Bulletin of the

Iranian Mathematical Society

$$
\text { Vol. } 40 \text { (2014), No. 4, pp. 967-976 }
$$

Title:
On the polar derivative of a polynomial
Author(s):
A. Zireh

ON THE POLAR DERIVATIVE OF A POLYNOMIAL

A. ZIREH

(Communicated by Javad Mashreghi)

Abstract

For a polynomial $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq$ $\mu \leq n$ of degree n, having all zeros in $|z| \leq k, k \leq 1$, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] proved that $\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\left(|\alpha|-A_{\mu}\right) \max _{|z|=1}|p(z)|+\frac{|\alpha| k^{\mu}+A_{\mu}}{k^{n}} \min _{|z|=k}|p(z)|\right\}$, where $|\alpha| \geq k^{\mu}$ and $A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{\left.n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right)\left|k^{\mu-1}+\mu\right| a_{n-\mu} \right\rvert\,}$. In this paper we improve and extend the above inequality. Our result generalizes certain well-known polynomial inequalities. Keywords: Polar derivative, polynomial inequalities, maximum modulus, restricted zeros of polynomials. MSC(2010): Primary: 30A10; Secondary: 30C10, 30D15.

1. Introduction and statement of results

Let $p(z)$ be a polynomial of degree n, then according to the well known Bernstein's inequality [3] on the derivative of a polynomial, we have that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.1}
\end{equation*}
$$

This result is best possible and equality holds for a polynomial that has all zeros at the origin.

[^0]If we restrict to the class of polynomials which have all zeros in $|z| \leq 1$, then it has been proved by Turan [10] that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

The inequality (1.2) is sharp and equality holds for a polynomial that has all zeros on $|z|=1$.
As an extension to (1.2) Malik [8] proved that if $p(z)$ has all zeros in $|z| \leq k$, where $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

This result is best possible and equality holds for $p(z)=(z-k)^{n}$.
On the other hand, for the class of polynomials $p(z)=a_{n} z^{n}+$ $\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$ of degree n, having all zeros in $|z| \leq k, k \leq$ 1, Aziz and Shah [2] demonstrated

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|p(z)|+\frac{1}{k^{n-\mu}} \min _{|z|=k}|p(z)|\right\} . \tag{1.4}
\end{equation*}
$$

Let $D_{\alpha} p(z)$ denote the polar derivative of the polynomial $p(z)$ of degree n with respect to $\alpha \in \mathbb{C}$. Then $D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$. The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} p(z)}{\alpha}\right]=p^{\prime}(z) .
$$

Shah [9] extended (1.2) to the polar derivative of $p(z)$ and proved that if all zeros of the polynomial $p(z)$ lie in $|z| \leq 1$, then for every α with $|\alpha| \geq 1$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|p(z)| . \tag{1.5}
\end{equation*}
$$

This result is best possible and equality holds if $p(z)=(z-1)^{n}$ with $\alpha \geq 1$.
Aziz and Rather [1] sharpened the inequality (1.5) by proving that if all the zeros of $p(z)$ lie in $|z| \leq 1$, then for every α with $|\alpha| \geq 1$, one obtains

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}\left\{(|\alpha|-1) \max _{|z|=1}|p(z)|+(|\alpha|+1) \min _{|z|=1}|p(z)|\right\} . \tag{1.6}
\end{equation*}
$$

This result is best possible and equality is attained for $p(z)=(z-1)^{n}$ with $\alpha \geq 1$.

Further, Aziz and Rather [1] generalized the inequality (1.3) to the polar derivative of a polynomial. In fact, they proved that if all zeros of $p(z)$ lie in $|z| \leq k, k \leq 1$, then for every α with $|\alpha| \geq k$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+k}(|\alpha|-k) \max _{|z|=1}|p(z)| \tag{1.7}
\end{equation*}
$$

This result is best possible and equality holds for $p(z)=(z-k)^{n}$ with $\alpha \geq k$.
As a refinement to inequality (1.7), Govil [6] proved that if $p(z)$ be a polynomial of degree n having all zeros in $|z| \leq k$, where $k \leq 1$, and $L=\frac{n\left|a_{n}\right| k^{2}+\left|a_{n-1}\right|}{n\left|a_{n}\right|+\left|a_{n-1}\right|}$, then for every α with $|\alpha| \geq k$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+k}\left\{(|\alpha|-L) \max _{|z|=1}|p(z)|+\frac{(|\alpha| k+L)}{k^{n}} \min _{|z|=k}|p(z)|\right\} \tag{1.8}
\end{equation*}
$$

