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Abstract. We introduce a general implicit algorithm for finding
a common element of the set of solutions of systems of equilibrium
problems and the set of common fixed points of a sequence of nonex-
pansive mappings and a continuous representation of nonexpansive
mappings. Then we prove the strong convergence of the proposed
implicit scheme to the unique solution of the minimization problem
on the solution of systems of equilibrium problems and the common
fixed points of a sequence of nonexpansive mappings and a contin-
uous representation of nonexpansive mappings.
Keywords: Continuous representation, invariant mean, equilib-
rium problem, nonexpansive mapping, classical variational inequal-
ity.
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1. Introduction

Throughout this paper, H will denote a real Hilbert space and C will
be a closed convex subset of H unless otherwise stated.

Let G : H ×H → R be an equilibrium function, that is,

G(u, u) = 0 for every u ∈ H.
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The Equilibrium Problem is defined as follows:

(1.1) find x̃ ∈ H such that G(x̃, y) ≥ 0 for all y ∈ H,

a solution of (1.1) is said to be an equilibrium point and the set of the
equilibrium points is denoted by SEP(G).

Let B : C → H be a nonlinear map. Let PC be the projection of
H onto C. The classical variational inequality problem, denoted by
V I(C,B) is to find u ∈ C such that

(1.2) ⟨Bu, v − u⟩ ≥ 0,

for all v ∈ C. For a given z ∈ H, u ∈ C satisfies the inequality

(1.3) ⟨u− z, v − u⟩ ≥ 0, (v ∈ C),

if and only if u = PCz. Therefore

u ∈ V I(C,B) ⇐⇒ u = PC(u− λBu),(1.4)

where λ > 0 is a constant. This alternative equivalent formulation has
played a significant role in the studies of the variational inequalities and
related optimization problems. It is known that the projection operator
PC is nonexpansive. It is also known that PC satisfies

(1.5) ⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2,

for x, y ∈ H.
Recall the following definitions:

(1) a mapping T from C into itself is called nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ C,

(2) a mapping T from C into itself is called Lipschitzian if there
exists a nonnegative number k such that
∥Tx− Ty∥ ≤ k∥x− y∥, for all x, y ∈ C,

(3) let 0 ≤ α < 1, a mapping f from C into itself is said to be an
α-contraction if ∥f(x)− f(y)∥ ≤ α∥x− y∥, for all x, y ∈ H,

(4) for a map T from H into itself, we denote by
Fix(T) := {x ∈ H : x = Tx}, the fixed point set of T . Note that
if T is a nonexpansive mapping, Fix(T) is closed and convex (see
[6]),

(5) a mapping A from H into itself is said to be strongly positive
operator with constant γ, if there exists γ > 0 such that

⟨Ax, x⟩ ≥ γ∥x∥2 (x ∈ H),
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(6) a mapping B from C into H is said to be monotone, if

⟨Bx−By, x− y⟩ ≥ 0 for all x, y ∈ C,

(7) a mapping B from C into H is said to be η-cocoercive, if there
exists a constant η > 0 such that

⟨Bx−By, x− y⟩ ≥ η∥Bx−By∥2 for all x, y ∈ C.

Clearly, every η-cocoercive map B is 1
η -Lipschitz continuous (see

[21] and [22]),
(8) a set-valued mapping T : H → 2H is called monotone if for all

x, y ∈ H, f ∈ Tx and g ∈ Ty imply ⟨x − y , f − g⟩ ≥ 0. A
monotone mapping T : H → 2H is maximal if the graph G(T ) of
T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal
if and only if for (x, f) ∈ H ×H, ⟨x − y , f − g⟩ ≥ 0 for every
(y, g) ∈ G(T ) implies f ∈ Tx. Let B be a monotone map of
C into H and let NCv be the normal cone to C at v ∈ C, i.e.,
NCv = {w ∈ H : ⟨v − u,w⟩ ≥ 0, (u ∈ C)} and define

Tv =

{
Bv +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈
V I(C,B) (see [14]),

(9) a semitopological semigroup is a semigroup S with a Hausdorff
topology such that for each a ∈ S the mappings s → a.s and
s → s.a from S to S are continuous,

(10) let S be a semitopological semigroup. A family S = {Ts : s ∈
S} of mappings from C into itself is said to be a continuous
representation of S as nonexpansive mapping on C into itself if
S satisfies the following conditions:
(1) Tstx = TsTtx for all s, t ∈ S and x ∈ C;
(2) for every x ∈ C, the mapping s 7→ Tsx from S into C is
continuous;
(3) for every s ∈ S the mapping Ts : C → C is nonexpansive.
We denote by Fix(S) the set of common fixed points of S, that
is Fix(S)={x ∈ C : Tsx = x, (s ∈ S)},

(11) let C be a nonempty convex subset of a Banach space, {Ti}i∈N
a sequence of nonexpansive mappings of C into itself and {λi}
a real sequence such that 0 ≤ λi ≤ 1 for every i ∈ N. Following
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[16], for any n ≥ 1, we define a mapping Wn of C into itself as
follows,

Un,n+1 := I,

Un,n := λnTnUn,n+1 + (1− λn)I,

...

Un,k := λkTkUn,k+1 + (1− λk)I,(1.6)

...

