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Abstract. In this paper we study a two-phase free boundary prob-
lem for a semilinear elliptic equation on a bounded domain D ⊂ Rn

with smooth boundary. We give some results on the growth of
solutions and characterize the free boundary points in terms of
homogeneous harmonic polynomials using a fundamental result of
Caffarelli and Friedman regarding the representation of functions
whose Laplacians enjoy a certain inequality. We show that in di-
mension n = 2, solutions have optimal growth at non-isolated sin-
gular points, and the same result holds for n ≥ 3 under an (n− 1)-
dimensional density condition. Furthermore, we prove that the set
of points in the singular set that the solution does not have optimal
growth is locally countably (n− 2)-rectifiable.
Keywords: Free boundary problems, optimal growth, regularity,
singular set.
MSC(2010): Primary: 35R35; Secondary: 35J60.

1. Introduction

1.1. Problem statement: Given a bounded domain D ⊂ Rn with
smooth boundary and u0 ∈ W 1,2(D) ∩ L∞(D) consider the following
minimization problem:

Minimize

(1.1) J(u) =

∫
D
(
|∇u|2

2
+ F (u))dx
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A two-phase free boundary problem 1068

over the set

Au0 = {u ∈ W 1,2(D);u− u0 ∈ W 1,2
0 (D)}.

Here

F (u) =
λ+

q
(u+)q − λ−

q
(u−)q,

where u± = max{±u, 0}, λ± > 0 and 1 < q < 2. By the direct method
of the calculus of variations we will show the existence of minimizers
u of J which are in the class C2,q−1

loc (D) and satisfy the corresponding
Euler-Lagrange equation

(1.2) ∆u = λ+(u+)q−1 + λ−(u−)q−1 in D,

in the classical sense. Since the functional J is not convex, there might
be more than one minimizer with given boundary value u0. Also, since
we are not imposing any sign constraint on u0, any minimizer u may
take both positive and negative values.

We use the notation

Ω+(u) = {u > 0}, Ω−(u) = {u < 0}
and their interfaces

Γ±(u) = ∂Ω±(u) ∩D,

which we also call free boundaries, as they are a priori unknown. Note
that because of the continuity of minimizers, Ω+(u) and Ω−(u) are open
sets, hence u is real analytic in Ω±(u).

1.2. Known results. For the cases q = 0, 1 with λ+ > 0 ≥ λ−, the
minimization problem (1.1) has been studied extensively in the last
three decades using a wide variety of methods, among them the powerful
monotonicity formula of Alt-Caffarelli-Friedman [1] as well as some of
its generalizations [6]. For the particular case where q = 0, Caffarelli,
Jerison and Kenig in [6] have shown the optimal Lipschitz regularity
of minimizers and the C1 regularity of the free boundary in dimension
two. When q = 1, problem (1.1) corresponds to the obstacle type prob-
lem. The one-phase obstacle problem has been studied intensively, and
it has been shown that minimizers have the optimal C1,1 regularity.
For the two-phase version of the problem, i.e., with no sign constraint,
Shahgholian [19] and Uraltseva [22] proved the optimal C1,1

loc regularity
of solutions, and in [20] Shahgholian, Uraltseva and Weiss showed the
C1 regularity of the free boundary near the so-called branching points
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(points where the gradient vanishes); also see [21].
The case 0 < q < 1, λ+ > 0 ≥ λ−, has also received a great attention in
the literature. In this case, the one phase version of the problem (1.1)
has been well studied by Phillips [17, 18] and Alt-Phillips [2], among
others. It has been established in [17] that nonnegative minimizers en-
joy the optimal regularity C1,β , β = 2

2−q . Also, Giaquinta and Giusti

in [9] proved the Hölder continuity of the gradient of minimizers. Weiss
in [23] considered the two-phase version of this problem and studied the
size and the structure of the singular set of the free boundary, i.e., the
set of free boundary points at which no outer normal exists and pre-
sented some results on the partial regularity of weak solutions. Also, E.
Lindgren and A. Petrosyan in ([16], Theorem 1.1) showed the C1 regu-
larity of the free boundary in two dimension. Recently, and for a more
general two-phase variational free boundary problems, a rather complete
description of the regularity of solutions and the Hölder continuity of the
gradient of solutions together with the asymptotic interior regularity are
given by Leitão, Queiroz and Teixeira in [15].
When 1 < q < 2, problem (1.1) has been considered in the literature
mostly with the sign condition u ≥ 0. D. Phillips in [18] considered the
problem of minimizing the functional

