ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 4, pp. 1027-1045

Title:

Lexicographical ordering by spectral moments of trees with a given bipartition

Author(s):

S. Li and J. Zhang

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 40 (2014), No. 4, pp. 1027–1045 Online ISSN: 1735-8515

LEXICOGRAPHICAL ORDERING BY SPECTRAL MOMENTS OF TREES WITH A GIVEN BIPARTITION

S. LI* AND J. ZHANG

(Communicated by Ebadollah S. Mahmoodian)

ABSTRACT. Lexicographic ordering by spectral moments (S-order) among all trees is discussed in this paper. For two given positive integers p and q with $p \leq q$, we denote $\mathscr{T}_n^{p,q} = \{T : T \text{ is a tree of order } n \text{ with a } (p,q)\text{-bipartition}\}$. Furthermore, the last four trees, in the S-order, among $\mathscr{T}_n^{p,q}$ ($4 \leq p \leq q$) are characterized. **Keywords:** Spectral moment; S-order, tree, bipartition. **MSC(2010):** Primary: 05C50; Secondary: 15A18.

1. Introduction

Up to isomorphism, all graphs considered here are finite, simple and connected. Undefined terminology and notation may be referred to [1]. Let $G = (V_G, E_G)$ be a simple undirected graph with n vertices. By G - v and G - uv we denote the graph obtained from G by deleting vertex $v \in V_G$, or edge $uv \in E_G$, respectively (this notation is naturally extended if more than one vertex or edge is deleted). Similarly, G + uvis obtained from G by adding edge $uv \notin E_G$. For $v \in V_G$, let $N_G(v)$ (or N(v) for short) denote the set of all the adjacent vertices of v in G and $d(v) = |N_G(v)|$. A leaf of G is a vertex of degree one.

Let A(G) be the adjacency matrix of a graph G, and let $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$ be the eigenvalues of G in non-increasing order. The number $\sum_{i=1}^n \lambda_i^k(G)(k=0,1,\ldots,n-1)$ is called the *k*th spectral moment of G, denoted by $S_k(G)$. We know from [2] that $S_0 = n, S_1 = l, S_2 = l$

O2014 Iranian Mathematical Society

Article electronically published on August 23, 2014.

Received: 1 January 2013, Accepted: 21 July 2013.

^{*}Corresponding author.

 $2m, S_3 = 6t$, where n, l, m, t denote the number of vertices, the number of loops, the number of edges and the number of triangles, respectively. Let $S(G) = (S_0(G), S_1(G), \ldots, S_{n-1}(G))$ be the sequence of spectral moments of G. For two graphs G_1 and G_2 , we shall write $G_1 =_s G_2$ if $S_i(G_1) = S_i(G_2)$ for $i = 0, 1, \ldots, n-1$. Similarly, we have $G_1 \prec_s G_2$ $(G_1 \text{ comes before } G_2 \text{ in the } S \text{-order})$ if for some $k (1 \leq k \leq n-1)$, we have $S_i(G_1) = S_i(G_2) (i = 0, 1, \ldots, k-1)$ and $S_k(G_1) < S_k(G_2)$. We shall also write $G_1 \preceq_s G_2$ if $G_1 \prec_s G_2$ or $G_1 =_s G_2$. S-order was used in producing graph catalogs (see [6]). For a more general setting of spectral moments one may be referred to [5].

Investigation on S-order of graphs attracts more and more researchers' attention. Cvetković and Rowlinson [7] studied the S-order of trees and unicyclic graphs and characterized the first and the last graphs, in the S-order, of all trees and all unicyclic graphs with given girth, respectively. Wu and Liu [14, 16] determined the last $\lfloor \frac{d}{2} + 1 \rfloor$ and the last $\lfloor \frac{g}{2} + 2 \rfloor$ graphs, in the S-order, of all n-vertex trees with diameter $d \ (4 \leq d \leq n-3)$ and all n-vertex unicyclic graphs of girth $g \ (3 \leq g \leq n-3)$, respectively. Wu and Fan [15] determined the first and the last graphs in the S-order, of all unicyclic graphs and bicyclic graphs, respectively. Pan et al. [12] gave the first $\sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} - k + 1$ graphs apart from a path, in the S-order, of all trees on n vertices, whereas Pan et al. [13] determined the last and the second last quasi-tree, in the S-order, among the set $\mathscr{L}(n, d_0) = \{G : G \text{ is a quasi-tree of order n with } G - u_0 \text{ being a tree and } d_G(u_0) = d_0\}$, respectively.

Given a connected bipartite graph G with n vertices, its vertex set can be partitioned into two subsets V_1 and V_2 , such that each edge joins a vertex in V_1 with a vertex in V_2 . Suppose that V_1 has p vertices and V_2 has q vertices, where p + q = n with $p \leq q$. Then we say that G has a (p,q)-bipartition. For convenience, let $\mathscr{T}_n^{p,q}$ be the set of all n-vertex trees, each of which has a (p,q)-bipartition.

In light of the information available on the spectral moments of graphs, it is natural to consider some other class of graphs. Trees with a (p,q)bipartition are a reasonable starting point for such an investigation. The *n*-vertex trees with a (p,q)-bipartition have been considered in [8, 9, 10, 11, 16], whereas to the best of our knowledge, the spectral moments of trees in $\mathcal{T}_n^{p,q}$ ($4 \leq p \leq q$) were, so far, not considered. In this paper we characterize the last four trees, in the *S*-order, among $\mathcal{T}_n^{p,q}$ ($4 \leq p \leq q$). For more recent results on the spectral moments of graphs, one may be referred to [3, 4].

Throughout the text we denote by P_n , $K_{1,n-1}$ and C_n the path, star and cycle on n vertices, respectively. Let U_n be a graph obtained from C_{n-1} by attaching a leaf to one vertex of C_{n-1} , and let E_4 be a graph obtained by deleting an edge from a complete graph K_4 . Also let E_5 be a graph obtained from two cycles C_3 and C'_3 of length 3 by identifying one vertex of C_3 with one vertex of C'_3 . The graphs U_4, U_5, E_4 and E_5 are depicted in Fig. 1. Let F be a graph. An F-subgraph of G is a subgraph

FIGURE 1. Four graphs U_4, U_5, E_4 and E_5 .

of G which is isomorphic to the graph F. Let $\phi_G(F)$ (or $\phi(F)$) be the number of all F-subgraphs of G. For a tree T and two vertices v, u of T, the distance $\operatorname{dist}_T(u, v)$ between u and v is the number of edges on the unique path connecting them. Denote by PV(T) the set of all pendant vertices of T.

Further on we need the following lemmas.

Lemma 1.1 ([7]). The kth spectral moment of G is equal to the number of closed walks of length k.

Lemma 1.2. For every graph G, we have

- $\begin{array}{ll} ({\rm i}) & S_4(G) = 2\phi(P_2) + 4\phi(P_3) + 8\phi(C_4) \ ({\rm see}\ [7]). \\ ({\rm ii}) & S_5(G) = 30\phi(C_3) + 10\phi(U_4) + 10\phi(C_5) \ ({\rm see}\ [14]). \\ ({\rm iii}) & S_6(G) = 2\phi(P_2) + 12\phi(P_3) + 6\phi(P_4) + 12\phi(K_{1,3}) + 12\phi(U_5) + 36\phi(E_4) + 12\phi(E_4) + 12\phi(E_$ $24\phi(E_5) + 24\phi(C_3) + 48\phi(C_4) + 12\phi(C_6)$ (see [14]).

Given a connected graph G, its line graph is denoted by L(G). It is easy to see that the size of L(G) is equal to the number of P_3 of G. By [Exercise 1.5.10(a), 1], we have

Lemma 1.3. If G is a simple connected graph, then $\phi_G(P_3) = \sum_{v \in V_T} {d(v) \choose 2}$.