Un,2 := λ2T2Un,3 + (1− λ2)I,

Wn := Un,1 := λ1T1Un,2 + (1− λ1)I,

(12) let S be a semitopological semigroup. We denote by B(S) the
Banach space of all bounded real-valued functions defined on
S with supremum norm and let C(S) be the subspace of B(S)
which consists of all bounded, continuous real-valued functions
on S. For each s ∈ S and f ∈ B(S) we define ls and rs in B(S)
by

(lsf)(t) = f(st), (rsf)(t) = f(ts), (t ∈ S).

Let X be a subspace of C(S) containing 1 and let X∗ be its
topological dual. An element µ of X∗ is said to be a mean on
X if ∥µ∥ = µ(1) = 1. We often write µt(f(t)) instead of µ(f)
for µ ∈ X∗ and f ∈ X. Let X be left invariant (resp. right
invariant), i.e, ls(X) ⊂ X (resp. rs(X) ⊂ X) for each s ∈ S. A
mean µ on X is said to be left invariant (resp. right invariant) if
µ(lsf) = µ(f) (resp. µ(rsf) = µ(f)) for each s ∈ S and f ∈ X.
Let X be invariant i.e, X be both left and right invariant, a
mean µ on X is said to be invariant if it is both left and right
invariant,

(13) let T : C → H be a mapping. Then T is said to be demiclosed
at v ∈ H if for any sequence {xn} in C, the following implication
holds:
xn ⇀ u ∈ C, Txn → v imply Tu = v, where → (resp. ⇀)
denotes strong (resp. weak) convergence,

(14) a vector space X is said to satisfy Opial’s condition, if for each
sequence {xn} in X which converges weakly to point x ∈ X,

lim inf
n→∞

∥xn−x∥ < lim inf
n→∞

∥xn−y∥ (y ∈ X, y ̸= x).
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Note that every Hilbert space satisfies the Opial’s condition (see
[10] and [13]),

(15) let K be a nonempty subset of a Banach space X and {xn} be
a sequence in K. The set of the asymptotic center of {xn} with
respect to K, defined by

A({xn}) =
{
x ∈ K : lim sup

n→∞
∥xn − x∥ = inf

y∈K
lim sup
n→∞

∥xn − y∥
}
.

Let f be an α-contraction on H, and A be a bounded linear operator
on H. The following variational inequality problem with viscosity is of
great interest [8, 9]:
find x∗ in C such that

(1.7) ⟨(A− γf)x∗, x− x∗⟩ ≥ 0 (x ∈ C),

which is the optimality condition for the minimization problem

min
x∈C

(
1

2
⟨Ax, x⟩+ h(x)

)
,

where γ satisfies ∥I − A∥ ≤ 1− αγ and h is a potential function for γf
(that is h′(x) = γf(x)).

Plubtieng and Punpaeng in [12] proved a strong convergence theorem
for an implicit sequence {xn} obtained from the viscosity approximation
method for finding a common element in SEP(G)∩Fix(T) which satisfies
the variational inequality (1.7) (see also [19]):

Theorem 1.1. Let G be a bifunction from H ×H into R satisfying
(A1) G(x, x) = 0 for all x ∈ C;
(A2) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;
(A3) For all x, y, z ∈ C,

lim sup
t→0

G(tz + (1− t)x, y) ≤ G(x, y);

(A4) For all x ∈ C, y 7→ G(x, y) is convex and lower semicontinuous.
For x ∈ H and r > 0, set Sr : H → C to be the resolvent of G, i.e.,
Sr(x) is the unique z ∈ C for which

G(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, (y ∈ C).

Let T be a nonexpansive mapping on H such that SEP(G)∩Fix(T) ̸= ∅.
Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a
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strongly positive bounded linear operator on H with coefficient γ > 0 and
0 < γ < γ

α . Let {xn} be the sequence generated by{
xn = αnγf(xn) + (I − αnA)Tun, (n ∈ N),
G(un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0 (y ∈ H),

where un = Srnxn, {rn} ⊂ (0,∞) and αn ⊂ [0, 1] satisfying lim
n→∞

αn = 0

and lim inf
n→∞

rn > 0. Then {xn} and {un} converge strongly to a point z

in Fix(T) ∩ SEP(G) which solves the variational inequality

⟨(A− γf)z, z − x⟩ ≤ 0, x ∈ Fix(T) ∩ SEP(G).

In this paper, motivated by Lau, Miyake and Takahashi [7], Atsushiba
and Takahashi [2], Shimizu and Takahashi [15] and Takahashi [20], we
introduce the following general implicit algorithm for finding a com-
mon element of the set of solutions of a system of equilibrium problems
SEP(G) for a family G = {Gk; k = 1, 2 · · · ,K} of bifunctions and of the
set of fixed points of a family {Ti}i∈N of nonexpansive mappings from
C into itself and a continuous representation S = {Tt : t ∈ S} of a semi-
topological semigroup S as nonexpansive mappings from C into itself,
with respect to W -mappings and a sequence {µn} of invariant means
defined on an appropriate subspace of bounded, continuous real-valued
functions of the semigroup:

zn = ϵnγf(zn) + (I − ϵnA)TµnWnPC(I − rnB)S1
r1,nS

2
r2,n · · ·S

K
rK,n

zn

(n ∈ N),
Our goal is to prove a result of strong convergence for the above

implicit scheme to approach a unique solution
x∗ ∈

∩
n∈N Fix(Tn) ∩ Fix(S) ∩ SEP(G) ∩VI(C,B) of the problem (1.7).

2. Preliminaries

The projection operator PC assigns to each x ∈ H, the unique point
PCx ∈ C satisfying the condition

∥x− PCx∥ = min
y∈C

∥x− y∥.