(1.3) J(u) =

∫
D
|∇u|2 + χ{u≥0}u

qdx, 1 < q < 2,

on the convex set K = {u ∈ H1(D), u = u0 ≥ 0 on ∂D}. He proved that

the minimizers are subharmonic in D and are in the class C [β],β−[β](G)
for Ḡ ⊂ D, where [β] is the greatest integer less than or equal to β, and
satisfy the Euler equation

∆u = quq−1 in D,

u = |∇u| = 0 on D ∩ ∂{u > 0}.
Then he demonstrates a number of measure estimates for the free bound-
ary. Later, Alt and Phillips [2] considered positive solutions of a more
general semilinear Dirichlet problem and investigated the nature of the
free boundary (also see [8]). L. Bonorino [3] considered the above prob-
lem (1.3) and proved that the points of the free boundary where the zero
set has no density lie in a Lipschitz surface. Furthermore, he proved that
the singular points that have some (n−1)-density lie locally in a C1 sur-
face ([3], Theorem 4.13).
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In this paper, we study the minimizers u of the energy functional J
given in (1.1) on the admissible set Au0 , without any sign restriction
on the function u. In Section 2, with a standard argument we prove
the existence of solution for this problem, which is locally C2,q−1 by the
regularity theory and satisfy the Euler-Lagrange equation (1.2) in the
classical sense. In Section 3, we give a one sided nondegeneracy result
and a growth estimate for the solution u away from (and near) the free
boundary points lie on Γ+ \ Γ−. However, because of the structure of
our problem and since u changes sign on every neighborhood of a free
boundary point lies on Γ+ ∩ Γ−, it is difficult to analyze the growth of
solutions away from the free boundary. In fact, the Harnack inequality
as well as the techniques used in [17, 18] and [2] are no longer applicable
here. As one can see in a rather similar structure in ([7], Lemma 9),
Caffarelli and Salazar used the powerful monotonicity lemma to esti-
mate a quadratic growth of the solutions of ∆u = cu, in {|∇u| ̸= 0}.
To overcome this difficulty, in Section 3 we employ an interesting result
of Caffarelli and Friedman ([5], Lemma 3.1) to give a representation for
the free boundary set Γ(u), and then show an optimal growth estimate
for u away from and near the set of non-isolating points of the singular
part of the free boundary in two-dimension. Also, in higher dimen-
sions we prove the same result at non-isolated singular points under an
(n− 1)-dimensional density condition. Finally, in Section 4 by invoking
a technique used in [11] to study the structure of the singular set of solu-
tions of homogeneous elliptic differential equations of the second order,
we prove that the set of singular points where u does not have optimal
growth is countably (n− 2)-rectifiable.

2. Existence and C2,q−1
loc regularity of global minimizers

In this section by the direct method of calculus of variations we prove
the existence of minimizers u of J , which are in the class C2,q−1

loc (D) and
satisfy the corresponding Euler-Lagrange equation (1.2).

Proposition 2.1. There exists at lease one minimizer u ∈ W 1,2(D) of
the functional J which satisfies (1.2) in the sense of distributions.

Proof. We show that J is weakly coercive and weakly sequentially lower
semicontinuous (wslsc) on the set Au0 . First note that for u ∈ Au0 we
have

(2.1) J(u) ≥ 1

2
∥∇u∥22 −

λ+ + λ−

q
∥u∥qq.



1071 Aghajani

Taking u− g = w and λ := λ++λ−

q , (2.1) yeilds,

J(u) ≥ 1

2
∥∇w +∇g∥22 − λ∥w + g∥qq

≥ 1

2
| ∥∇w∥2 − ∥∇g∥2 |2 −λ(∥w∥q + ∥g∥q)q.

Using the inequality (a+ b)q ≤ 2q−1(aq + bq) for a, b ≥ 0, and the above
inequality follows

(2.2) J(u) ≥ 1

2
∥∇w∥22+

1

2
∥∇g∥22−∥∇w∥2∥∇g∥2−2q−1λ(∥w∥qq+∥g∥qq).

Since 1 < q < 2 < 2∗ = 2n
n−2 , by the Sobolev inequality there exists a

constant C such that ∥w∥q ≤ C∥∇w∥2, therefore (1.4) implies

J(u) ≥ 1

2
∥∇w∥22 − 2q−1λC∥∇w∥q2 − ∥∇w∥2∥∇g∥2 +

1

2
∥∇g∥22

− 2q−1λ∥g∥qq → ∞ as ∥u∥W 1,2 → ∞.