Definition 1. Assume that u, v, w are three distinct vertices of a tree T satisfying $uv \in E_T$, d(u) = 1, $d(w) \ge d(v)$ and $\operatorname{dist}_T(v, w) = 2$. Let $T[v \rightarrow w; 1]$ be the graph obtained from T by deleting the edge uv and adding the edge uw. In notation,

$$T[v \to w; 1] = T - uv + uw,$$

and we say $T[v \rightarrow w; 1]$ is obtained from T by Operation I.

Remark 1. If T is in $\mathscr{T}_n^{p,q}$, by Definition 1, it is easy to see that $T[v \to w; 1]$ is also in $\mathscr{T}_n^{p,q}$.

Lemma 1.4. Let T and $T[v \to w; 1]$ be the trees defined as above. Then $T \prec_s T[v \to w; 1].$

Proof. By Lemma 1.1, $S_i(T) = S_i(T[v \to w; 1])$ holds for i = 0, 1, 2, 3. In view of Lemma 1.2(i), $\phi_T(P_2) = \phi_{T[v \to w; 1]}(P_2) = n - 1$, $\phi_T(C_4) = \phi_{T[v \to w; 1]}(C_4) = 0$. By Lemma 1.3, we have

$$\phi_{T[v \to w;1]}(P_3) - \phi_T(P_3) = \binom{d(w)+1}{2} + \binom{d(v)-1}{2} - \binom{d(w)}{2} - \binom{d(v)}{2}$$
$$= d(w) - d(v) + 1 > 0.$$

Hence, $S_4(T[v \to w; 1]) - S_4(T) = 4(\phi_{T[v \to w; 1]}(P_3) - \phi_T(P_3)) > 0$, i.e., $T \prec_s T[v \to w; 1].$

Definition 2. Let uw be an edge of a tree U with $d(w) \ge 2$. Let T be obtained from U and the star $K_{1,k+1}$ ($k \ge 2$) by identifying u with a pendant vertex of $K_{1,k+1}$ whose center is v. Let $T[v \to w; 2]$ be the graph obtained from T by deleting all edges vz and adding all edges wz, where $z \in W = N_T(v) \setminus \{u\}$. In notation,

$$T[v \to w; 2] = T - \{vz : z \in W\} + \{wz : z \in W\}$$

and we say $T[v \to w; 2]$ is obtained from T by Operation II. Trees T and $T[v \to w; 2]$ are depicted in Fig. 2.

Remark 2. If T is in $\mathscr{T}_n^{p,q}$, by Definition 2, it is easy to see that $T[v \to w; 2]$ is also in $\mathscr{T}_n^{p,q}$.

FIGURE 2. $T \Rightarrow T[v \to w; 2]$ by Operation II.

Lemma 1.5. Let T and $T[v \to w; 2]$ be the trees described as above, then one has $T \prec_s T[v \to w; 2]$.

Proof. By Lemma 1.1, $S_i(T) = S_i(T[v \to w; 2])$ holds for i = 0, 1, 2, 3. In view of Lemma 1.2(i), $\phi_T(P_2) = \phi_{T[v \to w; 2]}(P_2) = n - 1$ and $\phi_T(C_4) = \phi_{T[v \to w; 2]}(C_4) = 0$. By Lemma 1.3,

$$\phi_{T[v \to w; 2]}(P_3) - \phi_T(P_3) = \binom{d(w) + k}{2} - \binom{d(w)}{2} - \binom{k+1}{2} = k(d(w) - 1) > 0.$$

Hence, we have $S_4(T[v \to w; 2]) - S_4(T) = 4(\phi_{T[v \to w; 2]}(P_3) - \phi_T(P_3)) > 0$, i.e., $T \prec_s T[v \to w; 2]$.

Lemma 1.6. Let T be the tree as depicted in Fig. 2, and let T' be the tree obtained from T by deleting all edges vv_i (i = 1, 2, ..., k - 1) and adding all edges wv_i (i = 1, 2, ..., k - 1). Assume that w_1 is in $N_T(w) \setminus \{u\}$.

- (i) If $d_T(w) \ge 2$ and $d_T(w_1) \ge 2$, one has $T \prec_s T'$.
- (ii) If $d_T(w) = 2$ and $d_T(w_1) = 1$, one has $T =_s T'$.

Proof. By Lemma 1.1, $S_i(T) = S_i(T')$ holds for i = 0, 1, 2, 3. In view of Lemma 1.2(i), $\phi_T(P_2) = \phi'_T(P_2) = n - 1$ and $\phi_T(C_4) = \phi'_T(C_4) = 0$. By Lemma 1.3, we obtain that

$$\phi_T(P_3) = \phi'_T(P_3) = (k-1)(d_T(w) - 2).$$

If $d_T(w) > 2$, then it follows that $\phi_T(P_3) < \phi'_T(P_3)$. Hence, we have $S_4(T) < S_4(T')$, i.e., $T \prec_s T'$.

If $d_T(w) = 2$, then we get $\phi_T(P_3) = \phi'_T(P_3)$. In view of Lemma 1.2(iii), we see that

$$S_6(T') - S_6(T) = 6(k-1)(d_T(w_1) - 1).$$

If $d_T(w_1) \geq 2$, then we get $S_6(T) < S_6(T')$, i.e., $T \prec_s T'$. This completes the proof of (i).

If $d_T(w_1) = 1$, then we have $T \cong T'$, i.e., $T =_s T'$. This completes the proof of (ii).

2. The last four trees in the S-order among $\mathcal{T}_n^{p,q}$

In this section, we determine the last four trees, in the S-order, among the set $\mathscr{T}_n^{p,q}$ $(4 \leq p \leq q)$.

For convenience, let $B_{p,q}^{k,l}$, $D_{p,q}^{k,l}$ $(k, l \ge 0)$ be the trees as depicted in Fig. 3, where the degree of u is no less than that of v. In particular, $B_{p,q}^{0,0} \cong D_{p,q}^{0,0}$.

FIGURE 3. Trees $B_{p,q}^{k,l}$ and $D_{p,q}^{k,l}$ each of which contains p white points and q black points.

Theorem 2.1. Let T be in $\mathscr{T}_n^{p,q}$, then one has $T \leq_s B_{p,q}^{0,0}$ with equality if and only if $T \cong B_{p,q}^{0,0}$.

Proof. Choose a tree T with a (p, q)-bipartition such that it is as large as possible with respect to the S-order. Let V_1, V_2 be the bipartition of the vertices of T with $V_1 = \{v_0, v_1, \ldots, v_{p-1}\}, V_2 = \{u_0, u_1, \ldots, u_{q-1}\}$. For convenience, let v_0 (respectively, u_0) be the vertex of maximal degree among V_1 (respectively, V_2) in T and let $A = N_T(v_0) \cap PV(T)$.

Hence, in order to complete the proof, it suffices to show the following claims.

FIGURE 4. Tree T(n, 2r, s) with some labelled vertices.

For convenience, let T(n, k, a) be an *n*-vertex tree obtained by attaching *a* and n - k - a pendant vertices to the two end-vertices of P_k , respectively. In particular, $D_{p,q}^{0,0} = T(n, 2, p-1)$.

Claim 1. $T \cong T(n, 2r, s)$ (see Fig. 4) with $r \ge 1$ and $s \ge 0$.

Proof of Claim 1. Assume otherwise. Then T must contain a pendant vertex $w \notin N_T(u_0) \cup N_T(v_0)$. Using Operations I and II, repeatedly, we

can construct T_0 from T such that $T_0 \cong T(n, 2r, s)$ for some r and s. So by Lemmas 1.4 and 1.5 $T \prec_s T_0$, a contradiction to the choice of T.

This completes the proof of Claim 1.

Claim 2. In the tree described as above, u_0 is adjacent to v_0 .

