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ABSTRACT. Lexicographic ordering by spectral moments (S-order)
among all trees is discussed in this paper. For two given positive
integers p and ¢ with p < ¢, we denote J;7'9 = {T : T is a tree of
order n with a (p, ¢)-bipartition}. Furthermore, the last four trees,
in the S-order, among 7,7 (4 < p < ¢) are characterized.
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1. Introduction

Up to isomorphism, all graphs considered here are finite, simple and
connected. Undefined terminology and notation may be referred to [1].
Let G = (Vig, Eg) be a simple undirected graph with n vertices. By
G — v and G — uv we denote the graph obtained from G by deleting
vertex v € Vg, or edge uv € Eg, respectively (this notation is naturally
extended if more than one vertex or edge is deleted). Similarly, G + uv
is obtained from G by adding edge uv € Eg. For v € Vg, let Ng(v) (or
N (v) for short) denote the set of all the adjacent vertices of v in G and
d(v) = |Ng(v)|. A leaf of G is a vertex of degree one.

Let A(G) be the adjacency matrix of a graph G, and let A1 (G), A\2(G),

.+, An(G) be the eigenvalues of G in non-increasing order. The number
S )\f(G)(k‘ = 0,1,...,n — 1) is called the kth spectral moment of
G, denoted by Si(G). We know from [2] that Sy = n, S1 =1, S2 =
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Lexicographical ordering by spectral moments of trees 1028

2m, S3 = 6t, where n, [, m, t denote the number of vertices, the number
of loops, the number of edges and the number of triangles, respectively.
Let S(G) = (So(G),S1(G),...,Sn-1(G)) be the sequence of spectral
moments of G. For two graphs (G; and G4, we shall write G1 =5 Go if
Si(G1) = Si(Gg) for i = 0,1,...,n — 1. Similarly, we have G1 <5 G»
(G1 comes before Gy in the S-order) if for some k(1 < k < n—1), we
have Sl(Gl) = SZ(GQ) (Z =0,1,....k— 1) and Sk(Gl) < Sk(Gg) We
shall also write G| =5 G9 if G1 <5 G5 or G| =5 GG3. S-order was used in
producing graph catalogs (see [6]). For a more general setting of spectral
moments one may be referred to [5].

Investigation on S-order of graphs attracts more and more researchers’
attention. Cvetkovi¢ and Rowlinson [7] studied the S-order of trees and
unicyclic graphs and characterized the first and the last graphs, in the S-
order, of all trees and all unicyclic graphs with given girth, respectively.
Wu and Liu [14, 16] determined the last |4 + 1| and the last |§ + 2]
graphs, in the S-order, of all n-vertex trees with diameter d(4 < d <
n—3) and all n-vertex unicyclic graphs of girth g (3 < g < n—3), respec-
tively. Wu and Fan [15] determined the first and the last graphs in the S-
order, of all unicyclic graphs and bicyclic graphs, respectively. Pan et al.

n—1
[12] gave the first Z,Ejj (|%=5=L] — k + 1) graphs apart from a path,
in the S-order, of all trees on n vertices, whereas Pan et al. [13] deter-
mined the last and the second last quasi-tree, in the S-order, among the
set Z(n,dop) = {G : G is a quasi-tree of order n with G — ug being a tree
and dg(ug) = do}, respectively.

Given a connected bipartite graph G with n vertices, its vertex set
can be partitioned into two subsets Vi and V3, such that each edge joins
a vertex in V7 with a vertex in V5. Suppose that V7 has p vertices and
V5 has q vertices, where p + ¢ = n with p < ¢. Then we say that G has
a (p, q)-bipartition. For convenience, let 77! be the set of all n-vertex
trees, each of which has a (p, ¢)-bipartition.

In light of the information available on the spectral moments of graphs,
it is natural to consider some other class of graphs. Trees with a (p, q)-
bipartition are a reasonable starting point for such an investigation.
The n-vertex trees with a (p,q)-bipartition have been considered in
[8, 9, 10, 11, 16], whereas to the best of our knowledge, the spectral
moments of trees in 7% (4 < p < q) were, so far, not considered. In
this paper we characterize the last four trees, in the S-order, among
IP1(4 < p < q). For more recent results on the spectral moments of
graphs, one may be referred to [3, 4].
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Throughout the text we denote by P, K1 ,—1 and C), the path, star
and cycle on n vertices, respectively. Let U,, be a graph obtained from
C,_1 by attaching a leaf to one vertex of C,,_1, and let F4 be a graph
obtained by deleting an edge from a complete graph Ky. Also let F5 be a
graph obtained from two cycles C3 and C% of length 3 by identifying one
vertex of C3 with one vertex of C4. The graphs Uy, Us, E4 and Ej are
depicted in Fig. 1. Let F be a graph. An F-subgraph of G is a subgraph

Uy Us Ey E;

AN AN DA

FiGURE 1. Four graphs Uy, Us, E4 and Ej.

of G which is isomorphic to the graph F. Let ¢g(F) (or ¢(F')) be the
number of all F-subgraphs of G. For a tree T and two vertices v, u of T',
the distance disty(u,v) between u and v is the number of edges on the
unique path connecting them. Denote by PV (T') the set of all pendant
vertices of T.

