) |=| np(z)− zp′(z) | .(2.4)

Now using the inequalities (2.1) and (2.4) for | z |= 1 we get

|np(z)| = |np(z)− zp′(z) + zp′(z)| ≤ |np(z)− zp′(z)|+ |zp′(z)|
= |q′(z)|+ |p′(z)| ≤ (sµ + 1)|p′(z)|.

The proof is complete. □
Lemma 2.4. If p(z) = anz

n +
∑n

ν=µ an−νz
n−ν , 1 ≤ µ ≤ n, is a poly-

nomial of degree n, having all zeros in the closed disk | z |≤ k, k ≤ 1,
then for every real or complex number α with |α| ≥ sµ and |z| = 1, we
have

|Dαp(z)| ≥
n

1 + sµ
(|α| − sµ)|p(z)|,(2.5)

where sµ is defined as in Lemma 2.2.

Proof. Let q(z) = znp(1/z), then |q′(z)| = |np(z) − zp′(z)| on |z| = 1.
Thus on |z| = 1, we get

|Dαp(z)| = |np(z) + (α− z)p′(z)| = |αp′(z) + np(z)− zp′(z)| ≥
|αp′(z)| − |np(z)− zp′(z)|,

which implies that

|Dαp(z)| ≥ |α||p′(z)| − |q′(z)|.(2.6)

By combining (2.1) and (2.6), we obtain

|Dαp(z)| ≥ (|α| − sµ)|p′(z)|,
which along with Lemma 2.3, yields

|Dαp(z)| ≥
n

1 + sµ
(|α| − sµ)|p(z)|.

□
Lemma 2.5. If p(z) =

∑n
ν=0 aνz

ν is a polynomial of degree n, p(z) ̸= 0
in |z| < k, (k > 0), then m < |p(z)| for |z| < k, and in particular
m < |a0|, where m = min

|z|=k
|p(z)|.

The above lemma is due to Gardner, Govil and Musukula [5].

In the lines of Lemma 2.5, by using Maximum Modulus Principle one
can easily prove the following.
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Lemma 2.6. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n, p(z) ̸= 0

in |z| < k (k ≥ 1), then

min
|z|=k

|p(z)| < max
|z|=1

|p(z)|,(2.7)

and in particular min
|z|=k

|p(z)| < |a0|.

Lemma 2.7. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having

all zeros in |z| ≤ k, (k ≤ 1), then

min
|z|=k

|p(z)| < knmax
|z|=1

|p(z)|,(2.8)

and in particular min
|z|=k

|p(z)| < kn|an|.

Proof. Since the polynomial p(z) has all zeros in |z| ≤ k, the polynomial

q(z) = znp(1z ) = an+an−1z+ · · ·+a1z
n−1+a0z

n has no zero in |z| < 1
k .

Thus by applying Lemma 2.6 for the polynomial q(z), we get

min
|z|= 1

k

|q(z)| < max
|z|=1

|q(z)|.(2.9)

Since min
|z|= 1

k

|q(z)| = 1

kn
min
|z|=k

|p(z)| and max
|z|=1

|q(z)| = max
|z|=1

|p(z)|, then (2.9)

implies that 1
kn min

|z|=k
|p(z)| < max

|z|=1
|p(z)|. □

The following lemma is due to Dewan el al [4].

Lemma 2.8. If p(z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a poly-

nomial of degree n having all zeros in |z| ≤ k, (k ≤ 1), then

Aµ ≤ kµ,(2.10)

where Aµ is as defined in Theorem 1.1.

3. Proof of the theorem

Proof of the Theorem 1.1. By the assumptions p(z) = anz
n+

n∑
ν=µ

an−νz
n−ν

has all its zeros in | z |≤ k ≤ 1. If p(z) has a zero on | z |= k then
m = min

|z|=k
| p(z) |= 0, and in this case sµ = Aµ. Thus the result follows

from Lemma 2.4. Henceforth, we suppose that all the zeros of p(z) lie
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in |z| < k ≤ 1 so that m > 0. Now m ≤ |p(z)| for |z| = k, therefore, if λ
is any real or complex number such that |λ| < 1, then

|λ mzn

kn
| <| p(z) | for | z |= k.

Since all the zeros of p(z) lie in | z |< k , it follows by Rouche ’s Theorem,
that all the zeros of

F (z) = p(z)− λ mzn

kn

also lie in | z |< k. Hence, by Lemma 2.1, the polynomial

DαF (z) = Dαp(z)−
λmn α zn−1

kn
(3.1)

has all its zeros in | z |< k, for |α| ≥ k. This implies

| Dαp(z) | ≥ | mn α zn−1

kn
| for | z |≥ k.(3.2)

Because, if (3.2) is not true then there is some point z = z0 with | z0 |≥ k,
such that

| Dαp(z0) |< | mn α zn−1
0

kn
| .

We choose λ =
knDαp(z0)

mnαzn−1
0

, so that | λ |< 1 and with this choice of λ,

from (3.1), we have DαF (z0) = 0 for | z0 |≥ k, which contradicts the
fact that all zeros of DαF (z) lie in | z |< k. Therefore (3.2) must hold.
Now consider the polynomial

F (z) = p(z)− λ mzn

kn
= [an − λ m

kn
]zn +

n∑
ν=µ

an−νz
n−ν

that has all zeros in | z |< k ≤ 1. By applying Lemma 2.4 to F (z) we
have for |α| ≥ s′µ

| DαF (z) |≥ n
|α| − s′µ
1 + s′µ

| F (z) | for | z |= 1.

Or,

| Dα{p(z)−
λ mzn

kn
} |≥ n

|α| − s′µ
1 + s′µ

| p(z)− λ mzn

kn
| for | z |= 1,

(3.3)
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where

s′µ =
n | an − λ m

kn
| k2µ + µ | an−µ | kµ−1

n | an − λ m

kn
| kµ−1 + µ | an−µ |

.(3.4)

Using Lemma 2.7 we have | an |> m

kn
, therefore, the term | an − λ m

kn |
can be substituted by |an| − m

kn , because

| an − λ m

kn
|≥| an | −| λ | m

kn
≥| an | −m

kn
.(3.5)

Now combiningthe (3.4), (3.5), we get

s′µ ≤ Aµ.(3.6)

By combining (3.3) and (3.6), one can obtain

| Dαp(z)− λ
mnαzn−1

kn
| ≥ n

|α| −Aµ

1 +Aµ
| p(z)− λ

m zn

kn
|

≥ n
|α| −Aµ

1 +Aµ
{| p(z) | − | λ | m | zn |

kn
}

= n
|α| −Aµ

1 +Aµ
{| p(z) | − | λ | m

kn
}.

(3.7)

Making use of the inequality (3.2), we can take a relevant choice of λ
for which

| Dαp(z)− λ
mnα zn−1

kn
|=| Dαp(z) | − | λ | mn | α |

kn
for | z |= 1.

(3.8)

Now combining the right hand side (3.7) and (3.8), we can rewrite (3.7)
as

| Dαp(z) | − | λ | mn | α |
kn

≥ n
|α| −Aµ

1 +Aµ
{| p(z) | − | λ | m

kn
|},

or equivalently,

| Dαp(z) |≥ n
|α| −Aµ

1 +Aµ
| p(z) | + | λ | mn

kn
{(|α|+ 1)Aµ

1 +Aµ
}.

Letting | λ |→ 1, the result follows. □
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