Proof of Claim 2. If not, then $d(u_0, v_0) \ge 3$. Note that v_0 is the maximal degree vertex among V_1 , hence $d_T(v_0) \ne 1$, which implies $A \ne \emptyset$. Using Operation II, let

$$T_1 = T - \{v_0 z : z \in A\} + \{v_1 z : z \in A\}$$

then $T \prec_s T_1$ by Lemma 1.5, which contradicts the choice of T. This completes the proof of Claim 2.

By Claims 1 and 2, we get that $T \cong B_{p,q}^{0,0}$. This completes the proof.

Theorem 2.2. For any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}\}$ with $4 \leq p \leq q$, one has $T \leq_s B_{p,q}^{0,1}$ with equality if and only if $T \cong B_{p,q}^{0,1}$.

Proof. For any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}\}$, from the proof of Theorem 2.1, it is easy to see that T can be transformed into $B_{p,q}^{0,0}$ by carrying the Operations I and II repeatedly. Let \mathscr{A}_1 denote the set of all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $B_{p,q}^{0,0}$ by carrying Operation I once, and let \mathscr{A}_2 denote the set of all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $B_{p,q}^{0,0}$ by carrying Operation II once. It follows from Lemmas 1.4 and 1.5 that the second last tree, in the S-order, among $\mathscr{T}_n^{p,q}$ must be in $\mathscr{A}_1 \cup \mathscr{A}_2$.

By definitions of \mathscr{A}_1 and \mathscr{A}_2 , it is routine to check that $\mathscr{A}_1 = \{B_{p,q}^{0,1}, D_{p,q}^{0,1}\}$ (in particular, if p = q then $B_{p,q}^{0,1} \cong D_{p,q}^{0,1}$; hence $\mathscr{A}_1 = \{B_{p,q}^{0,1}\}$ for p = q), $\mathscr{A}_2 = \{B_{p,q}^{k,0} : 2 \leq k \leq \lfloor \frac{p-1}{2} \rfloor\} \cup \{D_{p,q}^{k,0} : 2 \leq k \leq \lfloor \frac{q-1}{2} \rfloor\}$. Note that $B_{p,q}^{0,1}$ can be obtained from $B_{p,q}^{k,0}$ by using Operation I (k-1) times. By Lemma 1.4, we have $B_{p,q}^{k,0} \prec_s B_{p,q}^{0,1}$ for $2 \leq k \leq \lfloor \frac{p-1}{2} \rfloor$. Similarly, we have $D_{p,q}^{k,0} \prec_s D_{p,q}^{0,1}$ with $2 \leq k \leq \lfloor \frac{q-1}{2} \rfloor$.

Hence, if p = q then $B_{p,q}^{0,1}$ is just the second last tree, in the *S*-order, among $\mathcal{T}_n^{p,q}$ for $p \ge 4$. So in what follows we consider p < q.

In order to complete the proof, it suffices to compare $B_{p,q}^{0,1}$ with $D_{p,q}^{0,1}$. By Lemma 1.1, we have $S_i(B_{p,q}^{0,1}) = S_i(D_{p,q}^{0,1})$ for i = 0, 1, 2, 3. In view of Lemma 1.2(i), $\phi_{B_{p,q}^{0,1}}(P_2) = \phi_{D_{p,q}^{0,1}}(P_2) = n - 1$ and $\phi_{B_{p,q}^{0,1}}(C_4) =$

 $\phi_{D_{n,a}^{0,1}}(C_4) = 0$. In view of Lemma 1.3, we have $\phi_{B^{0,1}_{p,q}}(P_3) - \phi_{D^{0,1}_{p,q}}(P_3) = \binom{p-1}{2} + \binom{q}{2} + 1 - \binom{p}{2} - \binom{q-1}{2} - 1 = q - p > 0.$ Hence, $S_4(B_{p,q}^{0,1}) - S_4(D_{p,q}^{0,1}) = 4(\phi_{B_1}(P_3) - \phi_{D_{p,q}^{0,1}}(P_3)) > 0$, i.e., $D_{p,q}^{0,1} \prec_s$ $B_{p,q}^{0,1}$.

This completes the proof.

FIGURE 5. Trees $C_{p,q}^k$ and $E_{p,q}^k$ each of which contains pwhite points and q black points.

For convenience, let $C_{p,q}^k$, $E_{p,q}^k$ $(1 \le k \le q-2)$ be the trees as depicted in Fig. 5. It is easy to see that $C_{p,q}^k$, $E_{p,q}^k \in \mathscr{T}_n^{p,q}$.

Theorem 2.3. Let p and q be positive integers with $4 \leq p \leq q$.

- (i) For any T ∈ 𝔅^{p,q} \ {B^{0,0}_{p,q}, B^{0,1}_{p,q}} with p = q, we have T ≤_s B^{2,0}_{p,q} with equality if and only if T ≅ B^{2,0}_{p,q}.
 (ii) For any T ∈ 𝔅^{p,q} \ {B^{0,0}_{p,q}, B^{0,1}_{p,q}} with p < q, if p > ^{q+4}/₂, then we have T ≤_s D^{0,1}_{p,q} with equality if and only if T ≅ D^{0,1}_{p,q}; if p ≤ ^{q+4}/₂, then we have T ≤_s B^{0,1}_{p,q} with equality if and only if T ≅ D^{0,1}_{p,q}; if p ≤ ^{q+4}/₂, then we have T ≤_s B^{2,0}_{p,q} with equality if and only if T ≅ B^{2,0}_{p,q}.

Proof. For any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}\}$, by a similar discussion as in the proof of Theorem 2.2, T can be transformed into $B_{p,q}^{0,0}$ (respectively, $B_{p,q}^{0,1}$) by carrying Operations I and II repeatedly. Let \mathscr{B}_1 denote the set of all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $B_{p,q}^{0,1}$ by carrying Operation I once, and let \mathscr{B}_2 denote the set of all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $B_{p,q}^{0,1}$ by carrying Operation II once. It follows from Lemmas 1.4 and 1.5 that, if p < q then the third last tree, in the *S*-order, among $\mathscr{T}_n^{p,q}$ must be in $\{D_{p,q}^{0,1}\} \cup \mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2$, where \mathscr{A}_2 is defined in the proof of Theorem 2.2. Note that if p = q, then $B_{p,q}^{0,1} \cong D_{p,q}^{0,1}$. Hence,

the third last tree, in the S-order, among $\mathscr{T}_n^{p,q}$ with p = q must be in $\mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2$.

By the definition of \mathscr{B}_1 and \mathscr{B}_2 , it is routine to check that $\mathscr{B}_1 = \{B_{p,q}^{2,0}, B_{p,q}^{0,2}, C_{p,q}^1, E_{p,q}^1\}$ and $\mathscr{B}_2 = \{C_{p,q}^k : 2 \leq k \leq q-2\} \cup \{E_{p,q}^k : 2 \leq k \leq q-2\} \cup \{B_{p,q}^{k,1} : 2 \leq k \leq \lfloor \frac{p-2}{2} \rfloor\}$. We obtain (based on Lemma 1.4) that

$$B_{p,q}^{k,1} \prec_s B_{p,q}^{k-1,1} \prec_s \dots \prec_s B_{p,q}^{1,1} \cong B_{p,q}^{0,2}$$

We first show the following two facts.