The following Lemma characterizes the projection PC :

Lemma 2.1. ([18]). Let x ∈ H and y ∈ C. Then PCx = y if and only
if it satisfies the inequality

⟨x− y, y − z⟩ ≥ 0 (z ∈ C).
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Lemma 2.2. ([8]). Let A be a strongly positive linear bounded operator
on H with coefficient γ and 0 < ρ ≤ ∥A∥−1 Then ∥I − ρA∥ ≤ 1− ρ γ.

The following result generalizes Theorem 3.3.3 of [18].

Theorem 2.3. Let S be a semitopological semigroup such that C(S)
has an invariant mean µ. Let S = {Ts : s ∈ S} be a continuous repre-
sentation of S as nonexpansive mappings on C into itself and suppose
Fix(S) ̸= ∅. If we write Tµx instead of

∫
Ttx dµ(t), then the following

hold:
(i) TµTs = TsTµ = Tµ for all s ∈ S;
(ii) Tµ is a nonexpansive retraction of C onto Fix(S), i.e.,

∥Tµx− Tµy∥ ≤ ∥x− y∥ for all x, y ∈ C and T 2
µ = Tµ;

(iii) Tµx ∈ co {Tsx : s ∈ S} for each x ∈ C;
(iv) Tµx = x for each x ∈ Fix(S).

Proof. For proving (i)-(iii), see the proof of Theorem 3.3.3 of [18]. (iv)
is clear, since for every x ∈ Fix(S), Tsx = x for all s ∈ S. Thus
co {Tsx : s ∈ S} = {x}. Hence by (iii), Tµx = x for each x ∈ Fix(S).

□

Theorem 2.4. ([5]). Let G : H ×H → R satisfy,
(A1) G(x, x) = 0 for all x ∈ C;
(A2) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;
(A3) For all x, y, z ∈ C,

lim sup
t→0

G(tz + (1− t)x, y) ≤ G(x, y);

(A4) For all x ∈ C, y 7→ G(x, y) is convex and lower semicontinuous.
For x ∈ H and r > 0, set Sr : H → C to be

Sr(x) := {z ∈ C : G(z, y)+
1

r
⟨y − z, z − x⟩ ≥ 0, (y ∈ C)},

then Sr is well defined and the followings are valid:
(i) Sr is single-valued;
(ii) Sr is firmly nonexpansive, i.e.,

∥Srx−Sry∥2 ≤ ⟨Srx− Sry, x− y⟩ ,

for all x, y ∈ H;
(iii) Fix Sr =SEP(G);
(iv) SEP(G) is closed and convex.
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Theorem 2.5. ([4]). Let {rn} ⊂ (0,∞) be a sequence converging to
r > 0. For a bifunction G : H × H → R, satisfying conditions (A1)-
(A4), define Sr and Srn for n ∈ N as in Theorem 2.4, then for every
x ∈ H, we have

lim
n

∥Srn − Sr∥ = 0.

Lemma 2.6. ([1]). Suppose that T : C → H is nonexpansive. Then,
the mapping I − T is demiclosed at zero.

Lemma 2.7. ([1]). Let X be a uniformly convex Banach space satisfying
the Opial’s condition and let K be a nonempty closed convex subset of
X. If a sequence {zn} ⊂ K converges weakly to a point z0, then {z0} is
the asymptotic center of {zn} with respect to K.

Remark 2.8. Every Hilbert space is a uniformly convex Banach space,
and therefore is a strictly convex Banach space (see pages 95, 98 of [18]).

The following results hold for the mappings Wn.

Theorem 2.9. ([16]). Let C be a nonempty closed convex subset of a
strictly convex Banach space. Let {Ti}i∈N be a sequence of nonexpansive
mappings of C into itself such that

∩∞
i=1 Fix(Ti) ̸= ∅, and let {λi} be a

real sequence such that 0 ≤ λi ≤ b < 1 for every i ∈ N. Then
(1) Wn is nonexpansive and Fix(Wn) =

∩n
i=1 Fix(Ti) for each n ≥ 1,

(2) for each x ∈ C and for each positive integer j, the limit lim
n→∞

Un,jx

exists.
(3) The mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1 (x ∈ C),

is a nonexpansive mapping satisfying Fix(W) =
∩∞

i=1 Fix(Ti). Such a
mapping is called the W -mapping generated by {Ti}i∈N, and {λi}i∈N.

Theorem 2.10. ([11]). Let {Ti}∞i=1 be a sequence of nonexpansive map-
pings of C into itself such that

∩∞
i=1 Fix(Ti) ̸= ∅, {λi} a real sequence

such that 0 < λi ≤ b < 1, (i ≥ 1). If D is any bounded subset of C, then

lim
n→∞

sup
x∈D

∥Wx−Wnx∥ = 0.

Throughout the rest of this paper, the open ball of radius r centered
at 0 is denoted by Br. For ϵ > 0 and a mapping T : D → H, we let
Fϵ(T ;D) be the set of ϵ-approximate fixed points of T , i.e., Fϵ(T ;D) =
{x ∈ D : ∥x− Tx∥ ≤ ϵ}.
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3. Main results

In this section, we deal with the strong convergence approximation
scheme for finding a common element of the set of solutions of a system of
an equilibrium problem and the set of common fixed points of a sequence
of nonexpansive mappings and a continuous representation. This result
improves the main result of [4] and many others.