To show that J is wslsc on Au0 , it is enough to prove it for the functional
G : W 1,2(D) → R defined by

G(u) =

∫
D
F (u)dx,

which is an easy task using the compact embedding W 1,2
0 ↪→↪→ Lq.

Now let ξ ∈ C∞
c (D) and consider the function I(ε) = J(u+εξ) for ε ∈ R.

Since the integrand of functional J , f(p, z) = |p|2 + λ+

q (z+)q − λ−

q (z−)q

is a C1,q−1(Rn × R) function, I(ε) is differentiable at ε = 0 thus

0 = I ′(0) = J ′(u+ εξ)|ε=0 =

∫
D
(∇u.∇ξ − F ′(u)ξ)dx.

Hence u satisfies (1.2) in the sense of distributions. □
Proposition 2.2. Let u ∈ L2(D) be a solution of (1.2) in the sense of

distributions. Then u ∈ C2,q−1
loc (D), i.e., u is a classical solution.

Proof. Let u ∈ L2(D) be a solution of (1.2), then F (u) ∈ L
2

q−1 (D).
Consider the Newtonian potential of F (u), i.e.,

U(x) =

∫
D
Φn(x− y)F (u(y))dy,

where Φn is the fundamental solution of the Laplacian in Rn, i.e., ∆Φn =
δ in the sense of distributions. Then it is readily verified that U is a
weak solution of ∆u = F (u) in D. Thus w = u − U is harmonic in D,
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and consequently belongs to C∞(D). From the standard estimates for
singular integrals (see e.g., [10], Theorem. 9.9), it can be shown that U

is in W
2, 2

q−1

loc (D), and so u = w + U ∈ W
2, 2

q−1

loc (D). Next we show that

u ∈ W
2, 2

(q−1)2

loc (D), etc. Therefore,

∀j ∈ N, u ∈ W
2, 2

(q−1)j

loc (D).

Hence, u ∈ W 2,p
loc , for every 1 ≤ p < ∞, and the Sobolev embedding

theorem W 2,p
loc ↪→ C1,α

loc , α = 1− n
p implies that

∀ 0 < α < 1, u ∈ W 2,p
loc (D) ∩ C1,α

loc (D).

Now, to prove u ∈ C2,q−1
loc (D), by the classical elliptic regularity theory

it suffices to show that F (u) ∈ C0,q−1
loc . Let K be a compact subset of

D. Since u ∈ C1,α(K), thus u is a Lipschitz function on K, and since
functions (x+)q−1 and (x−)q−1 are Hölder continuous of order q − 1, as
a consequence F (u) ∈ C0,q−1(K). □

3. Analysis of the free boundary

Let u ∈ C2,q−1
loc (D) be a solution of (1.2) and set Γ+(u) = ∂Ω+(u)∩D

and Γ−(u) = ∂Ω−(u)∩D. Then, due to the subharmonicity of solutions
of (1.2) we have

(3.1) Γ−(u) ⊆ Γ+(u).

Indeed, if there exists an x0 ∈ Γ−(u) \ Γ+(u), then

∃r0 > 0; u(x) ≤ 0 in Br0(x0) and u(x0) = 0.

But u is subharmonic so by the strong maximum principle u can not
attain a local maximum and hence u(x) ≡ 0 in Br0(x0), contradicting
with x0 ∈ Γ−(u).
It is noteworthy that if 0 ∈ D with Br0 ⊂ D, there is a radial positive
solution of (1.2) in Br0 . Indeed, it is easy to find a suitable γq > 0 so
that

(3.2) U0(x) = γq|x|β, β =
2

2− q

is a solution of (1.2) in Br0 .
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Lemma 3.1. Let u be a solution of (1.2). Then there are constants
C± = C(n, q, λ±), such that
(i) if x0 ∈ Ω+(u),

sup
Br(x0)∩Ω+

u(x) ≥ u(x0) + Crβ

for any r > 0 such that Br(x0) ⊂⊂ D and
(ii) if x ∈ Ω−(u), then

u(x) ≤ −C(dist(x,Γ−))β.

Proof. Let x0 ∈ Ω+(u) and U0(x) given in (3.2) be the radial solution of
(1.2). Define

Λ = {x ∈ Br(x0) ∩ Ω+, u(x) > U0(x− x0)}.