Fact 1. The last tree, in the S-order, among \mathscr{A}_2 is $B_{p,q}^{2,0}$

Proof of Fact 1. In graph $B_{p,q}^{k,0}$, we obtain (based on Lemma 1.4) that

$$(2.1) \quad B_{p,q}^{\lfloor \frac{\prime}{2} \rfloor,0} \prec_s B_{p,q}^{\lfloor \frac{\prime}{2} \rfloor-1,0} \prec_s \cdots \prec_s B_{p,q}^{k,0} \prec_s \cdots \prec_s B_{p,q}^{3,0} \prec_s B_{p,q}^{2,0}.$$

Similarly, we obtain

Similarly, we obtain

$$(2.2) \quad D_{p,q}^{\lfloor \frac{q-1}{2} \rfloor,0} \prec_s D_{p,q}^{\lfloor \frac{q-1}{2} \rfloor-1,0} \prec_s \cdots \prec_s D_{p,q}^{k,0} \prec_s \cdots \prec_s D_{p,q}^{3,0} \prec_s D_{p,q}^{2,0}$$

Note that if p = q, it is easy to see that $B_{p,q}^{2,0} \cong D_{p,q}^{2,0}$, hence Fact 1 holds immediately. In what follows, we consider p < q.

In view of (2.1) and (2.2), it suffices to compare $B_{p,q}^{2,0}$ with that of $D_{p,q}^{2,0}$. In fact, by Lemma 1.1 one has $S_i(B_{p,q}^{2,0}) = S_i(D_{p,q}^{2,0})$ for i = 0, 1, 2, 3. In view of Lemma 1.2(i), $\phi_{B_{p,q}^{2,0}}(P_2) = \phi_{D_{p,q}^{2,0}}(P_2) = n - 1$, $\phi_{B_{p,q}^{2,0}}(C_4) = \phi_{D_{p,q}^{2,0}}(C_4) = 0$ and by Lemma 1.3,

$$\phi_{B^{2,0}_{p,q}}(P_3) - \phi_{D^{2,0}_{p,q}}(P_3) = \binom{p-2}{2} + \binom{q}{2} - \binom{p}{2} - \binom{q-2}{2} = 2(q-p) > 0.$$

Hence, we have $S_4(B_{p,q}^{2,0}) - S_4(D_{p,q}^{2,0}) > 0$, i.e., $D_{p,q}^{2,0} \prec_s B_{p,q}^{2,0}$. This completes the proof.

Fact 2. The last tree, in the S-order, among $\mathscr{B}_1 \cup \mathscr{B}_2$ is $B_{p,q}^{2,0}$

Proof of Fact 2. Note that by Lemma 1.6(i) we have $C_{p,q}^k \prec_s C_{p,q}^1$ for $k \ge 2$. Similarly, $E_{p,q}^k \prec_s E_{p,q}^1$ also holds for $k \ge 2$. So the last tree, in the S-order, among $\mathscr{B}_1 \cup \mathscr{B}_2$ must be in \mathscr{B}_1 .

Note that $C_{p,q}^1$ and $E_{p,q}^1$ have the same degree sequence, hence by Lemma 1.3 we have

(2.3)
$$\phi_{E_{p,q}^1}(P_3) = \phi_{C_{p,q}^1}(P_3).$$

By Lemma 1.1, $S_i(B_{p,q}^{0,2}) = S_i(C_{p,q}^1) = S_i(E_{p,q}^1)$ holds for i = 0, 1, 2, 3. In view of Lemma 1.2(i), it is routine to check that $\phi_{C_{p,q}^1}(P_2) = \phi_{E_{p,q}^1}(P_2) = \phi_{E_{p,q}^1}(P_2)$

 $\phi_{B_{p,q}^{0,2}}(P_2) = n - 1, \ \phi_{C_{p,q}^1}(C_4) = \phi_{E_{p,q}^1}(C_4) = \phi_{B_{p,q}^{0,2}}(C_4) = 0.$ By Lemma 1.3, one has

$$(2.4) \quad \phi_{C_{p,q}^{1}}(P_{3}) - \phi_{B_{p,q}^{0,2}}(P_{3}) = \left(\binom{p-1}{2} + \binom{q-1}{2} + 2\right) \\ - \left(\binom{p-2}{2} + \binom{q}{2} + 2\right) \\ = -(q-p+1) < 0.$$

In view of (2.4), $\phi_{C_{p,q}^1}(P_3) - \phi_{B_{p,q}^{0,2}}(P_3) < 0$. Hence, by Lemma 1.2(i), we have $S_4(C_{p,q}^1) < S_4(B_{p,q}^{0,2})$ and by (2.3) and (2.4), $S_4(E_{p,q}^1) < S_4(B_{p,q}^{0,2})$,

i.e., $C_{p,q}^1 \prec_s B_{p,q}^{0,2}$ and $E_{p,q}^1 \prec_s B_{p,q}^{0,2}$. On the other hand, $B_{p,q}^{0,2}$ can be transformed into $B_{p,q}^{2,0}$ by carrying Operation I once, and by Lemma 1.4 we have $B_{p,q}^{0,2} \prec_s B_{p,q}^{2,0}$. That is to say, $B_{p,q}^{2,0}$ is the last tree, in the S-order, among $\mathscr{B}_1 \cup \mathscr{B}_2$.

If p = q, by Facts 1 and 2, we obtain that $B_{p,q}^{2,0}$ is just the last tree, in the S-order, among $\mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}\}$. This completes the proof of (i).

Now in what follows we consider p < q. According to Facts 1 and 2, it suffices to compare $B_{p,q}^{2,0}$ with $D_{p,q}^{0,1}$ in this case. By Lemma 1.1, $S_i(D_{p,q}^{0,1}) = S_i(B_{p,q}^{2,0})$ holds for i = 0, 1, 2, 3. In view of Lemma 1.2(i), it is routine to check that $\phi_{D_{p,q}^{0,1}}(P_2) = \phi_{B_{p,q}^{2,0}}(P_2) =$ $n-1, \phi_{D_{p,q}^{0,1}}(C_4) = \phi_{B_{p,q}^{2,0}}(C_4) = 0.$ Furthermore, by Lemma 1.3, we have

(2.5)
$$\phi_{D_{p,q}^{0,1}}(P_3) - \phi_{B_{p,q}^{2,0}}(P_3) = \left(\binom{p}{2} + \binom{q-1}{2} + 1\right) - \left(\binom{p-2}{2} + \binom{q}{2} + 3\right) = 2p - 4 - q.$$

If $p > \frac{q+4}{2}$, then in view of (2.5) we have $\phi_{D_{p,q}^{0,1}}(P_3) > \phi_{B_{p,q}^{2,0}}(P_3)$. By Lemma 1.2(i), $S_4(D_{p,q}^{0,1}) > S_4(B_{p,q}^{2,0})$ holds. So we have $B_{p,q}^{2,0} \prec_s D_{p,q}^{0,1}$. So in this case $D_{p,q}^{0,1}$ is the third last tree, in the *S*-order, among $\mathscr{T}_n^{p,q}$. If $p = \frac{q+4}{2}$, then in view of (2.5) we have $\phi_{D_{p,q}^{0,1}}(P_3) = \phi_{B_{p,q}^{2,0}}(P_3)$.