Theorem 3.1. Let S be a semitopological semigroup. Suppose that
S = {Ts : s ∈ S} be a continuous representation of S as nonexpansive
mappings of C into itself. Let X be an amenable subspace of C(S) such
that 1 ∈ X, and the function t 7→ ⟨Ttx, y⟩ is an element of X for each
x ∈ C and y ∈ H. Let {µn} be a sequence of invariant means on X. Let
{Ti}i∈N be a sequence of nonexpansive mappings from C into itself such
that Ti(Fix(S)) ⊆ Fix(S) for every i ∈ N, and G = {Gk : k = 1, 2, · · ·K}
be a finite family of bifunctions from H ×H into R. Suppose that A is
a strongly positive bounded linear operator with coefficient γ such that
∥A∥ ≤ 1 and let B be an η-cocoercive mapping from C into H, and f is
an α-contraction on H. Moreover, let {rk,n}Kk=1, {rn}, {ϵn} and {λn} be
real sequences such that rk,n > 0, rn > 0, 0 < ϵn < 1 and 0 < λn ≤ c < 1

for some c, and let γ be a real number such that 0 < γ < γ
α . Assume

that,
(i) for every k ∈ {1, 2, · · · ,K}, the function Gk satisfies (A1)− (A4) of
Theorem 2.4,
(ii) lim

n
ϵn = 0 and,

(iii) for every k ∈ {1, 2, · · · ,K}, lim
n

rk,n exists and is a positive real

number,
(iv) {rn} ⊂ [a, b] for some positive real numbers a, b such that
b2 < 2ηa < η2 + b2,
(v) F :=

∩
n∈N Fix(Tn) ∩ Fix(S) ∩ SEP(G) ∩VI(C,B) ̸= ∅.

For every n ∈ N, let Wn be the mapping generated by {Ti} and {λn}
as in (1.6), for every k ∈ {1, 2, · · · ,K} and n ∈ N. Let Sk

rk,n
be the

resolvent generated by Gk and rk,n as in Theorem 2.4. Let {zn} be the
sequence generated by

zn = ϵnγf(zn) + (I − ϵnA)TµnWnPC(I − rnB)S1
r1,nS

2
r2,n · · ·S

K
rK,n

zn

(n ∈ N),(3.1)

then there exists a unique element u∗ ∈ F such that {zn} strongly con-
verges to u∗ which is:
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(1) the unique solution of the variational inequality:

(3.2) ⟨(A− γf)u∗, x− u∗⟩ ≥ 0 (x ∈ F),

or equivalently,

u∗ = PF(I − (A− γf))u∗,

(2) the unique solution of the minimization problem

min
x∈F

1

2
⟨Ax, x⟩+ h(x),

where h is a potential function for γf .

Proof. Since ϵn → 0, we may assume that ϵn ≤ ∥A∥−1. We show that
⟨(I − ϵnA)x , x⟩ ≥ 0, for all x ∈ H. We may assume that ∥x∥ = 1, so
we have

⟨(I − ϵnA)x , x⟩ = 1− ϵn⟨Ax , x⟩ ≥ 1− ϵn∥A∥ ≥ 0.

By Lemma 2.2, we have

∥I − ϵnA∥ ≤ 1− ϵnγ̄.

We show that I−rnB is nonexpansive. Indeed, since B is η-cocoercive,
by condition (iv), we have

∥(I − rnB)x− (I − rnB)y∥2

=∥(x− y)− rn(Bx−By)∥2

=∥x− y∥2 − 2rn⟨x− y,Bx−By⟩
+ r2n∥Bx−By∥2

≤∥x− y∥2 − 2rnη∥Bx−By∥2 + r2n∥Bx−By∥2

≤∥x− y∥2 + (r2n − 2ηrn)∥Bx−By∥2

≤∥x− y∥2 + (b2 − 2ηa)∥Bx−By∥2

≤∥x− y∥2,
for each x, y ∈ C, which implies that the mapping I − rnB is nonexpan-
sive.

We put Sk
n := S1

r1,nS
2
r2,n · · ·S

k
rk,n

for every k ∈ {1, 2, · · · ,K} and ρn =

PC(I − rnB)SK
n zn. Let p ∈ F. Since PC(I − rnB)p = p, we have

∥ρn − p∥ = ∥PC(I − rnB)SK
n zn − PC(I − rnB)p∥

≤ ∥SK
n zn − p∥ ≤ ∥zn − p∥.
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Putting µ1 = µ, by [18,Lemma 3.4.3], we have Tµn = Tµ for all n ∈ N.
Therefore, we have

zn = ϵnγf(zn) + (I − ϵnA)TµWnPC(I − rnB)SK
n zn (n ∈ N).

We divide the rest of the proof into eleven steps.
Step 1. The existence of zn which satisfies (3.1).

Proof. This follows immediately from the fact that for every n ∈ N, the
mapping Nn given by

Nnx := ϵnγf(x) + (I − ϵnA)TµWnPC(I − rnB)SK
n x (x ∈ H),

is a contraction. To see this, put βn = 1 + ϵnγα− ϵnγ̄, then
0 ≤ βn < 1 (n ∈ N). Using Lemma 2.2, we have

∥Nnx−Nny∥ ≤ϵnγ∥f(x)− f(y)∥
+ (1− ϵnγ̄) ∥TµWnPC(I − rnB)SK

n x

− TµWnPC(I − rnB)SK
n y∥

≤ϵnγα∥x− y∥+ (1− ϵnγ̄)∥x− y∥
=(1 + ϵnγα− ϵnγ̄)∥x− y∥
=βn∥x− y∥.