As an extension to the inequality (1.8), Dewan et al [4] proved that if $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, be a polynomial of degree n, having all zeros in $|z| \leq k, k \leq 1$, then for all $\alpha \in \mathbb{C}$ with $|\alpha| \geq k^{\mu}$, it yields
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\left(|\alpha|-A_{\mu}\right) \max _{|z|=1}|p(z)|+\frac{\left(|\alpha| k^{\mu}+A_{\mu}\right)}{k^{n}} \min _{|z|=k}|p(z)|\right\}$,
where $A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{\left.n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right)\left|k^{\mu-1}+\mu\right| a_{n-\mu} \right\rvert\,}$.
In fact, except the case $\mu=1$, the inequality (1.9) is always sharper than the inequality (1.8).
The following result, proposes a refinement to inequalities (1.9) and (1.8). In a precise set up, we have:

Theorem 1.1. Let $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$ be a polynomial of degree n having all zeros in $|z| \leq k$, where $k \leq 1$, then for all $\alpha \in \mathbb{C}$ with $|\alpha| \geq A_{\mu}$,
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+A_{\mu}}\left\{\left(|\alpha|-A_{\mu}\right) \max _{|z|=1}|p(z)|+\frac{(|\alpha|+1) A_{\mu}}{k^{n}} \min _{|z|=k}|p(z)|\right\}$,
where $A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{\left.n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right)\left|k^{\mu-1}+\mu\right| a_{n-\mu} \right\rvert\,}$.
Remark. Theorem 1.1 is in general a refinement to inequality (1.9). To see this, we have to show that

$$
\begin{aligned}
& \frac{n}{1+k^{\mu}}\left\{\left(|\alpha|-A_{\mu}\right) \max _{|z|=1}|p(z)|+\frac{\left(|\alpha| k^{\mu}+A_{\mu}\right)}{k^{n}} \min _{|z|=k}|p(z)|\right\}< \\
& \frac{n}{1+A_{\mu}}\left\{\left(|\alpha|-A_{\mu}\right) \max _{|z|=1}|p(z)|+\frac{(|\alpha|+1) A_{\mu}}{k^{n}} \min _{|z|=k}|p(z)|\right\}
\end{aligned}
$$

Equivalently,

$$
\left.\begin{array}{r}
\min _{|z|=k}|p(z)| \\
k^{n} \\
\\
\left.\frac{\left(|\alpha| k^{\mu}+A_{\mu}\right.}{1+k^{\mu}}-\frac{(|\alpha|+1) A_{\mu}}{1+A_{\mu}}\right)< \\
\left(1+k^{\mu}\right)\left(1+A_{\mu}\right) \\
|z|=1
\end{array}\right)
$$

Since by the assumption we have $|\alpha| \geq A_{\mu}$ and Lemma 2.8 proposes $k^{\mu} \geq A_{\mu}$, it implies

$$
\begin{equation*}
\left.\frac{\min _{|z|=k}|p(z)|}{k^{n}}<\max _{|z|=1} \right\rvert\, p(z) \tag{1.11}
\end{equation*}
$$

but the inequality (1.11) is true by Lemma 2.7 and hence we have the result.

If we take $k=1$ in Theorem 1.1, then inequality (1.10) reduces to inequality (1.6).

Taking $\mu=1$ in Theorem 1.1, gives the following statement parallel to (1.8).

Corollary 1.2. Let $p(z)$ be a polynomial of degree n, having all zeros in $|z| \leq k, k \leq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$,

$$
\begin{align*}
& \max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+A_{1}}\left\{\left(|\alpha|-A_{1}\right) \max _{|z|=1}|p(z)|+\frac{(|\alpha|+1) A_{1}}{k^{n}} \min _{|z|=k}|p(z)|\right\} \tag{1.12}\\
& \text { where } A_{1}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2}+\left|a_{n-1}\right|}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right)\left|+\left|a_{n-1}\right|\right.}
\end{align*}
$$

If we divide both sides of the inequality in (1.10) by $|\alpha|$ and make $|\alpha| \rightarrow \infty$, we obtain the following improvement of inequality (1.4)

Corollary 1.3. Let $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$ be a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+A_{\mu}}\left\{\max _{|z|=1}|p(z)|+\frac{A_{\mu}}{k^{n}} \min _{|z|=k}|p(z)|\right\} \tag{1.13}
\end{equation*}
$$

where A_{μ} is defined as in Theorem 1.1.

2. Lemmas

For a proof of the theorem, the following lemmas are needed. The first lemma is due to Laguerre [7].