Hence, $S_4(D_{p,q}^{0,1}) = S_4(B_{p,q}^{2,0})$ holds by Lemma 1.2(i). In view of Lemma

1.2(ii),
$$S_5(D_{p,q}^{0,1}) = S_5(B_{p,q}^{2,0})$$
 holds. By direct computing, we have
 $\phi_{D_{p,q}^{0,1}}(P_4) - \phi_{B_{p,q}^{2,0}}(P_4) = [(p-1) \times 1 + (q-2)(p-1)]$
 $- [(p-3)(q-1) + 2 \times (q-1)] = 0,$
 $\phi_{D_{p,q}^{0,1}}(K_{1,3}) - \phi_{B_{p,q}^{2,0}}(K_{1,3}) = \left(\binom{p}{3} + \binom{q-1}{3}\right)$
 $- \left(\binom{p-2}{3} + \binom{q}{3} + 1\right)$
 $= \frac{-(q-3)^2 + 1}{4} < 0.$

The last inequality follows by $q > p \ge 4$. In view of Lemma 1.2(iii), we have $S_6(D_{p,q}^{0,1}) - S_6(B_{p,q}^{2,0}) = 3[-(q-3)^2 + 1] < 0$, i.e., $D_{p,q}^{0,1} \prec_s B_{p,q}^{2,0}$. That is to say, $B_{p,q}^{2,0}$ is the third last tree, in the S-order, among $\mathscr{T}_n^{p,q}$.

for $p = \frac{q+4}{2}$. If $p < \frac{q+4}{2}$, then in view of (2.5) we have $\phi_{D_{p,q}^{0,1}}(P_3) < \phi_{B_{p,q}^{2,0}}(P_3)$. By Lemma 1.2(i), $S_4(D_{p,q}^{0,1}) < S_4(B_{p,q}^{2,0})$ holds. So we have $D_{p,q}^{0,1} \prec_s B_{p,q}^{2,0}$. Hence, $B_{p,q}^{2,0}$ is the third last tree, in the *S*-order, among $\mathscr{T}_n^{p,q}$ for $p < \frac{q+4}{2}$. This completes the proof of (ii).

FIGURE 6. Trees $F_{p,q}^k, L_{p,q}^{k'}, M_{p,q}^{k'}$ and $N_{p,q}^k$ each of which contains p white points and q black points.

For convenience, let $F_{p,q}^k$, $L_{p,q}^{k'}$, $M_{p,q}^{k'}$ and $N_{p,q}^k$ $(1 \le k \le p-2, 1 \le k' \le q-2)$ be the trees as depicted in Fig. 6, it is easy to see that $F_{p,q}^k$, $L_{p,q}^{k'}$, $M_{p,q}^{k'}$, $N_{p,q}^k$ are in $\mathcal{T}_n^{p,q}$.

Theorem 2.4. Given positive integers p and q with $4 \leq p < q$ and p+q=n.

- (i) If $p > \frac{q+4}{2}$, then for any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, D_{p,q}^{0,1}\}$, we have $T \preceq_s B_{p,q}^{2,0}$ with equality if and only if $T \cong B_{2,q}^{2,0}$. (ii) If $p = \frac{q+4}{2}$, then for any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}, B_{p,q}^{2,0}\}$, we have $T \preceq_s D_{p,q}^{0,1}$ with equality if and only if $T \cong D_{p,q}^{0,1}$.

(iii) If
$$p < \frac{q+4}{2}$$
, then for any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$, we have $T \preceq_s B_{p,q}^{0,2}$ with equality if and only if $T \cong B_{p,q}^{0,2}$.

Proof. For any $T \in \mathscr{T}_n^{p,q}$ such that $T \not\cong B_{p,q}^{0,0}, B_{p,q}^{0,1}, D_{p,q}^{0,1}, B_{p,q}^{2,0}$, by a similar discussion as in the proof of Theorem 2.2, T can be transformed into $B_{p,q}^{0,0}$ (respectively, $B_{p,q}^{0,1}, D_{p,q}^{0,1}, B_{p,q}^{2,0}$) by carrying Operations I and II repeatedly. Let \mathscr{C}_1 (respectively, \mathscr{D}_1) denote the set of all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $D_{p,q}^{0,1}$ (respectively, \mathscr{D}_2) denote the set of all trees of all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $D_{p,q}^{0,1}$ (respectively, \mathscr{D}_2) denote the set of all trees in all trees in $\mathscr{T}_n^{p,q}$ which can be transformed into $D_{p,q}^{0,1}$ (respectively, $B_{p,q}^{2,0}$) by carrying Operation I once.

FIGURE 7. $Q_{p,q}^k$ which contains p white and q black points.

(i) $p > \frac{q+4}{2}$. The last tree, in the *S*-order, among $\mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, D_{p,q}^{0,1}\}$ must be in $\mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2 \cup \mathscr{C}_1 \cup \mathscr{C}_2$, where \mathscr{A}_2 is defined in the proof of Theorem 2.2, $\mathscr{B}_1, \mathscr{B}_2$ are defined in the proof of Theorem 2.3, while $\mathscr{C}_1 = \{D_{p,q}^{2,0}, D_{p,q}^{0,2}, C_{p,q}^1, F_{p,q}^1\}, \mathscr{C}_2 = \{F_{p,q}^k : 2 \leq k \leq q-2\} \cup \{Q_{p,q}^k : 2 \leq k \leq p-2\} \cup \{D_{p,q}^{k,1} : 2 \leq k \leq \lfloor \frac{q-2}{2} \rfloor\}$, where $Q_{p,q}^k$ is depicted in Fig. 7. We obtain (based on Lemmas 1.6(i)) that, for $k = 2, 3, \ldots, p-2$,

$$Q_{p,q}^k \prec_s Q_{p,q}^1.$$

Furthermore, we have

$$Q_{p,q}^1 \prec_s D_{p,q}^{2,0}.$$

In fact, by Lemma 1.1, $S_i(Q_{p,q}^1) = S_i(D_{p,q}^{2,0})$ holds for i = 0, 1, 2, 3. Note that $\phi_{Q_{p,q}^1}(P_2) = \phi_{D_{p,q}^{2,0}}(P_2) = n - 1$, $\phi_{Q_{p,q}^1}(C_4) = \phi_{D_{p,q}^{2,0}}(C_4) = 0$. By Lemma 1.3, we have $\phi_{Q_{p,q}^1}(P_3) = \phi_{D_{p,q}^{2,0}}(P_3)$. Hence, we get $S_4(Q_{p,q}^1) = S_4(D_{p,q}^{2,0})$. In view of Lemma 1.2(iii), we obtain that

$$S_{6}(D_{p,q}^{2,0}) - S_{6}(Q_{p,q}^{1}) = 6[(q-1)(q-2) - (p-2)(p-3)] + 6$$

> 6[(p-1)(p-2) - (p-2)(p-3)] + 6
= 12(p-2) + 6 > 0.

Hence, we get $S_6(Q_{p,q}^1) < S_6(D_{p,q}^{2,0})$, i.e., $Q_{p,q}^1 \prec_s D_{p,q}^{2,0}$. In view of the proof of Facts 1 and 2 in the proof of Theorem 2.3, we

know that the last tree, in the S-order, among $\mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{C}_1$ is $B_{p,q}^{2,0}$. In

what follows we show that for any T in $\mathscr{C}_1 \cup \mathscr{B}_2$, we have $T \prec_s B_{p,q}^{2,0}$. In fact, by Lemma 1.6(i), we have $C_{p,q}^k \prec_s C_{p,q}^1$ and $F_{p,q}^k \prec_s F_{p,q}^1$ for $k \ge 2$. By the proof of Theorem 2.3, we know that $C_{p,q}^1 \prec_s B_{p,q}^{2,0}$ and $D_{p,q}^{0,2} \prec_s D_{p,q}^{2,0} \prec_s B_{p,q}^{2,0}$. By Lemma 1.1, we have $S_i(B_{p,q}^{2,0}) = S_i(F_{p,q}^1)$ for i = 0, 1, 2, 3. In view of Lemma 1.2(i), it is routine to check that $\phi_{B_{p,q}^{2,0}}(P_2) = \phi_{F_{p,q}^1}(P_2) = n-1, \ \phi_{B_{p,q}^{2,0}}(C_4) = \phi_{F_{p,q}^1}(C_4) = 0.$ By Lemma 1.3.

$$\begin{split} \phi_{B_{p,q}^{2,0}}(P_3) - \phi_{F_{p,q}^1}(P_3) &= \binom{p-2}{2} + \binom{q}{2} + \binom{3}{2} \\ &- \left(\binom{p-1}{2} + \binom{q-1}{2} + 2 \right) \\ &= q-p+2 > 0. \end{split}$$

Hence, $S_4(B_{p,q}^{2,0}) - S_4(F_{p,q}^1) = 4(q-p+2) > 0$, i.e., $F_{p,q}^1 \prec_s B_{p,q}^{2,0}$. This completes the proof of (i).