Therefore, by Banach Contraction Principle ([18],p.4), there exists a
unique point zn such that Nnzn = zn. □

Step 2. {zn} is bounded.

Proof. Let p ∈ F. Since PC(I − rnB)p = p, we have

∥zn − p∥2 =
⟨
ϵnγf(zn)

+ (I − ϵnA)TµWnPC(I − rnB)SK
n zn − p , zn − p

⟩
=ϵnγ

⟨
f(zn)− f(p), zn − p

⟩
+ ϵn

⟨
γf(p)−Ap , zn − p

⟩
+

⟨
(I − ϵnA)

(
TµWnPC(I − rnB)SK

n zn

− TµWnPC(I − rnB)SK
n p

)
, zn − p

⟩
≤ϵnγα∥zn − p∥2 + (1− ϵnγ)∥zn − p∥2

+ ϵn

⟨
γf(p)−Ap , zn − p

⟩
.
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Thus,

(3.3) ∥zn − p∥2 ≤ 1

γ − αγ
⟨γf(p)−Ap , zn − p⟩ .

Hence,

∥zn − p∥ ≤ 1

γ − αγ
∥γf(p)−Ap∥.

That is, the sequence {zn} is bounded. □

Step 3. For every fixed k ∈ {1, 2, · · · ,K}, we have

(3.4) lim
n

∥zn − Sk
rk,n

zn∥ = 0.

Proof. Let k ∈ {1, 2, · · · ,K}. Since by (ii) of Theorem 2.4, Sk
rk,n

is firmly

nonexpansive, we conclude that

∥Sk
rk,n

zn − p∥2 = ∥Sk
rk,n

zn − Sk
rk,n

p∥2

≤
⟨
Sk
rk,n

zn − Sk
rk,n

p , zn − p
⟩

=
1

2

(
∥Sk

rk,n
zn − p∥2 + ∥zn − p∥2 − ∥zn − Sk

rk,n
zn∥2

)
.

Therefore,

(3.5) ∥Sk
rk,n

zn − p∥2 ≤ ∥zn − p∥2 − ∥zn − Sk
rk,n

zn∥2.

It follows that

∥zn − p∥2 =∥ϵn(γf(zn)−Ap) + (I − ϵnA)(TµWnρn − p)∥2

≤
(
ϵn∥γf(zn)−Ap∥+ (1− ϵnγ)∥ρn − p∥

)2
≤ϵn∥γf(zn)−Ap∥2 + (1− ϵnγ)∥ρn − p∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥
≤ϵn∥γf(zn)−Ap∥2 + (1− ϵnγ)∥SK

rK,n
zn − p∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥
≤ϵn∥γf(zn)−Ap∥2 + ∥zn − p∥2

− (1− ϵnγ)∥zn − SK
rK,n

zn∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.
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That is,

(1− ϵnγ)∥zn − SK
rK,n

zn∥2 ≤ϵn∥γf(zn)−Ap∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.

From (ii) and that {f(zn)} and {ρn} are bounded sequences, we conclude

lim
n

∥zn − SK
rK,n

zn∥ = 0.

Now by induction we assume that (3.4) holds for every k > k, and we
prove it for k.
If we put Ln := 2 ⟨γf(zn)−ATµWnρn , zn − p⟩, then by using the in-
equality

(3.6) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩ ,

we obtain

∥zn − p∥2 = ∥ϵnγf(zn) + (I − ϵnA)TµWnρn − p∥2

= ∥TµWnρn − p+ ϵn (γf(zn)−ATµWnρn) ∥2

≤ ∥TµWnρn − p∥2 + ϵnLn

≤ ∥ρn − p∥2 + ϵnLn

≤ ∥SK
n zn − p∥2 + ϵnLn

≤ ∥S1
r1,nS

2
r2,n · · ·S

K
rK,n

zn − p∥2 + ϵnLn

≤ ∥Sk
rk,n

· · ·SK
rK,n

zn − p∥2 + ϵnLn.(3.7)
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Observe that

∥Sk
rk,n

· · ·SK
rK,n

zn − p∥ =∥Sk
rk,n

· · ·SK
rK,n

zn − Sk
rk,n

zn + Sk
rk,n

zn − p∥

≤∥Sk+1
rk+1,n

· · ·SK
rK,n

zn − zn∥+ ∥Sk
rk,n

zn − p∥

≤∥Sk+1
rk+1,n

· · ·SK
rK,n

zn − Sk+1
rk+1,n

zn∥

+ ∥Sk+1
rk+1,n

zn − zn∥+ ∥Sk
rk,n

zn − p∥

≤∥Sk+2
rk+2,n

· · ·SK
rK,n

zn − zn∥

+ ∥Sk+1
rk+1,n

zn − zn∥+ ∥Sk
rk,n

zn − p∥
...

≤∥Sk
rk,n

zn − p∥+
K∑

k=k+1

∥Sk
rk,n

zn − zn∥.

Inequality (3.7) gives,

∥zn − p∥2 ≤
( K∑

k=k+1

∥Sk
rk,n

zn − zn∥+ 2∥Sk
rk,n

zn − p∥
)

( K∑
k=k+1

∥Sk
rk,n

zn − zn∥
)
+ ∥Sk

rk,n
zn − p∥2 + ϵnLn.