Lemma 2.1. If all zeros of an $n^{\text {th }}$ degree polynomial $p(z)$ lie in a circular region C and w is any zero of $D_{\alpha} p(z)$, then at most one of the points w and α may lie outside C.

Lemma 2.2. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu} ; 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k \leq 1$ and $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ then on $|z|=1$

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \leq s_{\mu}\left|p^{\prime}(z)\right| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu} \tag{2.2}
\end{equation*}
$$

where $s_{\mu}=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}$.
The above lemma is due to Aziz and Rather [1].
Lemma 2.3. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu} ; 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k \leq 1$ then on $|z|=1$

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \geq \frac{n}{1+s_{\mu}}|p(z)| \tag{2.3}
\end{equation*}
$$

Proof. Since $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, we have

$$
q^{\prime}(z)=n z^{n-1} \overline{p\left(\frac{1}{\bar{z}}\right)}-z^{n-2} \overline{p^{\prime}\left(\frac{1}{\bar{z}}\right)}
$$

Equivalently

$$
z q^{\prime}(z)=n z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}-z^{n-1} \overline{p^{\prime}\left(\frac{1}{\bar{z}}\right)}
$$

which implies for $|z|=1$

$$
\begin{equation*}
\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right| . \tag{2.4}
\end{equation*}
$$

Now using the inequalities (2.1) and (2.4) for $|z|=1$ we get

$$
\begin{aligned}
|n p(z)|=\left|n p(z)-z p^{\prime}(z)+z p^{\prime}(z)\right| & \leq\left|n p(z)-z p^{\prime}(z)\right|+\left|z p^{\prime}(z)\right| \\
& =\left|q^{\prime}(z)\right|+\left|p^{\prime}(z)\right| \leq\left(s_{\mu}+1\right)\left|p^{\prime}(z)\right|
\end{aligned}
$$

The proof is complete.
Lemma 2.4. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all zeros in the closed disk $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq s_{\mu}$ and $|z|=1$, we have

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+s_{\mu}}\left(|\alpha|-s_{\mu}\right)|p(z)| \tag{2.5}
\end{equation*}
$$

where s_{μ} is defined as in Lemma 2.2.
Proof. Let $q(z)=z^{n} \overline{p(1 / \bar{z})}$, then $\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right|$ on $|z|=1$. Thus on $|z|=1$, we get

$$
\begin{aligned}
\left|D_{\alpha} p(z)\right|=\left|n p(z)+(\alpha-z) p^{\prime}(z)\right|= & \left|\alpha p^{\prime}(z)+n p(z)-z p^{\prime}(z)\right| \geq \\
& \left|\alpha p^{\prime}(z)\right|-\left|n p(z)-z p^{\prime}(z)\right|
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq|\alpha|\left|p^{\prime}(z)\right|-\left|q^{\prime}(z)\right| \tag{2.6}
\end{equation*}
$$

By combining (2.1) and (2.6), we obtain

$$
\left|D_{\alpha} p(z)\right| \geq\left(|\alpha|-s_{\mu}\right)\left|p^{\prime}(z)\right|
$$

which along with Lemma 2.3, yields

$$
\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+s_{\mu}}\left(|\alpha|-s_{\mu}\right)|p(z)|
$$

Lemma 2.5. If $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree $n, p(z) \neq 0$ in $|z|<k,(k>0)$, then $m<|p(z)|$ for $|z|<k$, and in particular $m<\left|a_{0}\right|$, where $m=\min _{|z|=k}|p(z)|$.

The above lemma is due to Gardner, Govil and Musukula [5].
In the lines of Lemma 2.5, by using Maximum Modulus Principle one can easily prove the following.

Lemma 2.6. If $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n, $p(z) \neq 0$ in $|z|<k(k \geq 1)$, then

$$
\begin{equation*}
\min _{|z|=k}|p(z)|<\max _{|z|=1}|p(z)|, \tag{2.7}
\end{equation*}
$$

and in particular $\min _{|z|=k}|p(z)|<\left|a_{0}\right|$.
Lemma 2.7. If $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all zeros in $|z| \leq k,(k \leq 1)$, then

$$
\begin{equation*}
\min _{|z|=k}|p(z)|<k^{n} \max _{|z|=1}|p(z)| \tag{2.8}
\end{equation*}
$$

and in particular $\min _{|z|=k}|p(z)|<k^{n}\left|a_{n}\right|$.
Proof. Since the polynomial $p(z)$ has all zeros in $|z| \leq k$, the polynomial $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}=\overline{a_{n}}+\overline{a_{n-1}} z+\cdots+\overline{a_{1}} z^{n-1}+\overline{a_{0}} z^{n}$ has no zero in $|z|<\frac{1}{k}$. Thus by applying Lemma 2.6 for the polynomial $q(z)$, we get

$$
\begin{equation*}
\min _{|z|=\frac{1}{k}}|q(z)|<\max _{|z|=1}|q(z)| . \tag{2.9}
\end{equation*}
$$