In what follows, we consider $p \leq \frac{q+4}{2}$. By Lemmas 1.4, 1.5 and Theorem 2.3(ii), the last tree, in the S-order, among $\mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$ must be in $\mathscr{A}_1 \cup \mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2 \cup \mathscr{D}_1 \cup \mathscr{D}_2 \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$, where $\mathscr{A}_1, \mathscr{A}_2$ are defined in the proof of Theorem 2.2, $\mathscr{B}_1, \mathscr{B}_2$ are defined in the proof of Theorem 2.3, while $\mathscr{D}_2 = \{L_{p,q}^k : 2 \leq k \leq q-2\} \cup \{M_{p,q}^k : 2 \leq k \leq q-2\} \cup \{N_{p,q}^k : 2 \leq k \leq p-4\}, \mathscr{D}_1 = \{B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ if $4 \leq p < 7$ and $\mathscr{D}_1 = \{B_{p,q}^{3,0}, B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ if $p \geq 7$.

(ii) $p = \frac{q+4}{2}$. In this case, we consider the following two cases according to \mathcal{D}_1 .

Case 1. $\mathscr{D}_1 = \{B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ with $4 \le p < 7$.

First we determine the last tree, in the S-order, among $\mathscr{D}_1 \cup \mathscr{D}_2$. It is easy to see (based on Lemma 1.4), we have $B_{p,q}^{2,1} \prec_s B_{p,q}^{0,2}$. Note that, for $k \ge 2$, by Lemma 1.6 we have $L_{p,q}^k \prec_s L_{p,q}^1$, $M_{p,q}^k \prec_s M_{p,q}^1$ and $N_{p,q}^k \preceq_s B_{p,q}^{2,1}$

By Lemma 1.1, $S_i(L_{p,q}^1) = S_i(M_{p,q}^1) = S_i(B_{p,q}^{0,2})$ holds for i = 0, 1, 2, 3. By Lemma 1.2(i), we have $\phi_{L_{p,q}^1}(P_2) = \phi_{M_{p,q}^1}(P_2) = \phi_{B_{p,q}^{0,2}}(P_2) = n - 1$ 1, $\phi_{L_{p,q}^1}(C_4) = \phi_{M_{p,q}^1}(C_4) = \phi_{B_{p,q}^{0,2}}(C_4) = 0$. Note that $L_{p,q}^1$ and $M_{p,q}^1$ have

the same degree sequence, thus by Lemma 1.3 $\phi_{L^1_{n,a}}(P_3) = \phi_{M^1_{n,a}}(P_3)$. Hence,

$$\begin{split} \phi_{L_{p,q}^{1}}(P_{3}) - \phi_{B_{p,q}^{0,2}}(P_{3}) &= \phi_{M_{p,q}^{1}}(P_{3}) - \phi_{B_{p,q}^{0,2}}(P_{3}) \\ &= \left(\binom{p-2}{2} + \binom{q-1}{2} + 3 + 1 \right) \\ &- \left(\binom{p-2}{2} + \binom{q}{2} + 2 \right) \\ &= 3 - q < 0. \end{split}$$

The last inequality follows by $q > p \ge 4$. By Lemma 1.2(i), we have $\begin{array}{l} S_4(L_{p,q}^1) - S_4(B_{p,q}^{0,2}) = S_4(M_{p,q}^1) - S_4(B_{p,q}^{0,2}) = 4(\phi_{M_{p,q}^1}(P_3) - \phi_{B_{p,q}^{0,2}}(P_3)) < \\ 0, \text{ i.e., } L_{p,q}^1 \prec_s B_{p,q}^{0,2} \text{ and } M_{p,q}^1 \prec_s B_{p,q}^{0,2}. \end{array}$ Hence, $B_{p,q}^{0,2}$ is the last tree, in the S-order, among $\mathscr{D}_1 \cup \mathscr{D}_2.$

By the proof of Fact 2 in Theorem 2.3, we obtain that $B_{p,q}^{0,2}$ is the last graph, in the S-order, among $(\mathscr{B}_1 \cup \mathscr{B}_2) \setminus \{B_{p,q}^{2,0}\}$.

graph, in the S-order, among $(\mathscr{B}_1 \cup \mathscr{B}_2) \setminus \{D_{p,q}\}$. Note that for p < 7, it is routine to check that $(\mathscr{A}_1 \cup \mathscr{A}_2) \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}\} = \{D_{p,q}^{2,0}, D_{p,q}^{0,1}\}$. By Lemma 1.4, we have $D_{p,q}^{2,0} \prec_s D_{p,q}^{0,1}$. In order to complete the proof, it suffices to compare $B_{p,q}^{0,2}$ with $D_{p,q}^{0,1}$. By Lemma 1.1, $S_i(D_{p,q}^{0,1}) = S_i(B_{p,q}^{0,2})$ holds for i = 0, 1, 2, 3. It is routine to check that $\phi_{D_{p,q}^{0,1}}(P_2) = \phi_{B_{p,q}^{0,2}}(P_2) = n - 1$ and $\phi_{D_{p,q}^{0,1}}(C_4) = \phi_{D_{p,q}^{0,1}}(C_4) = 0$. By Lemma 1.3

 $\phi_{B_{n,a}^{0,2}}(C_4) = 0.$ By Lemma 1.3,

$$\phi_{D_{p,q}^{0,1}}(P_3) - \phi_{B_{p,q}^{0,2}}(P_3) = \left(\binom{p}{2} + \binom{q-1}{2} + 1\right) - \left(\binom{q}{2} + \binom{p-2}{2} + 2\right)$$
$$= 2p - q - 3 = 1.$$

In view of Lemma 1.2(i), we have $S_4(B_{p,q}^{0,2}) < S_4(D_{p,q}^{0,1})$, i.e.,

(2.6)
$$B_{p,q}^{0,2} \prec_s D_{p,q}^{0,1}$$

That is to say, our result holds in this case.

Case 2.
$$\mathscr{D}_1 = \{B_{p,q}^{3,0}, B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$$
 with $p \ge 7$.

First we determine the last tree, in the S-order, among $\mathscr{D}_1 \cup \mathscr{D}_2$. In fact, by a similar discussion as in Case 1 of determining the last graph, in the S-order, among $\mathscr{D}_1 \cup \mathscr{D}_2$, we can obtain that in this case, the last graph, in the S-order, among $(\mathscr{D}_1 \setminus \{B_{p,q}^{3,0}\}) \cup \mathscr{D}_2$ is just $B_{p,q}^{0,2}$. Hence, it suffices to compare $B_{p,q}^{3,0}$ with $B_{p,q}^{0,2}$.