From this inequality and (3.5), we obtain

∥zn − Sk
rk,n

zn∥2 ≤
( K∑

k=k+1

∥Sk
rk,n

zn − zn∥+ 2∥Sk
rk,n

zn − p∥
)

( K∑
k=k+1

∥Sk
rk,n

zn − zn∥
)
+ ϵnLn.

Since by assumption,

lim
n

K∑
k=k+1

∥Sk
rk,n

zn − zn∥ = 0,
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then, from (ii) and that {Ln} is a bounded sequence, we conclude

lim
n

∥zn − Sk
rk,n

zn∥ = 0,

as required. □

Step 4. lim
n

∥SK
n zn − zn∥ = 0.

Proof. Observe that

∥SK
n zn − zn∥ =∥S1

r1,n · · ·S
K
rK,n

zn − zn∥

≤∥S1
r1,n · · ·S

K
rK,n

zn − S1
r1,nzn∥+ ∥S1

r1,nzn − zn∥

≤∥S2
r2,n · · ·S

K
rK,n

zn − zn∥+ ∥S1
r1,nzn − zn∥

...

≤
K∑
k=1

∥Sk
rk,n

zn − zn∥.

Therefore by using (3.4), we have lim
n

∥SK
n zn − zn∥ = 0. □

Step 5. lim
n

∥BSK
n zn −Bp∥ = 0. □

Proof. Observe that for p ∈ F, since B is η-cocoercive, we have

∥ρn − p∥2 =∥PC(I − rnB)SK
n zn − PC(I − rnB)p∥2

≤∥(SK
n zn − p)− rn(BSK

n zn −Bp)∥2

=∥SK
n zn − p∥2 − 2rn⟨SK

n zn − p , BSK
n zn −Bp⟩

+ r2n∥BSK
n zn −Bp∥2

≤∥zn − p∥2 − 2rnη∥BSK
n zn −Bp∥2 + r2n∥BSK

n zn −Bp∥2

≤∥zn − p∥2 + (r2n − 2rnη)∥BSK
n zn −Bp∥2.(3.8)
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Observe that

∥zn − p∥2 =∥ϵn(γf(zn)−Ap) + (I − ϵnA)(TµWnρn − p)∥2

≤
(
ϵn∥γf(zn)−Ap∥+ ∥I − ϵnA∥∥TµWnρn − p∥

)2

≤
(
ϵn∥γf(zn)−Ap∥+ (1− ϵnγ̄)∥ρn − p∥

)2

≤ϵn∥γf(zn)−Ap∥2 + ∥ρn − p∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.(3.9)

Substituting (3.8) into (3.9), we have

∥zn − p∥2 ≤ϵn∥γf(zn)−Ap∥2 + ∥zn − p∥2

+ (r2n − 2rnη)∥BSK
n zn −Bp∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.

It follows from the condition (iv) that

(2aη − b2)∥BSK
n zn −Bp∥2 ≤ϵn∥γf(zn)−Ap∥2

+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.

¿From condition (ii), we have

lim
n

∥BSK
n zn −Bp∥ = 0.

□

Step 6. lim
n

∥ρn − SK
n zn∥ = 0.
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Proof. Observe that, by using (1.5), we have

∥ρn − p∥2 =∥PC(I − rnB)SK
n zn − PC(I − rnB)p∥2

≤
⟨
(I − rnB)SK

n zn − (I − rnB)p , ρn − p
⟩

=
1

2
{∥(I − rnB)SK

n zn − (I − rnB)p∥2 + ∥ρn − p∥2

− ∥(I − rnB)SK
n zn − (I − rnB)p− (ρn − p)∥2}

≤1

2
{∥SK

n zn − p∥2 + ∥ρn − p∥2

− ∥(SK
n zn − ρn)− rn(BSK

n zn −Bp)∥2}

≤1

2
{∥zn − p∥2 + ∥ρn − p∥2 − ∥SK

n zn − ρn∥2

− r2n∥BSK
n zn −Bp∥2

+ 2rn
⟨
SK
n zn − ρn, BSK

n zn −Bp
⟩
},

which yields that

∥ρn − p∥2 ≤∥zn − p∥2 − ∥SK
n zn − ρn∥2

+ 2rn∥SK
n zn − ρn∥∥BSK

n zn −Bp∥.(3.10)

Substituting (3.10) into (3.9) yields that

∥zn − p∥2 ≤ϵn∥γf(zn)−Ap∥2 + ∥zn − p∥2 − ∥SK
n zn − ρn∥2

+ 2rn∥SK
n zn − ρn∥∥BSK

n zn −Bp∥
+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.

It follows that

∥SK
n zn − ρn∥2 ≤ϵn∥γf(zn)−Ap∥2

+ 2rn∥SK
n zn − ρn∥∥BSK

n zn −Bp∥
+ 2ϵn∥γf(zn)−Ap∥∥ρn − p∥.

¿From condition (ii) and Step 5, we have

lim
n

∥ρn − SK
n zn∥ = 0.

□

Step 7. lim
n

∥zn − TµWnzn∥ = 0.
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Proof. To see this, put

Mn := 2
⟨
γf(zn)−ATµWnPC(I − rnB)SK

n zn , zn − TµWnzn
⟩
.