Since $\min _{|z|=\frac{1}{k}}|q(z)|=\frac{1}{k^{n}} \min _{|z|=k}|p(z)|$ and $\max _{|z|=1}|q(z)|=\max _{|z|=1}|p(z)|$, then (2.9) implies that $\frac{1}{k^{n}} \min _{|z|=k}|p(z)|<\max _{|z|=1}|p(z)|$.

The following lemma is due to Dewan el al [4].
Lemma 2.8. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all zeros in $|z| \leq k,(k \leq 1)$, then

$$
\begin{equation*}
A_{\mu} \leq k^{\mu} \tag{2.10}
\end{equation*}
$$

where A_{μ} is as defined in Theorem 1.1.

3. Proof of the theorem

Proof of the Theorem 1.1. By the assumptions $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}$ has all its zeros in $|z| \leq k \leq 1$. If $p(z)$ has a zero on $|z|=k$ then $m=\min _{|z|=k}|p(z)|=0$, and in this case $s_{\mu}=A_{\mu}$. Thus the result follows from Lemma 2.4. Henceforth, we suppose that all the zeros of $p(z)$ lie
in $|z|<k \leq 1$ so that $m>0$. Now $m \leq|p(z)|$ for $|z|=k$, therefore, if λ is any real or complex number such that $|\lambda|<1$, then

$$
\left|\frac{\lambda m z^{n}}{k^{n}}\right|<|p(z)| \quad \text { for } \quad|z|=k
$$

Since all the zeros of $p(z)$ lie in $|z|<k$, it follows by Rouche 's Theorem, that all the zeros of

$$
F(z)=p(z)-\frac{\lambda m z^{n}}{k^{n}}
$$

also lie in $|z|<k$. Hence, by Lemma 2.1, the polynomial

$$
\begin{equation*}
D_{\alpha} F(z)=D_{\alpha} p(z)-\frac{\lambda m n \alpha z^{n-1}}{k^{n}} \tag{3.1}
\end{equation*}
$$

has all its zeros in $|z|<k$, for $|\alpha| \geq k$. This implies

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq\left|\frac{m n \alpha z^{n-1}}{k^{n}}\right| \quad \text { for } \quad|z| \geq k \tag{3.2}
\end{equation*}
$$

Because, if (3.2) is not true then there is some point $z=z_{0}$ with $\left|z_{0}\right| \geq k$, such that

$$
\left|D_{\alpha} p\left(z_{0}\right)\right|<\left|\frac{m n \alpha z_{0}^{n-1}}{k^{n}}\right| .
$$

We choose $\lambda=\frac{k^{n} D_{\alpha} p\left(z_{0}\right)}{m n \alpha z_{0}^{n-1}}$, so that $|\lambda|<1$ and with this choice of λ, from (3.1), we have $D_{\alpha} F\left(z_{0}\right)=0$ for $\left|z_{0}\right| \geq k$, which contradicts the fact that all zeros of $D_{\alpha} F(z)$ lie in $|z|<k$. Therefore (3.2) must hold. Now consider the polynomial

$$
F(z)=p(z)-\frac{\lambda m z^{n}}{k^{n}}=\left[a_{n}-\frac{\lambda m}{k^{n}}\right] z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}
$$

that has all zeros in $|z|<k \leq 1$. By applying Lemma 2.4 to $F(z)$ we have for $|\alpha| \geq s_{\mu}^{\prime}$

$$
\left|D_{\alpha} F(z)\right| \geq n \frac{|\alpha|-s_{\mu}^{\prime}}{1+s_{\mu}^{\prime}}|F(z)| \quad \text { for } \quad|z|=1
$$

Or,

$$
\begin{equation*}
\left|D_{\alpha}\left\{p(z)-\frac{\lambda m z^{n}}{k^{n}}\right\}\right| \geq n \frac{|\alpha|-s_{\mu}^{\prime}}{1+s_{\mu}^{\prime}}\left|p(z)-\frac{\lambda m z^{n}}{k^{n}}\right| \quad \text { for } \quad|z|=1, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\mu}^{\prime}=\frac{n\left|a_{n}-\frac{\lambda m}{k^{n}}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}-\frac{\lambda m}{k^{n}}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} . \tag{3.4}
\end{equation*}
$$