In fact, by Lemma 1.1 $S_i(B_{p,q}^{0,2}) = S_i(B_{p,q}^{3,0})$ holds for i = 0, 1, 2, 3. It is routine to check that $\phi_{B_{p,q}^{3,0}}(P_2) = \phi_{B_{p,q}^{0,2}}(P_2) = n - 1$ and $\phi_{B_{p,q}^{3,0}}(C_4) = \phi_{B_{p,q}^{0,2}}(C_4) = 0$. By Lemma 1.3 we have

$$\phi_{B_{p,q}^{0,2}}(P_3) - \phi_{B_{p,q}^{3,0}}(P_3) = \left(\binom{p-2}{2} + \binom{q}{2} + 2 \right) \\ - \left(\binom{p-3}{2} + \binom{q}{2} + \binom{4}{2} \right) \\ = p - 7 \ge 0.$$

If p > 7, by Lemma 1.2(i) $S_4(B_{p,q}^{0,2}) > S_4(B_{p,q}^{3,0})$, i.e., $B_{p,q}^{3,0} \prec_s B_{p,q}^{0,2}$. If p = 7, we have $\phi_{B_{p,q}^{0,2}}(P_3) = \phi_{B_{p,q}^{3,0}}(P_3)$. By direct computing, we have $\phi_{B_{p,q}^{0,2}}(P_4) = \phi_{B_{p,q}^{3,0}}(P_4) = (p-1)(q-1)$ and

$$\begin{split} \phi_{B_{p,q}^{0,2}}(K_{1,3}) - \phi_{B_{p,q}^{3,0}}(K_{1,3}) &= \binom{p-2}{3} + \binom{q}{3} - \binom{p-3}{3} - \binom{q}{3} \\ &= \frac{1}{2}(p-3)(p-4) > 0. \end{split}$$

By Lemma 1.2(iii), we have $S_6(B_{p,q}^{0,2}) - S_6(B_{p,q}^{3,0}) = 6(p-3)(p-4) > 0$, i.e.,

(2.7)
$$B_{p,q}^{3,0} \prec_s B_{p,q}^{0,2}$$

Hence, $B_{p,q}^{0,2}$ is the last graph, in the S-order, among $\mathscr{D}_1 \cup \mathscr{D}_2$ in this case.

By the proof of Fact 2 in Theorem 2.3, we obtain that $B_{p,q}^{0,2}$ is the last graph, in the S-order, among $(\mathscr{B}_1 \cup \mathscr{B}_2) \setminus \{B_{p,q}^{2,0}\}$.

Note that if $p \ge 7$, it is routine to check that

$$(2.8) \quad (\mathscr{A}_1 \cup \mathscr{A}_2) \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}\} = \{D_{p,q}^{0,1}\} \cup \left\{B_{p,q}^{k,0} : 3 \leqslant k \leqslant \left\lfloor \frac{p-1}{2} \right\rfloor\right\} \\ \cup \left\{D_{p,q}^{k,0} : 2 \leqslant k \leqslant \left\lfloor \frac{q-1}{2} \right\rfloor\right\}.$$

By Lemma 1.4, we have $D_{p,q}^{2,0} \prec_s D_{p,q}^{0,1}$. In view of (2.1), (2.2) and (2.8), it suffices to compare $B_{p,q}^{3,0}$ with $D_{p,q}^{0,1}$. In view of (2.7), we obtain that $B_{p,q}^{3,0} \prec_s B_{p,q}^{0,2}$. If $p \ge 7$, by a similar

In view of (2.7), we obtain that $B_{p,q}^{3,0} \prec_s B_{p,q}^{0,2}$. If $p \ge 7$, by a similar discussion as in the proof of (2.6), we can also show that $B_{p,q}^{0,2} \prec_s D_{p,q}^{0,1}$. Hence, $B_{p,q}^{3,0} \prec_s D_{p,q}^{0,1}$.

Combining with the proof as above, we obtain that $D_{p,q}^{0,1}$ is the fourth last tree, in the S-order, among $\mathscr{T}_n^{p,q}$. This completes the proof of (ii).

(iii) Let $p < \frac{q+4}{2}$. We proceed by considering the following two possible cases with respect to \mathscr{D}_1 .

Case 1. $\mathscr{D}_1 = \{B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ with $4 \le p < 7$.

By a similar discussion as in the proof of Case 1 in (ii), we know that $B_{p,q}^{0,2}$ is the last tree, in the *S*-order, among $(\mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2 \cup \mathscr{D}_1 \cup \mathscr{D}_2) \setminus \{B_{p,q}^{2,0}\}$. Note that p < 7, it is routine to check that $\mathscr{A}_1 \setminus \{B_{p,q}^{0,1}\} = \{D_{p,q}^{0,1}\}$. In order to complete the proof, it suffices to compare $B_{p,q}^{0,2}$ with $D_{p,q}^{0,1}$.

By Lemma 1.1, $S_i(D_{p,q}^{0,1}) = S_i(B_{p,q}^{0,2})$ holds for i = 0, 1, 2, 3. It is routine to check that $\phi_{D_{p,q}^{0,1}}(P_2) = \phi_{B_{p,q}^{0,2}}(P_2) = n - 1$ and $\phi_{D_{p,q}^{0,1}}(C_4) =$ $\phi_{B_{n,a}^{0,2}}(C_4) = 0.$ By Lemma 1.3,

$$\begin{split} \phi_{D_{p,q}^{0,1}}(P_3) - \phi_{B_{p,q}^{0,2}}(P_3) &= \left(\binom{p}{2} + \binom{q-1}{2} + 1\right) - \left(\binom{q}{2} + \binom{p-2}{2} + 2\right) \\ &= 2p - q - 3. \end{split}$$

If $p < \frac{q+3}{2}$, by Lemma 1.2(i), we have $S_4(D_{p,q}^{0,1}) < S_4(B_{p,q}^{0,2})$, i.e., $D_{p,q}^{0,1} \prec_s B_{p,q}^{0,2}$. If $p = \frac{q+3}{2}$, we have $S_4(D_{p,q}^{0,1}) = S_4(B_{p,q}^{0,2})$. By Lemma 1.2(ii), $S_5(D_{p,q}^{0,1}) = S_5(B_{p,q}^{0,2})$. By direct computing, we have $\phi_{D_{p,q}^{0,1}}(P_4) = \phi_{B_{p,q}^{0,2}}(P_4) = (p - 1)$ 1)(q-1) and

$$\begin{split} \phi_{D^{0,1}_{p,q}}(K_{1,3}) - \phi_{B^{0,2}_{p,q}}(K_{1,3}) &= \binom{p}{3} + \binom{q-1}{3} - \binom{p-2}{3} - \binom{q}{3} \\ &= \frac{-(q-2)^2 + 1}{4} < 0. \end{split}$$

Hence, by Lemma 1.2(iii), we have $S_6(D_{p,q}^{0,1}) - S_6(B_{p,q}^{0,2}) = 3[-(q-2)^2 + 1] < 0$, i.e., $D_{p,q}^{0,1} \prec_s B_{p,q}^{0,2}$. So in this case, $B_{p,q}^{0,2}$ is the fourth last tree, in the *S*-order, among $\mathscr{T}_n^{p,q}$.

Case 2. $\mathscr{D}_1 = \{B_{p,q}^{3,0}, B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ with $p \ge 7$.

By a similar discussion as in the proof of Case 2 in (ii), we know that $B_{p,q}^{0,2}$ is the last tree, in the S-order, among $(\mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2 \cup \mathscr{D}_1 \cup \mathscr{D}_2) \setminus \{B_{p,q}^{2,0}\}$. It is routine to check that $\mathscr{A}_1 \setminus \{B_{p,q}^{0,1}\} = \{D_{p,q}^{0,1}\}$. In order to complete the proof, it suffices to compare $B_{p,q}^{0,2}$ with $D_{p,q}^{0,1}$. By a similar discussion as in the proof of Case 1 in (iii), we have $D_{p,q}^{0,1} \prec_s B_{p,q}^{0,2}$. Hence, in this case $B_{p,q}^{0,2}$ is the fourth last tree in the S-order, among $\mathscr{T}_n^{p,q}$. This complete the proof of (iii)completes the proof of (iii).

Theorem 2.5. If $4 \leq p = q$, then for any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$, we have $T \leq_s B_{p,q}^{0,2}$ with equality if and only if $T \cong B_{p,q}^{0,2}$.