Further on we need the following lemmas.

Lemma 1.1 ([7]). The kth spectral moment of G is equal to the number
of closed walks of length k.

Lemma 1.2. For every graph G, we h(we
=20 + 4(15 Ps) + 8¢ see .
( g §—30(§> (<) %J <§> 2)gsee 14
(111 = 2gz$ +12¢> P3 +6¢ +12¢( K 3) 2gz§ (Us)+360(E4)+
240(Es) + 246(Cs) + 486(Cy) + 126(C) (see [14]).
Given a connected graph G, its line graph is denoted by L(G). It is

easy to see that the size of L(G) is equal to the number of P; of G. By
[Exercise 1.5.10(a), 1], we have

Lemma 1.3. If G is a simple connected graph, then ¢g(Ps) = Z (d(;))

veVg

Definition 1. Assume that u,v,w are three distinct vertices of a tree
T satisfying uwv € Erp, d(u) = 1, d(w) > d(v) and disty(v,w) = 2. Let
Tlv — w;1] be the graph obtained from T by deleting the edge uv and
adding the edge uw. In notation,

T — w;1] =T — uwv + uw,
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and we say T[v — w; 1] is obtained from T by Operation I.

Remark 1. If T is in Z,1"%, by Definition 1, it is easy to see that T[v —

w; 1] is also in Z1.

Lemma 1.4. Let T and T'[v — w; 1] be the trees defined as above. Then
T <s Tv— w;1].

Proof. By Lemma 1.1, S;(T) = S;(T[v — w;1]) holds for i = 0, 1,2, 3.

In view of Lemma 1.2(i), ¢7(P2) = ¢rppsw;y(F2) = n—1, ¢7(Cs) =
PTjv—w;1)(C1) = 0. By Lemma 1.3, we have

== (1) (1) (%)
—d(w) — d(v) +1 > 0.

Hence, 54(T[U — W; 1]) - 54(T) = 4(¢T[U—>w;1} (P3) - d)T(P?))) >0, e,
T <s Tv— w;1]. O

Definition 2. Let uw be an edge of a tree U with d(w) > 2. Let T
be obtained from U and the star Ky 41 (k > 2) by identifying u with a
pendant vertex of K1 1 whose center is v. Let T[v — w; 2] be the graph

obtained from T by deleting all edges vz and adding all edges wz, where
z € W = Nr(v)\{u}. In notation,

Tho—w;2] =T —{vz:ze W} +{wz:2z€e W}

and we say T[v — w; 2] is obtained from T by Operation II. Trees T and
Tv — w; 2| are depicted in Fig. 2.

Remark 2. If T is in Z,%, by Definition 2, it is easy to see that T'[v —
w; 2] is also in FPL.

i Tl — w; 2

FIGURE 2. T = T[v — w; 2| by Operation I
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Lemma 1.5. Let T and T[v — w;2] be the trees described as above,

then one has T <5 T'lv — w;2].

Proof. By Lemma 1.1, S;(T") = S;(T'[v — w;?2]) holds for i = 0,1,2,3.
In view of Lemma 1.2(i), ¢7(P2) = ¢rjy—u2)(F2) = n—1 and ¢r(Cy) =
ng[v_}w;Q](Czl) = 0. By Lemma 1.3,

ety = (*57)-(49)-(1)

— k(d(w) —1) > 0.
Hence, we have Sy(T[v — w;2]) — Sa(T")

0,ie., T <5 Tv— w;?2]. O
Lemma 1.6. Let T be the tree as depicted in Fig. 2, and let T be
the tree obtained from T by deleting all edges vv; (i = 1,2, ..., k —1)
and adding all edges wv; (1 = 1,2, ..., k —1). Assume that wy is in
Nrp(w) \ {u}.