It is obvious that {Mn}n∈N is a bounded sequence. By using (3.6), we
have

∥zn−TµWnzn∥2

= ∥ϵnγf(zn) + (I − ϵnA)TµWnPC(I − rnB)SK
n zn − TµWnzn∥2

≤ ∥TµWnPC(I − rnB)SK
n zn − TµWnzn∥2 + ϵnMn,

≤ ∥ρn − zn∥2 + ϵnMn ≤
(
∥ρn − SK

n zn∥+ ∥SK
n zn − zn∥

)2
+ ϵnMn.

Therefore, by Step 4, Step 6, and the fact that {Mn}n∈N is a bounded
sequence, we can conclude that,

lim
n

∥zn − TµWnzn∥2 ≤
(
lim
n

∥ρn − SK
n zn∥+ lim

n
∥SK

n zn − zn∥
)2

+ lim
n

ϵnMn = 0.

□

Step 8. limn→∞ ∥zn − Ttzn∥ = 0, for all t ∈ S.

Proof. Let p ∈ F and put

M0 =
∥γf(p)−Ap∥

γ − αγ
.

Let D = {y ∈ H : ∥y − p∥ ≤ M0}. It is clear that D is a bounded
closed convex set, and {zn : n ∈ N} ⊆ D. It is also obvious that D is
invariant under {Sk

rk,n
: k = 1, 2, . . .K, n ∈ N}, Wn for every n ∈ N, S,

and PC(I − rnB) for every n ∈ N.
Since S is a semitopological semigroup, by (i) of Theorem 2.3, we have

(3.11) TtTµy = Tµy (t ∈ S, y ∈ D).

Let ϵ > 0. By [3,Theorem 1.2], there exists δ > 0 such that

(3.12) coFδ(Tt;D) +Bδ ⊆ Fϵ(Tt;D) (t ∈ S).

Take L0 = (1 + γα)M0 + ∥γf(p)−Ap∥. Now from (3.11) and condition
(ii) there exists a natural number N1 such that Tµy ∈ Fδ(Tt;D) for all
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y ∈ D and ϵn < δ
2L0

for all n ≥ N1. We note that

ϵn∥γf(zn)−ATµWnPC(I − rnB)SK
n zn∥

≤ϵn

(
∥γf(zn)− γf(p)∥+ ∥γf(p)−Ap∥

+ ∥ATµWnPC(I − rnB)SK
n p

−ATµWnPC(I − rnB)SK
n zn∥

)
≤ϵn

(
γα∥zn − p∥+ ∥γf(p)−Ap∥+ ∥A∥∥zn − p∥

)
≤ϵn (γα∥zn − p∥+ ∥γf(p)−Ap∥+ ∥zn − p∥)
≤ϵn ((1 + γα)∥zn − p∥+ ∥γf(p)−Ap∥)
≤ϵn ((1 + γα)M0 + ∥γf(p)−Ap∥)

=ϵnL0 ≤
δ

2
,

for all n ≥ N1. Observe that

zn = ϵnγf(zn) + (I − ϵnA)TµWnPC(I − rnB)SK
n zn

= TµWnPC(I − rnB)SK
n zn

+ ϵn

(
γf(zn)−ATµWnPC(I − rnB)SK

n zn

)
∈ Fδ(Tt;D) +B δ

2

⊆ Fδ(Tt;D) +Bδ

⊆ Fϵ(Tt;D).

for all n ≥ N1. This shows that

∥zn − Ttzn∥ ≤ ϵ (n ≥ N1).

Since ϵ > 0 is arbitrary, we get limn→∞ ∥zn − Ttzn∥ = 0. □

Step 9. The weak limit set of {zn} which is denoted by ωω{zn} is a
subset of F.

Proof. Let x∗ ∈ ωω{zn} and let {znj} be a subsequence of {zn} such
that znj ⇀ x∗. We need to show that x∗ ∈ F. In terms of Lemma 2.6
and Step 8, we conclude that x∗ ∈ Fix(S).
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By Theorems 2.9, 2.10, the mapping W : C → C, given by Wx :=
lim
n

Wnx satisfies

(3.13) lim sup
n→∞

∥Wnx
∗ −Wx∗∥ = 0.

Putting lim
n

rk,n = r̂k for every k ∈ {1, 2, · · · ,K}, by Theorem 2.5, we

have

(3.14) Sk
r̂k
x = lim

n
Sk
rk,n

x (x ∈ H).

Since x∗ ∈ Fix(S), by our assumption, we have Tix
∗ ∈ Fix(S) for all i ∈

N and then Wnx
∗ ∈ Fix(S). Hence, by (iv) of Theorem 2.3, TµWnx

∗ =
Wnx

∗.
Consider the set of the asymptotic center A(znj ) of {znj} with respect
to H. Since znj ⇀ x∗, Lemma 2.7 implies that A(znj ) = {x∗}. By the
definition of A(znj ), we have

lim sup
j→∞

∥znj − z∥ ≤ lim sup
j→∞

∥znj − Ttznj∥ (t ∈ S).

for all z ∈ A(znj ). Since A(znj ) = {x∗}, by Step 8, we have znj → x∗.
Using (3.13) and Step 7, we have

lim sup
j→∞

∥znj −Wx∗∥ ≤ lim sup
j→∞

∥znj − TµWnjznj∥

+ lim sup
j→∞

∥TµWnjznj − TµWnjx
∗∥

+ lim sup
j→∞

∥TµWnjx
∗ −Wx∗∥

≤ lim sup
j→∞

∥znj − TµWnjznj∥+ lim sup
j→∞

∥znj − x∗∥

+ lim sup
j→∞

∥Wnjx
∗ −Wx∗∥ = 0.