Proof. Up to isomorphism, for any $T \in \mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$, by a similar discussion as above, T can be transformed into $B_{p,q}^{0,0}$ (respectively, $B_{p,q}^{0,1}, B_{p,q}^{2,0}$ by carrying the Operations I and II repeatedly. By Lemmas 1.4 and 1.5, the last tree, in the S-order, among $\mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$ must be in $\mathscr{A}_1 \cup \mathscr{A}_2 \cup \mathscr{B}_1 \cup \mathscr{B}_2 \cup \mathscr{D}_1 \cup \mathscr{D}_2 \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$, where $\mathscr{A}_1, \mathscr{A}_2$ (respectively, $\mathscr{R}_2 \cup \mathscr{R}_2$) and i.e. (respectively, $\mathscr{B}_1, \mathscr{B}_2$) are defined in the proof of Theorem 2.2 (respectively, Theorem 2.3), and $\mathscr{D}_1, \mathscr{D}_2$ are defined in the proof of Theorem 2.4. We proceed by considering the following two possible cases.

Case 1. $\mathscr{D}_1 = \{B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ with $4 \leq p < 7$.

By a similar discussion as the proof of Case 1 in Theorem 2.4(ii), we obtain that $B_{p,q}^{0,2}$ is the last tree, in the S-order, among $\mathscr{D}_1 \cup \mathscr{D}_2$. By the proof of Fact 2 in Theorem 2.3, we obtain that $B_{p,q}^{0,2}$ is the last graph, in the S-order, among $(\mathscr{B}_1 \cup \mathscr{B}_2) \setminus \{B_{p,q}^{2,0}\}$. It is routine to check that in this case $(\mathscr{A}_1 \cup \mathscr{A}_2) \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}\} = \emptyset$. Hence, $B_{p,q}^{0,2}$ is the last tree, in the S-order, among $\mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$.

Case 2. $\mathscr{D}_1 = \{B_{p,q}^{3,0}, B_{p,q}^{2,1}, B_{p,q}^{0,2}, L_{p,q}^1, M_{p,q}^1\}$ with $p \ge 7$.

By a similar discussion as the proof of Case 2 in Theorem 2.4(ii), we obtain that $B_{p,q}^{0,2}$ is the last tree, in the *S*-order, among $(\mathscr{D}_1 \cup \mathscr{D}_2 \cup \mathscr{A}_1 \cup \mathscr{A}_2) \setminus \{B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$. By the proof of Fact 2 in Theorem 2.3, we obtain that $B_{p,q}^{0,2}$ is the last graph, in the *S*-order, among $(\mathscr{B}_1 \cup \mathscr{B}_2) \setminus \{B_{p,q}^{2,0}\}$. Hence, $B_{p,q}^{0,2}$ is the last tree, in the *S*-order, among $\mathscr{T}_n^{p,q} \setminus \{B_{p,q}^{0,0}, B_{p,q}^{0,1}, B_{p,q}^{2,0}\}$.

This completes the proof.

3. Conclusion and remarks

Summarizing the results in Section 2, we can obtain the last four graphs in the S-order of the set of n-vertex trees with a (p, q)-bipartition. Combining with Theorems 2.1, 2.2, 2.3(ii) and 2.4, we have

Theorem 3.1. Given positive integers p, q with $4 \leq p < q$ and p+q = n. (i) If p > ^{q+4}/₂, the last four trees, in the S-order, among 𝒯^{p,q}_n are as follows: B^{2,0}_{p,q}, D^{0,1}_{p,q}, B^{0,1}_{p,q}, B^{0,0}_{p,q}.
(ii) If p = ^{q+4}/₂, the last four trees, in the S-order, among 𝒯^{p,q}_n are as follows: D^{0,1}_{p,q}, B^{2,0}_{p,q}, B^{0,1}_{p,q}, B^{0,0}_{p,q}.

(iii) If $p < \frac{q+4}{2}$, the last four trees, in the S-order, among $\mathscr{T}_n^{p,q}$ are as follows: $B_{p,q}^{0,2}, B_{p,q}^{2,0}, B_{p,q}^{0,1}, B_{p,q}^{0,0}$.

Combining with Theorems 2.1, 2.2, 2.3(i) and 2.5, we have

Theorem 3.2. If $4 \leq p = q$, the last four trees, in the S-order, among the set $\mathcal{T}_n^{p,q}$ are as follows: $B_{p,q}^{0,2}$, $B_{p,q}^{2,0}$, $B_{p,q}^{0,1}$, $B_{p,q}^{0,0}$.

In this paper, we determine the last four graphs, in the S-order, of the set of *n*-vertex trees with a (p,q)-bipartition. It is natural to consider the following research problem: How can we determine the first k graphs, in the S-order, of the set of *n*-vertex trees with a (p,q)-bipartition? It seems difficult but interesting.

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (no. 11271149), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the Special Fund for Basic Scientific Research of Central Colleges (no. CCNU13F020). The authors would like to express their sincere gratitude to the referee for a very careful reading of the paper and for all of his or her insightful comments and valuable suggestions, which led to a number of improvements in this paper.

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [2] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, 1980.
- [3] B. Cheng, B. L. Liu and J. X. Liu, On the spectral moments of unicyclic graphs with fixed diameter, *Linear Algebra Appl.* **437** (2012), no. 4, 1123–1131.
- [4] B. Cheng and B. L. Liu, Lexicographical ordering by spectral moments of trees with k pendant vertices and integer partitions, Appl. Math. Lett. 25 (2012), no. 5, 858–861.
- [5] D. Cvetković, M. Doob, I. Gutman and A. Torgasev, Recent Results in the Theory of Graph Spectra, North-Holland Publishing Co., Amsterdam, 1988.
- [6] D. Cvetković and M. Petrić, A table of connected graphs on six vertices, *Discrete Math.* 50 (1984), no. 1, 37–49.
- [7] D. Cvetković, P. Rowlinson, Spectral of unicyclic graphs, Graph Combin. 3 (1987) 7–23.

- [8] J. Li, A note on the maximal Estrada index of trees with a given bipartition, MATCH Commun. Math. Comput. Chem. 66 (2011), no. 3, 765–768.
- [9] S. C. Li, Y. Li and X. X. Zhang, Edge-grafting theorems on permanents of the Laplacian matrices of graphs and their applications, *Electron. J. Linear Algebra* 26 (2013) 28–48.
- [10] S. C. Li and S. J. Wang, Further analysis on the total number of subtrees of trees, *Electron. J. Combin.* 19 (2012), no. 4, 14 pages.
- [11] W. Q. Lin and W. G. Yan, Laplacian coefficients of trees with a given bipartition, *Linear Algebra Appl.* 435 (2011), no. 1, 152–162.
- [12] X. F. Pan, X. G. Liu and H. Q. Liu, The spectral moments of trees with given maximum degree, Appl. Math. Lett. 24 (2011), no. 7, 1265–1268.
- [13] X. F. Pan, X. L. Hu, X. G. Liu and H. Q. Liu, The spectral moments of trees with given maximum degree, Appl. Math. Lett. 24 (2011), no. 7, 1265–1268.
- [14] Y. P. Wu and H.Q. Liu, Lexicographical ordering by spectral moments of trees with a prescribed diameter, *Linear Algebra Appl.* 433 (2010), no. 11-12, 1707– 1713.
- [15] Y. P. Wu and Q. Fan, On the lexicographical ordering by spectral moments of bicyclic graphs, Ars Combin. 114 (2014) 213–222.
- [16] L. Z. Ye and R. S. Chen, Ordering of trees with a given bipartition by their energies and Hosoya indices, MATCH Commun. Math. Comput. Chem. 52 (2004), no. 52, 193–208.

(Shuchao Li) Faculty of Mathematics and Statistics, Central China Nor-Mal University, 430079, Wuhan, P. R. China

E-mail address: lscmath@mail.ccnu.edu.cn

(Jiajia Zhang) FACULTY OF MATHEMATICS AND STATISTICS, CENTRAL CHINA NORMAL UNIVERSITY, 430079, WUHAN, P. R. CHINA

E-mail address: jjzhang08@foxmail.com