(i) If dp(w) > 2 and dr(wy) = 2, one has T <5 T".
(ii) If dp(w) =2 and dp(wy) =1, one has T =4 T".
Proof. By Lemma 1.1, S;(T) = S;(T") holds for i = 0, 1, 2, 3. In view
of Lemma, 1.2(i), qu(Pz) = (ZS’T(PQ) =n—1and ¢T(C4) == ¢{Z‘V(C4) =0.
By Lemma 1.3, we obtain that
¢r(Ps) = ¢p(P3) = (k — 1)(dr(w) — 2).
If dp(w) > 2, then it follows that ¢7(P3) < ¢/-(P3). Hence, we have
S4<T) < S4(T/), ie., T <g T
If dr(w) = 2, then we get ¢p(P3) = ¢/(P3). In view of Lemma
1.2(iii), we see that
Se(T") — S6(T) = 6(k — 1)(dr(w1) — 1).

If dr(wy) > 2, then we get S¢(T) < S¢(T"), i.e., T <s T'. This
completes the proof of (i).

If dp(wy) = 1, then we have T' = T’, i.e., T =5 T'. This completes
the proof of (ii). O

2. The last four trees in the S-order among .7,

In this section, we determine the last four trees, in the S-order, among
the set 771 (4 < p < q).
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For convenience, let Bys, Dyt (k, | > 0) be the trees as depicted in
Fig. 3, where the degree of u is no less than that of v. In particular,
RBUO & 00

P9 — p.q-

FIGURE 3. Trees B{,fjé and DI;,’,Z] each of which contains p
white points and ¢ black points.

Theorem 2.1. Let T be in 77, then one has T = Bg;g with equality
if and only if T = ngg.

Proof. Choose a tree T' with a (p, ¢)-bipartition such that it is as large as
possible with respect to the S-order. Let Vi, V5 be the bipartition of the
vertices of T with Vi = {wvg,v1,...,vp—1}, Vo = {uo,u1,...,ug—1}. For
convenience, let vy (respectively, up) be the vertex of maximal degree
among V) (respectively, V2) in T" and let A = Np(vo) N PV (T).

Hence, in order to complete the proof, it suffices to show the following
claims.

n—2r—s

Up—1 Up—1 UQ

Ty oul v

FIGURE 4. Tree T'(n,2r, s) with some labelled vertices.

For convenience, let T'(n,k,a) be an n-vertex tree obtained by at-
taching @ and n — k — a pendant vertices to the two end-vertices of P,
respectively. In particular, Dg;g =T(n,2,p—1).

Claim 1. T = T(n,2r,s) (see Fig. 4) withr > 1 and s > 0.

Proof of Claim 1. Assume otherwise. Then T must contain a pendant
vertex w € Nr(up) U Np(vp). Using Operations I and II, repeatedly, we
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can construct Ty from T such that Ty = T'(n, 2r, s) for some r and s. So
by Lemmas 1.4 and 1.5 T <, Tp, a contradiction to the choice of T'.
This completes the proof of Claim 1. 0

Claim 2. In the tree described as above, ugy is adjacent to vg.

Proof of Claim 2. If not, then d(ug,vg) > 3. Note that vy is the maximal
degree vertex among V7, hence dp(vg) # 1, which implies A # (). Using
Operation I, let

Ty =T—{vz:z€ A} +{vn1z: 2z € A}

then T' <, 17 by Lemma 1.5, which contradicts the choice of T. This
completes the proof of Claim 2. U

By Claims 1 and 2, we get that T = ngg . This completes the proof.
O

Theorem 2.2. For any T € 7\ {BS:S} with 4 < p < ¢, one has
T < ng; with equality if and only if T =2 ng;.

Proof. For any T € Z79\ {Bp2}, from the proof of Theorem 2.1, it is
easy to see that T' can be transformed into Bg;g by carrying the Opera-
tions I and I repeatedly. Let 2 denote the set of all trees in .7,;7*? which
can be transformed into ng(q) by carrying Operation I once, and let %
denote the set of all trees in 77" which can be transformed into ngg
by carrying Operation Il once. It follows from Lemmas 1.4 and 1.5 that
the second last tree, in the S-order, among 7,77 must be in <4 U .

By definitions of .21 and @%, it is routine to check that .« ={B}}, DY}
(in particular, if p = ¢ then ng,} = Dg,’;; hence @4 = {ng;} for p = q),
dy = {Byg -2 <k < [ZAyu{Dyg 2 < k< [%5%]}. Note that
By can be obtained from By by using Operation I (k — 1) times. By
Lemma 1.4, we have B;.fjg ~s Bg;; for 2 <k < {%J Similarly, we have
D <5 Dpg with 2 < k < |51,

Hence, if p = ¢ then ng; is just the second last tree, in the S-order,
among 7,77 for p > 4. So in what follows we consider p < q.