Since x0 ∈ Λ, Λ is a nonempty open set. Next we define the auxiliary
function

w(x) = u(x)− u(x0)− U0(x− x0),

and take y ∈ Λ such that

w(y) = sup
x∈Λ

w(x).

For x ∈ Λ we have

∆w(x) = ∆u(x)−∆U0(x− x0) = λ+(u(x)q−1 − U0(x− x0)
q−1) > 0,

hence, w is subharmonic on Λ. Suppose that y ∈ Λ. Also, let y ∈ A ⊆
Λ, where A is a connected component of Λ. If y is an interior point
of A, then the maximum principle says that w is constant on A. So
w ≡ w(y) on A, gives u(x) = w(y) + u(x0) + U0(x − x0) for x ∈ A,
and consequently ∆u = ∆U0(x − x0) on A. The last equality yields
λ+u(x)q−1 = λ+U0(x−x0)

q−1 or u(x) = U0(x−x0) for x ∈ A. Therefore,
w(y) = −u(x0) < 0 = w(x0), a contradiction. Therefore, we must have
y ∈ ∂A and due to the standard fact of point-set topology ∂A ⊂ ∂Λ,
gives y ∈ ∂Λ. Now, we have the three possible cases, y ∈ ∂Br(x0)∩Ω+,
u(y) = U0(y − x0) or y ∈ ∂Ω+. It is easy to see that the two later cases
lead to the contradiction w(y) < 0, so y ∈ ∂Br(x0) ∩ Ω+, and thus

sup
∂Br(x0)∩Ω+

u(x)− u(x0)− Crβ = sup
∂Br(x0)∩Ω+

w(x)

≥ sup
∂Br(x0)∩Ω+∩Λ̄

w(x) = sup
Λ̄

w(x) = w(y) ≥ w(x0) = 0
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which implies the required inequality in (i).
For the proof of statement (ii) let x ∈ Ω−(u) and take rx := dist(x,Γ−).
Set v = −u, then v > 0 in Brx(x) and −∆v = λ−vq−1. Now, define the
auxiliary function

w(y) =
v(y)2−q

2− q
− λ−

2n
(r2x − |y − x|2),

and compute

∆w(y) = (1− q)
|∇v|2

vq
+ v1−q∆v + λ− = −(q − 1)

|∇v|2

vq
< 0.

Since on ∂Brx(x) we have w(y) = v(y)2−q

2−q ≥ 0 and w is superharmonic

we get w(x) = v(x)2−q

2−q − λ−

2n r
2
x ≥ 0, which gives the desired estimate. □

Remark 3.2. (Nondegeneracy) Note that from the statement (i), if x0 ∈
Γ+ by the continuity of u we get

sup
Br(x0)∩Ω+

u(x) ≥ Crβ

for any r > 0 such that Br(x0) ⊂ D. Also, if x0 ∈ Γ− is an exterior
point of Ω+, i.e., there exist x1 ∈ Ω− and r0 > 0 such that |x0−x1| = r0
and Br0(x1) ⊂ Ω−, then the statement (ii) of the above lemma gives

inf
Br(x0)∩Ω−

u(x) ≤ −Crβ

for any r < r0. Indeed if r < r0, we can take a point xr in the line
segment x0x1 such that |x0 − xr| = r, then

inf
Br(x0)∩Ω−

u(x) ≤ u(xr) ≤ −C(dist(xr,Γ
−))β = −C|x0 − xr|β = −Crβ.

The next lemma says that a solution u of (1.2) will have the optimal
growth β at free boundary points lieing on Γ+ − Γ−. Note that since
u is non-negative in a neighborhood of a point on Γ+ − Γ−, it can
be deduced from the results of [18] (also see [[2], Corollary 1.11]), but
we give a different proof using the comparison principle and Harnack’s
inequality.

Lemma 3.3. Let u ∈ W 1,2(D) be a solution of (1.2) and x0 ∈ Γ+−Γ−.
Then there exists r0 = r0(x0) > 0 such that

sup
Br(x0)

u(x) ≤ Crβ, for every r ≤ r0,

where β = 2
2−q and C is a constant depends on n, q and λ+.
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Proof. Let x0 ∈ Γ+ − Γ−, then u(x0) = 0 and there exists r0 > 0 such
that u(x) ≥ 0 in Br0(x0), so from (1.2) we obtain

(3.3) ∆u(x) = λ+uq−1 in Br0(x0).