This implies that W (x∗) = x∗.
Using Theorem 2.5 and (3.14) and Step 3, we have

lim sup
j→∞

∥znj − Sk
r̂k
x∗∥ ≤ lim sup

j→∞
∥znj − Sk

rk,nj
znj∥

+ lim sup
j→∞

∥Sk
rk,nj

znj − Sk
rk,nj

x∗∥

+ lim sup
j→∞

∥Sk
rk,nj

x∗ − Sk
r̂k
x∗∥

≤ lim sup
j→∞

∥znj − x∗∥ = 0.
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This implies that Sk
r̂k
(x∗) = x∗ for every k ∈ {1, 2, · · · ,K}.

Therefore, we have x∗ ∈ Fix(W)∩(
∩K

k=1 Fix(S
k
r̂k
)). In terms of Theorems

2.9 and 2.4, we have x∗ ∈ (
∩∞

i=1 Fix(Ti)) ∩ SEP(G). Since x∗ ∈ Fix(S),
we have x∗ ∈ (

∩∞
i=1 Fix(Ti)) ∩ SEP(G) ∩ Fix(S).

Now, let us show that x∗ ∈ V I(C,B). Let U : H → 2H be a set-valued
mapping defined by

Ux =

{
Bx+NCx, x ∈ C,
∅, x /∈ C.

¿From condition (iv) and this fact that B is η-cocoercive, we have

⟨Bx−By , x− y⟩ ≥ η∥Bx−By∥2 ≥ 0,

which yields that B is monotone, thus U is maximal monotone. Let
(x1, x2) ∈ G(U). Since x2 −Bx1 ∈ NCx1 and ρn ∈ C, we have

⟨x1 − ρn , x2 −Bx1⟩ ≥ 0.

Moreover, since ρn = PC(I − rnB)SK
n zn, from (1.3) we have

⟨x1 − ρn , ρn − (I − rnB)SK
n zn⟩ ≥ 0,

and hence

⟨x1 − ρn ,
ρn − SK

n zn
rn

+BSK
n zn⟩ ≥ 0.
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Therefore,

⟨x1 − ρnj , x2⟩ ≥⟨x1 − ρnj , Bx1⟩
≥⟨x1 − ρnj , Bx1⟩

−

⟨
x1 − ρnj ,

ρnj − SK
nj
znj

rnj

+BSK
nj
znj

⟩

=

⟨
x1 − ρnj , Bx1 −

ρnj − SK
nj
znj

rnj

−BSK
nj
znj

⟩
=⟨x1 − ρnj , Bx1 −Bρnj ⟩

+ ⟨x1 − ρnj , Bρnj −BSK
nj
znj ⟩

−

⟨
x1 − ρnj ,

ρnj − SK
nj
znj

rnj

⟩
≥⟨x1 − ρnj , Bρnj −BSK

nj
znj ⟩

−

⟨
x1 − ρnj ,

ρnj − SK
nj
znj

rnj

⟩
,

therefore, by Step 6 and that B is a 1
η -Lipschitz mapping, we have

⟨x1 − x∗ , x2⟩ ≥ 0. Thus, by (8), we have x∗ ∈ U−10 and hence, by (8),
x∗ ∈ V I(C,B). Therefore, x∗ ∈ F. □

Step 10. There exists a unique element u∗ ∈ F that satisfies in the
following inequality

(3.15) Γ := lim sup
n

⟨(γf −A)u∗, zn − u∗⟩ ≤ 0.

Proof. From Lemma 2.2 we have

∥PF(I − (A− γf))x− PF(I − (A− γf))y∥
≤∥(I − (A− γf))x− (I − (A− γf))y∥
=∥((I −A)(x− y) + (γf(x)− γf(y))∥
≤(1− γ)∥x− y∥+ γα∥x− y∥
=(1− γ + γα)∥x− y∥,

since 1− γ + γα < 1, PF(I − (A− γf)) is a contraction. So, by Banach
Contraction Principle, there exists a unique point u∗ ∈ F such that
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PF(I− (A−γf))u∗ = u∗ or equivalently, u∗ is the unique solution of the
variational inequality:

(3.16) ⟨(A− γf)u∗, x− u∗⟩ ≥ 0 (x ∈ F),

The existence of Γ follows from the fact that {zn} is a bounded sequence.

So we can select a subsequence {z′
nj
} of {zn} such that

limj

⟨
(γf −A)u∗, z

′
nj

− u∗
⟩
= Γ. There is a subsequence of {z′

nj
} which

we denote it again by {z′
nj
} that converges weakly to a point y∗.

By Step 9, y∗ ∈ F and from (3.16) we have

Γ = lim
j

⟨
(γf −A)u∗, z

′
nj

− u∗
⟩
= ⟨(γf −A)u∗, y∗ − u∗⟩ ≤ 0.

□
Step 11. {zn} converges strongly to u∗ and u∗ = y∗.

Proof. Indeed, from (3.3), (3.15), we conclude

lim sup
n

∥zn − u∗∥2 ≤ 1

γ − αγ
lim sup

n
⟨(γf −A)u∗, zn − u∗⟩ ≤ 0.

That is zn → u∗. Therefore, zn ⇀ u∗. Hence z
′
nj

⇀ u∗. Now as in the

proof of Step 10, z
′
nj

⇀ y∗, so we conclude that u∗ = y∗. □
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