In order to complete the proof, it suffices to compare Bg;; with ng;.
By Lemma 1.1, we have S;(BYa) = Si(Dys) for i = 0,1,2,3. In view
of Lemma 1.2(i), ¢B2:3, (Pg) = ¢D2;,11 (PQ) = n —1 and (ng:é <C4) =
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¢ 0.1 (Cy) = 0. In view of Lemma 1.3, we have
p,q

¢ o1 (P3)=¢po1(P3) = < ; 1>+<g>+1— (g) - (q ; 1) —1=g¢-p>0.

Hence, S1(Byq) — S1(Dpig) = 4(65,(Ps) = dpo1(P3)) > 0, Le., Dplg s
0,1 '

BpalJ‘
This completes the proof. O

FIGURE 5. Trees C;f’q and E;f’q each of which contains p
white points and ¢ black points.

For convenience, let Cp " Ek ¢ (1 <k < g—2) be the trees as depicted

in Fig. 5. It is easy to see that C’I’fq, Ek € TP
Theorem 2.3. Let p and q be positive integers with 4 < p < q.

(i) For any T € ZP"\{Bpy, ng} with p = q, we have T <, B2 with
equality if and only sz B 9

(i) For anyT e FPN{B)Y, qui withp < q, if p > 132, then we have
T <5 Dp’q with equality if and only if T = Dgg; zfp < 2 , then we
have T' < ngg with equality if and only if T = Bf,jg.

Proof. For any T € 7"\ {BYY, Bya}, by a similar discussion as in
the proof of Theorem 2.2, T' can be transformed into ngg (respectively,
Bg;; ) by carrying Operations I and I repeatedly. Let %; denote the
set of all trees in 77" which can be transformed into BS,’; by carrying
Operation I once, and let %5 denote the set of all trees in .7,/ which can
be transformed into ng(} by carrying Operation I once. It follows from
Lemmas 1.4 and 1.5 that, if p < ¢ then the third last tree, in the S-order,
among 7,7 must be in {ng;} U U %1 U By, where a5 is defined in
the proof of Theorem 2.2. Note that if p = ¢, then Bg;; = ng;. Hence,



1035 Li and Zhang

the third last tree, in the S-order, among 7,7’ with p = ¢ must be in
oy U B U Bs.

By the definition of %, and %s, it is routine to check that %, =
{Brd, Bpd, Clg, EL,} and By = {CF 2 <k <q—2}U{EE :2<
k<q—2}U{BFi:2<k< |252|}. We obtain (based on Lemma 1.4)
that

k,1 k—1,1 1,1 ~ 0,2
Bpy =<s Bpg " =s 0 =s Byl = By
We first show the following two facts.

Fact 1. The last tree, in the S-order, among <75 is ngg.
Proof of Fact 1. In graph Bg,’g , we obtain (based on Lemma 1.4) that

25110 |25+ 11,0
(2'1) By ¢* ~s Bp,g’ =s s B;f,’g =s s ng(q) s 3333-
Similarly, we obtain
LEJ,O L471J_170 2
(2.2) Dpg <s Dpg =s s D;;:g =s s Dﬁig s Dp:t(z)'

Note that if p = ¢, it is easy to see that ngg = D,%jg , hence Fact 1
holds immediately. In what follows, we consider p < q.

In view of (2.1) and (2.2), it suffices to compare By with that of
D39, In fact, by Lemma 1.1 one has S;(Bpg) = Si(Dp9) fori = 0,1,2,3.
In view of Lemma 1.2(i), ¢BS:2(P2) = ¢D127:2(P2) =n— 1, ¢BS:2(C4) =
¢D312 (C4) =0 and by Lemma 1.3,

sapaP o = (7, 2)+(4)-(5)- (") ~2ta-n >0

Hence, we have Sy(Bay) — Sy(Dyd) > 0, i.e., Doy <, By,
This completes the proof. ]

Fact 2. The last tree, in the S-order, among %1 U %> is Bf,jg.

Proof of Fact 2. Note that by Lemma 1.6(1) we have C]f’q s C;q for
k > 2. Similarly, E;];,q <s E;’q also holds for k£ > 2. So the last tree, in
the S-order, among %; U %5 must be in %.

Note that C’qu and Ell),q have the same degree sequence, hence by
Lemma 1.3 we have

(2.3) ¢p1 (P3) = ¢c1 (P3).