Using Lemma 2.7 we have $\left|a_{n}\right|>\frac{m}{k^{n}}$, therefore, the term $\left|a_{n}-\frac{\lambda m}{k^{n}}\right|$ can be substituted by $\left|a_{n}\right|-\frac{m}{k^{n}}$, because

$$
\begin{equation*}
\left|a_{n}-\frac{\lambda m}{k^{n}}\right| \geq\left|a_{n}\right|-\frac{|\lambda| m}{k^{n}} \geq\left|a_{n}\right|-\frac{m}{k^{n}} . \tag{3.5}
\end{equation*}
$$

Now combiningthe (3.4), (3.5), we get

$$
\begin{equation*}
s_{\mu}^{\prime} \leq A_{\mu} \tag{3.6}
\end{equation*}
$$

By combining (3.3) and (3.6), one can obtain

$$
\begin{align*}
\left|D_{\alpha} p(z)-\lambda \frac{m n \alpha z^{n-1}}{k^{n}}\right| & \geq n \frac{|\alpha|-A_{\mu}}{1+A_{\mu}}\left|p(z)-\lambda \frac{m z^{n}}{k^{n}}\right| \\
& \geq n \frac{|\alpha|-A_{\mu}}{1+A_{\mu}}\left\{|p(z)|-|\lambda| \frac{m\left|z^{n}\right|}{k^{n}}\right\} \tag{3.7}\\
& =n \frac{|\alpha|-A_{\mu}}{1+A_{\mu}}\left\{|p(z)|-|\lambda| \frac{m}{k^{n}}\right\} .
\end{align*}
$$

Making use of the inequality (3.2), we can take a relevant choice of λ for which

$$
\begin{equation*}
\left|D_{\alpha} p(z)-\lambda \frac{m n \alpha z^{n-1}}{k^{n}}\right|=\left|D_{\alpha} p(z)\right|-|\lambda| \frac{m n|\alpha|}{k^{n}} \quad \text { for } \quad|z|=1 . \tag{3.8}
\end{equation*}
$$

Now combining the right hand side (3.7) and (3.8), we can rewrite (3.7) as

$$
\left|D_{\alpha} p(z)\right|-|\lambda| \frac{m n|\alpha|}{k^{n}} \geq n \frac{|\alpha|-A_{\mu}}{1+A_{\mu}}\left\{\left.|p(z)|-|\lambda| \frac{m}{k^{n}} \right\rvert\,\right\},
$$

or equivalently,

$$
\left|D_{\alpha} p(z)\right| \geq n \frac{|\alpha|-A_{\mu}}{1+A_{\mu}}|p(z)|+\frac{|\lambda| m n}{k^{n}}\left\{\frac{(|\alpha|+1) A_{\mu}}{1+A_{\mu}}\right\} .
$$

Letting $|\lambda| \rightarrow 1$, the result follows.

Acknowledgments

The author wishes to thank the referee for a careful reading of the paper and for helpful suggestions.

References

[1] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turán concerning polynomials, Math. Ineq. Appl. 1 (1998), no. 2, 231-238.
[2] A. Aziz and W. M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math. 29 (1998), no. 2, 163-173.
[3] S. Bernstein, Leons Sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques D'une Variable Reelle, Gauthier Villars, Paris, 1926.
[4] K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009), no. 2, 807-815.
[5] R. B. Gardner, N. K. Govil and S. R. Musukula, Rate of growth of polynomials not vanishing inside a circle, JIPAM. J. Inequal. Pure Appl. Math 6 (2005), no. 2, 9 pages.
[6] N. K. Govil, Some generalization involving the polar derivative for an inequality of Paul Turán, Acta. Math. Hungar. 104 (2004), no. 1-2, 115-126.
[7] E. Laguerre, OEuvres, I, 2nd Edition, New York, 1898.
[8] M. A. Malik, On the derivative of a polynomial, J. London. Math. Soc. 1 (1969) 57-60.
[9] W. M. Shah, A generalization of a theorem of Paul Turán, J. Ramanujan Math. Soc. 11 (1996), no. 1, 67-72.
[10] P. Turan, Über die ableitung von Polynomen, Compositio Math. 7 (1939) 89-95.
(Ahmad Zireh) Department of Mathematics, Shahrood University of Technology, P.O. Box 316-36155, Shahrood, Iran

E-mail address: azireh@shahroodut.ac.ir; azireh@gmail.com

[^0]: Article electronically published on August 23, 2014.
 Received: 07 March 2012, Accepted: 16 July 2013.