Define

Mr = sup
Br(x0)

|u(x)|, r < r0.

Now split u into the sum v +H in Br(x0), where

∆v = λ+uq−1, ∆H = 0 in Br(x0),

v = 0, H = u on ∂Br(x0).

We estimate v and H separately.
To estimate v consider the auxiliary function w(x) = 1

2n(r
2 − |x− x0|2),

which satisfies

∆w = −1, in Br(x0),

w = 0, on ∂Br(x0).

From (3.3) and the definition of Mr we have

0 ≤ ∆v = λ+uq−1 ≤ λ+M q−1
r in Br(x0),

and by the comparison principle we get

−λ+M q−1
r w(x) ≤ v(x) ≤ 0, in Br(x0),

which implies

(3.4) − λ+

2n
M q−1

r r2 ≤ v(x) ≤ 0, in Br(x0).

To estimate H observe that H is a nonnegative harmonic function in
Br(x0) and H = u on ∂Br(x0). Therefore, the Harnack’s inequality
gives

H(x) ≤ CnH(x0) = −Cnv(x0) ≤ Cnλ
+M q−1

r r2, x ∈ B r
2
(x0).

Combining the estimates for v and H we get

u(x) ≤ CM q−1
r r2, x ∈ B r

2
(x0),

and

M r
2
≤ CM q−1

r r2 for every r < r0.

Using the equality r2 = rβ

rβ(q−1) in the last inequality we have

(3.5) M̃ r
2
≤ CqM̃r

q−1
, where M̃r :=

Mr

rβ
and Cq = 2βC.
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Taking rj :=
r0
2j

and M̃j := M̃rj for j = 0, 1, 2, ..., from (3.5) we obtain

M̃j+1 ≤ CqM̃j
q−1 ≤ CqC

q−1
q

˜Mj−1
(q−1)2 ≤ ... ≤ C(1+(q−1)2+...+(q−1)j)

q M̃
(q−1)j

0 .

Since (q− 1)j → 0 and 1+ (q− 1)2 + ...+ (q− 1)j → 1
2−q when j → ∞,

then {M̃j} is a bounded sequence, hence we find a positive constant C

such that Mj ≤ Crβj for every j ∈ N which is enough to conclude that

Mr ≤ Crβ for any r < r0 and the proof is complete. □
Let u be a solution of (1.2) and x0 ∈ Γ+−Γ−, then from lemma (3.3)

there exists r0 > 0 such that u(x) ≥ 0 in Br0(x0) and

sup
Br(x0)

u(x) ≤ Crβ, for every r ≤ r0.

Now, following [18] for r < r0

|Dαu(x)| ≤ C(u(x))
β−|α|

β , x ∈ Ω+(u) ∩B r
3
(x0),

where Dα = Dα1
1 ...Dαn

n , |α| =
∑n

i=1 αi and u ∈ C [β],β−[β](B r
3
(x0)).

Note that if x0 ∈ Γ+∩Γ−, then u changes sign in every ball Br(x0), r > 0
and the techniques used in the previous works mentioned in Section 1.2
can not be used here to get the above result.
In the sequel, to study the free boundary we frequently use the following
fundamental lemma of Caffarelli and Friedman [5]. Note that this lemma
in [5] is proved for the case n = 3, but as the authors indicated in the
introduction the proof is valid for any dimension. A related result in two
dimensions was proved by Hartman and Wintner by complex variables
methods [14].

Lemma 3.4. ([5], Lemma 3.1) Let γ be a positive non-integer, γ≥γ0> 0,
and let v(x) be a function satisfying

(3.6) |∆v(x)| ≤ Cγ |x|γ in B1, Cγ ≥ 2γ .

Then

(3.7) v(x) = P (x) + Γ(x) in B1,

where P (x) is a harmonic polynomial of degree [γ] + 2 and

(3.8) |Γ(x)| ≤ CCγ
γ

⟨γ⟩
|x|γ+2 in B1,

(3.9) |∇Γ(x)| ≤ CCγ
γ3

⟨γ⟩
|x|γ+1 in B1,
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where ⟨γ⟩ = min{γ− [γ], 1+[γ]−γ} and C is a constant depending only
on γ0, and on upper bounds on |v(x)| and |∇v(x)| for x ∈ ∂B1.

For a function u define the singular set as

S(u) = {x ∈ D; u(x) = |∇u(x)| = 0},

and set

Ob(u) = {x0; ∃C, δ > 0; |u(x)| ≤ C|x− x0|b, in Bδ(x0)}.