By Lemma 1.1, SZ-(ngg) = S5i(C},) = Si(E},) holds for i = 0,1,2,3. In
view of Lemma 1.2(i), it is routine to check that ¢c1 (P2) = ¢p1 (P2) =
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¢BO 2(P2) =N — 1 qZSCl ( ) ngl ( ) ¢323§(C4) = 0. By Lemma
1. 3 one has

(24)  doy,(Pr) - dpa(Ps) = <(p;1)+(q;1)+z>
-((27)+ () +2)

= —(¢g-p+1)<0.

In view of (2.4), (bcé,q (P3) — %g;g (P3) < 0. Hence, by Lemma 1.2(i), we
have Sy(Cl,) < 54(3273) and by (2.3) and (2.4), Su(EL,) < Sa(Bpg),
ie., C’1 ~s ng and E, , < Bpz.

On the other hand, Bpjg can be transformed into Bg;g by carrying

Operation I once, and by Lemma 1.4 we have qu < B2 O. That is to
say, B2 ’q is the last tree, in the S-order, among %; U %s. O

If p = q, by Facts 1 and 2, we obtain that Bz’g is just the last tree, in
the S-order, among 7,79\ {Bg Y BYa}. This completes the proof of (i).

Now in what follows we consider p < ¢q. According to Facts 1 and 2,
it suffices to compare Bg;g with ng; in this case.

By Lemma 1.1, S;(Dya) = Si(Ba9) holds for i = 0,1,2,3. In view
of Lemma 1.2(i), it is routine to check that ngg:é(PQ) = ¢B§;2(P2> =
n—1, ¢D2;§(C4> = gng:g (Cy) = 0. Furthermore, by Lemma 1.3, we have

(2.5)  dpoi(Ps) — dp2o(P3) = <<]29) + (q ; 1) - 1>

B

If p > ©=, then in view of (2.5) we have qﬁDo 1(P3) > <Z>Bzo(P3) By

Lemma 1.2( ), Sa(DY4) > Sa(Bpw) holds. So we have Bad <, Dya. So
in this case Dyyg is the third last tree, in the S-order, among ZF*.
If p = M then in View of (2.5) we have ¢D01(P3) = ¢B§’2(P3)'

Hence, 54( ) S4( ) holds by Lemma 1.2(i). In view of Lemma
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L.2(), S5 ( ) S5 ( pq) holds. By direct computing, we have
¢po1(Pa) = dpzo(Pa) =[(p—1) x 1+ (¢ = 2)(p - 1)]
—p=3)g—1)+2x (¢—1)] =0,

) (5)+)

< 0.

The last 1nequahty follows by ¢ > p > 4. In view of Lemma 1.2(iii),
we have Sg(Dya) — S(Brd) = 3[—(¢ — 3)2 4 1] <0, i.e., Dy <5 Bp.
That is to say, Bg;g is the third last tree, in the S- order, among %p 4
for p = M

If p < qJ2r4 then in view of (2.5) we have ¢Do1(P3) < gsz O(Pg)

By Lemma 1.2(i), S4(Djya) < Sa(Bpy) holds. So we have Dy < B20

Hence, Bg;g is the third last tree, in the S-order, among .7,7*? for p < qJ2r4.
This completes the proof of (ii). O

PP adPad Pasy

2”’1 Pq A P'(l Pq

FIGURE 6. Trees Fk L’;,q, Mk and Nk each of which

contains p white points and ¢ black po1nts

For convenience, let ng, L’;/q, Mﬁq and N;f,q (1 <k<p—-21K¢K
k’ < g — 2) be the trees as depicted in Fig. 6, it is easy to see that
K k' : p.q
pq, Ly o My, Npq are in I 4.
Theorem 2.4. Given positive integers p and q with 4 < p < q and
pt+qg=n.
(i) If p > q—54, then for any T € FP9\ {Bpy, Byy, Dy}, we have
T <, B q with equality if and only if T = ’0 01 920
(i) If p = (}%4, then for any T € "7\ {qu, Bqu, Bpq}, we have

T =< Dg:; with equality if and only if T = Dg,é.
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(i) If p < 5%, then for any T € ZP9\ {BYY, BYS, B2, we have

T =< Bg;g with equality if and only if T = ngg.

Proof. For any T € ZP? such that T % BYJ, Boa, Dy, Bry, by a
similar discussion as in the proof of Theorem 2.2, T' can be transformed
into By (respectively, By, Dya, Bp) by carrying Operations I and
I repeatedly. Let %1 (respectively, Z;) denote the set of all trees in
ZP% which can be transformed into DYy, (respectively, Bad) by carrying
Operation I once, and let %, (respectively, %) denote the set of all
trees in Z”% which can be transformed into Dy’ (respectively, Bys) by
carrying Operation I once.

FIGURE 7. Q’;,q which contains p white and ¢ black points.

(i)p> %4. The last tree, in the S-order, among .Z>\{ B9, B):}, DO:}
must be in % U %1 U By U €1 U 6o, where o is defined in the proof
of Theorem 2.2, %, %A are defined in the proof of Theorem 2.3, while

2,0 0,2 ) )
Cgl = {DPJZ? Dp,l]? O;,qa Fg},q}7 (52 = {F;fiq 2 < k < q— 2} U {leiq 2 <

E<p-2}u{Dhl:2<k< Lq;fj}, where QF  is depicted in Fig. 7.

We obtain (based on Lemmas 1.6(i)) that, for k =2,3,...,p — 2,
Qlliq _<s ;7q.
Furthermore, we have
1 2,0
pa =s Dplg-
In fact, by Lemma 1.1, SZ-(Q;,’q) = S;(Dy) holds for i = 0, 1, 2, 3. Note
that ¢g1 (P2) = ¢p20(P2) = n =1, ¢ (C1) = ¢p20(Ca) = 0. By
Lemma 1.3, we have (j)Q})’q(Pg) = ¢D§;2(P3)' Hence, we get S4(Q,,) =
S4(D2Y). In view of Lemma 1.2(iii), we obtain that
S6(Dpg) = S6(@pg) = 6llg—1)(g—2)— (p—2)(p—3)] +6
> 6l(p—1)(p-2)—(p-2)(p—-3)]+6
= 12(p—2)+6>0.



1039 Li and Zhang

Hence, we get Sg( zl),q) < SG(D%S), ie., Q}%q <s Dﬁjg.

In view of the proof of Facts 1 and 2 in the proof of Theorem 2.3, we
know that the last tree, in the S-order, among o% U % U ¢ is szg. In
what follows we show that for any 7" in €1 U %5, we have T' <, ngg.

In fact, by Lemma 1.6(i), we have C}]f’q <s Cp, and Fﬁq <s Fy, for
k > 2. By the proof of Theorem 2.3, we know that Cz%,q ~s ngg and
ngg < Df,jg < ngg. By Lemma 1.1, we have Si(ngg) = Sz'(Fl},q)
for i = 0,1,2,3. In view of Lemma 1.2(i), it is routine to check that
¢p2o(P2) = 65y (P2) =n =1, ¢p20(Cy) = ¢pyp (Ca) = 0. By Lemma

weon - (059+(0+()

G0

Hence, Sy(Byq) — Sa(Fl,) = 4(¢ —p+2) > 0, i.e.,, ! <, Byq. This
completes the proof of (i).

In what follows, we consider p < (14574. By Lemmas 1.4, 1.5 and Theo-
rem 2.3(ii), the last tree, in the S-order, among .77\ {By4, By, Bpy
must be in @ Ut U %) UByU DU D\ {Bypy, Byg}, where o, oty
are defined in the proof of Theorem 2.2, %, %> are defined in the proof
of Theorem 2.3, while 25 = {L’;’q :2<k<qg-2}U {Mﬁq :2< k<
q—2}U{NF 2 <k <p-4}, 21 = {Bpg, Bpg, Lh o, M} }if4<p<7T

30 p2,1 0,2 .
and 21 = {Bypy, Bpg, Bpa, Ly My} ifp>T.

(ii) p= #. In this case, we consider the following two cases accord-
ing to ;.

Case 1. 21 = {Bpy, Bpg, L}, M} with 4 <p < 7.

First we determine the last tree, in the S-order, among 21 U %.

It is easy to see (based on Lemma 1.4), we have By, <s Bpg. Note
k 1 k 1

thlzjt, for k;l} 2, by Lemma 1.6 we have L; , <5 L, ., My, <s M, and
Ny 4 =2s Bplg-

By Lemma 1.1, S;(L} ) = Si(M} ) = S;(Bpg) holds for i =0,1,2,3.
By Lemma 1.2(i), we have ¢L117q(P2) = qﬁM;q(Pg) = ¢go2(P) = n —

) ) p,q

1, ¢11 (Ca) = dapy (Ca) = ¢3253(C4> = 0. Note that L] and M, , have
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the same degree sequence, thus by Lemma 1.3 gbL})q(Pg) = qZ)M;q(Pg).
Hence, ’ 7

Oy, (B3) = dpoa(Ps) = o (P3) = ¢po2(Ps)
(27 (1) o)
(66

= 3—-¢g<0.

The last inequality follows by ¢ > p > 4. By Lemma 1.2(i), we have
Sa(L},) - &(BB?,) Su(M,) — S1(B2) = 4Jary, (Ps) = 6 o2(P3)) <
0, ie., L1 <s B q 2 and M1 ~s Bgﬁ. Hence, ngg is the last tree, in
the S—order among %; U @2

By the proof of Fact 2 in Theorem 2.3, we obtain that ngg is the last
graph, in the S-order, among (%, U %) \ {B,z,g

Note that for p < 7, it is routine to check that (%U%)\{Bg 4, B2y =
(D22, Dy4}. By Lemma 1.4, we have D3f <S Dg q- In order to complete
the proof, it suffices to compare prq with Dqu.

By Lemma 1.1, Si(DSZ;) = Si(B]?jg) holds for 4 = 0,1,2,3. It is
routine to check that %2;; (P2) = ¢B§;§(P2) =n—1 and ¢D2;§ (Cy) =
¢32:§ (Cy4) = 0. By Lemma 1.3,

oot oyt = ((5)+(137) 1) = ((2) < (727) =)

=2p—q—3=1.
In view of Lemma 1.2(i), we have S4(Bpa) < Si(Dyq), i-e.,
(2.6) Byg <s Dy
That is to say, our result holds in this case.

Case 2. 2 = {Byy, By, By, L, M1} with p > 7.

First we determine the last tree, in the S-order, among 2, U %5. In
fact, by a similar discussion as in Case 1 of determining the last graph,
in the S-order, among 27 U %,, we can obtain that in this case, the last
graph, in the S-order, among (21 \ {Bp}) U @y is just Bys. Hence, it

30 . 0,2
suffices to compare Bpy with Bpj.
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In fact, by Lemma 1.1 S;(Bpa) = Si(Bpy) holds for i = 0,1,2,3. Tt
is routine to check that ¢BSZS (Py) = gng:S(Pg) =n—1and ¢B§;2 (Cy) =
¢p02(C4) = 0. By Lemma 1.3 we have

p,q

oo = (7574 (1) +2)
(53 ()+ ()

7 .
If p > 7, by Lemma 1.2(i) Sy(Bpq) > Sa(Bp3), ie., Bpy <« Bya.
If p =7, we have ¢pp02(F3) = ¢pso(F3). By direct computing, we
p,q q
1)

3
P,
have ¢BS:§ (P4) = d)Bﬁ;S (P4> = (p - ) q—

-9 -3
Oz (Kra) = dppo(Krs) = (p 3 > * <g> - (p 3 ) - <g>
1
; .

and

By Lemma 1.2(iii), we have Sg(Bpa) — S(Bad) = 6(p — 3)(p — 4) > 0,
i.e.,

(2.7) B <4 B2
Hence, Bg,’g is the last graph, in the S-order, among Z; U %, in this case.
By the proof of Fact 2 in Theorem 2.3, we obtain that ngg is the last
graph, in the S-order, among (%, U %) \ {B2J}.
Note that if p > 7, it is routine to check that

p—1
(28) (oAU oh) \ (B, By} ={Dyi} v {Bﬁ’g ks L2J }

k0 . qg—1
o2 cre| 5]

By Lemma 1.4, we have Dpy <, Dya. In view of (2.1), (2.2) and (2.8),
it suffices to compare B;’;g with Dg;},.

In view of (2.7), we obtain that Byy <, Bpa. If p > 7, by a similar
discussion as in the proof of (2.6), we can also show that ngg ~s Dg:;.
Hence, Bg;g ~s Dg:;.

Combining with the proof as above, we obtain that ng; is the fourth
last tree, in the S-order, among Z,?. This completes the proof of (ii).
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(iii) Let p < %. We proceed by considering the following two possi-
ble cases with respect to 2.

Case 1. 9 = {Bpy, By, LL . M} Y with4 < p<T.

By a similar discussion as in the proof of Case 1 in (ii), we know that
Bg,’g is the last tree, in the S-order, among (2% U B U B U 21 U Zs) \
{Bp0}. Note that p < 7, it is routine to check that @\ {Bpy} = {Dyg }.
In order to complete the proof, it suffices to compare By with Dyy.

By Lemma 1.1, S;(DYy) = Si(Bpe) holds for i = 0,1,2,3. It is
routine to check that QSD% (Py) = gng:g(Pg) =n—1and QSD% (Cy) =
¢BS;§ (C4) = 0. By Lemma 1.3,

oot oz =((0) + (") 1) = () + (27) )

=2p—q—3.

OI{ p < 0%23, by Lemma 1.2(i), we have Sy(Dpy) < Sui(Bpa), ie.,
Dplq <s Bplg-
Ifp= q;?’, we have S4(ngcll) = S4(B2jg). By Lemma 1.2(ii), S5(ng;) =
85(33,’3). By direct computing, we have ¢ 01 (Ps) = ¢pgo2(Py) = (p —
p,q p,q

1)(¢ — 1) and
P qg—1 p—2 q
()54 -6)
 —(g—2)*+1
4
Hence, by Lemma 1.2(iii), we have Sg(Dbs) — S(BY2) = 3[—(q — 2)? +
1] <0, ie., ng; ~s ngg. So in this case, ngg is the fourth last tree, in

the S-order, among 717,

Case 2. 91 = {Byy, By, By, L 4o ML} with p > 7.

¢por (K1) = dpo2(Ki3)

< 0.

By a similar discussion as in the proof of Case 2 in (ii), we know that
B2 is the last tree, in the S-order, among (@ U %8, U %y U 21 U D) \
{Bpa}. It is routine to check that 4 \ {Bys} = {Dpg}. In order to
complete the proof, it suffices to compare ngg with ng;. By a similar
discussion as in the proof of Case 1 in (iii), we have ngé ~s ngg . Hence,
in this case By is the fourth last tree in the S-order, among 7”9, This
completes the proof of (iii). O
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Theorem 2.5. If4 < p = q, then for any T € P\ {Bpy, Bya, B33},
we have T' < 32;3 with equality if and only if T = ngg.

Proof. Up to isomorphism, for any T € .ZP%\ {Bpa, By, Bov}, by a
similar discussion as above, 1" can be transformed into ngg (respectively,
Bg;;, Bg;g ) by carrying the Operations I and I repeatedly. By Lemmas
1.4 and 1.5, the last tree, in the S-order, among .79\ {Byy, By, Bys
must be in @ U.ah U %1 UBy U DU Do\ {BY4, B2}, where o), o
(respectively, %1, HBy) are defined in the proof of Theorem 2.2 (respec-
tively, Theorem 2.3), and %), %, are defined in the proof of Theorem
2.4. We proceed by considering the following two possible cases.

Case 1. 7, = {Bpy, By, LL . ML} with4 <p<T.

By a similar discussion as the proof of Case 1 in Theorem 2.4(ii), we
obtain that Bg;g is the last tree, in the S-order, among %7 U %5. By the
proof of Fact 2 in Theorem 2.3, we obtain that ngg is the last graph,
in the S-order, among (%) U %) \ {B29}. 1t is routine to check that in
this case () U @) \ {Bpg, Byg} = 0. Hence, Byps is the last tree, in
the S-order, among 77\ {Bpy, By, Bao}.

Case 2. 7 = {Byy, By, By, L}, M1} with p > 7.

By a similar discussion as the proof of Case 2 in Theorem 2.4(ii), we
obtain that ngg is the last tree, in the S-order, among (%, U %, U o4 U
%)\{Bg;;, Bg;g}. By the proof of Fact 2 in Theorem 2.3, we obtain that
ng(z is the last graph, in the S-order, among (%) U %>) \ {Bgig }. I;Ience,
By is the last tree, in the S-order, among Z79\ {BYy, Bya, Boot.

This completes the proof. ]

3. Conclusion and remarks

Summarizing the results in Section 2, we can obtain the last four
graphs in the S-order of the set of n-vertex trees with a (p, ¢)-bipartition.
Combining with Theorems 2.1, 2.2, 2.3(ii) and 2.4, we have

Theorem 3.1. Given positive integers p,q with4 < p < q and p+q = n.
(i) If p > %, the last four trees, in the S-order, among " are as
2,0 10,1 0,1 0,0
B follozﬁs;ﬁBf’q,Dp’q,Bp,q,Bp,q. _ -
(ii) If p = &, the last four trees, in the S-order, among In™" are as
follows: DYy, By, By, Bo-
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(iii) If p < #, the last four trees, in the S-order, among ! are as
follows: Bg:? szg, Bg:;, Bg,’g.
Combining with Theorems 2.1, 2.2, 2.3(i) and 2.5, we have

Theorem 3.2. If 4 < p = q, the last four trees, in the S-order, among
the set T are as follows: ngg, Bf,jg, Bg:;, ngg.

In this paper, we determine the last four graphs, in the S-order, of the
set of n-vertex trees with a (p, ¢)-bipartition. It is natural to consider the
following research problem: How can we determine the first k£ graphs,
in the S-order, of the set of n-vertex trees with a (p, ¢)-bipartition? It
seems difficult but interesting.
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