Also, motivated by the work of Caffarelli and Friedman [5] we define

Sm(u) = {x0;u(x) = Hm(x−x0)+O(|x−x0|m+δ), 0 ̸≡ Hm ∈ Σm, δ > 0},

where Σm denotes the space of all homogeneous harmonic polynomials
of degree m.

Remark 3.5. Note that in the definition of Sm(u), we can replace Hm

by a harmonic polynomial (not necessary homogeneous) Pm of degree
m. To see this it suffices to expand Pm into its Taylor series around x0.
Indeed, if Pm(x) =

∑m
i=k Qi(x − x0), where every Qi is a homogeneous

harmonic polynomial of degree i and k ≥ 1, then x0 ∈ Sj(u), where j is
the least integer ≥ 1 such that Qj ̸≡ 0.

Now, we present one of our main results concerning the representation
of free boundary points. We prove it for R3, the proof however is valid
for any dimension.

Theorem 3.6. Let Γ(u) be the free boundary, then

(3.10) Γ(u) =

[β]∪
m=1

Sm(u) ∪
∩

2<b<β

Ob(u).

Moreover, if β is a positive non-integer, then

(3.11) Γ(u) =

[β]∪
m=1

Sm(u) ∪ Oβ(u).

Furthermore, if K is a compact subset of D, then the constant C in the
definition of Ob(u), 2 < b ≤ β is uniform in x0, x0 ∈ K ∩ Γ(u) and
depends only on q, u and K.

Proof. Suppose x0 ∈ Γ(u) \
∪[β]

m=1 Sm(u). Since u(x0) = 0 and u is in
C2, thus there exists C0 > 0 such that |u(x)| ≤ C0|x − x0| in Br0(x0)
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for some r0 > 0. We can take r0 = 1 due to the scaling property of
solutions. Then it follows that

|∆u(x)| = λ+(u+)q−1+λ−(u−)q−1 ≤ (λ++λ−)|u|q−1 ≤ λC0|x−x0|(q−1),

in B1(x0), where λ := λ+ + λ−. Thus, by Lemma 3.4

u(x) = P1(x) +R1(x), in B1(x0),

where P1 is a harmonic polynomial of degree [q − 1] + 2 = 2, and for
x ∈ B1(x0)

|R1(x)| ≤ CλC0
q − 1

⟨q − 1⟩
|x− x0|q−1+2 = CλC0|x− x0|q+1,

where C is a constant depending only on q, and on upper bounds on
u(x) and |∇u(x)| for x ∈ ∂B1(x0). Since P1 is of degree 2 ≤ [β], by
our assumption and Remark 3.5, we must have P1 ≡ 0. It follows that
u(x) = R1(x) in B1(x0), hence

|∆u(x)| ≤ λ|u(x)|q−1 = λ|R1(x)|q−1 ≤ λ(CλC0)
q−1|x− x0|(q−1)(q+1),

in B1(x0). Replacing (q − 1)(q + 1) (in the case it is an integer) with
(q − 1)(q + 1) − ε1 to get a non-integer, where 0 ≤ ε1 < q − 1, and
applying Lemma 3.4 once again we conclude that,

u(x) = P2(x) +R2(x), in B1(x0),

where P2 is a harmonic polynomial of degree 2+ [(q−1)(q+1)−ε1] and

|R2(x)| ≤ Cλ(CλC0)
q−1 (q − 1)(q + 1)− ε1

⟨(q − 1)(q + 1)− ε1⟩
|x− x0|2+(q−1)(q+1)−ε1 .

Since 1 < q < 2 we get q + 1 < β = 2
2−q , thus

2 + [(q − 1)(q + 1)− ε1] ≤ 2 + [(q − 1)β] = [β].

Hence, by our assumption P2 ≡ 0 and u(x) = R2(x) in B1(x0). Repeat-
ing the above argument we are able to find sequences εj and βj such
that

(3.12) |u(x)| ≤ Cj |x− x0|βj , in B1(x0),

where β0 = 1, ε0 = 0 and for j ≥ 0

(3.13) βj+1 = 2 + (q − 1)βj − εj , 0 ≤ εj < (q − 1)j ,

(3.14) Cj+1 = CλC
(q−1)
j

βj − 2

⟨βj − 2⟩
.
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By induction it is easy to see that βj ≤ β. Indeed, we have β1 = 2 < β,
and if βj ≤ β then

βj+1 = 2 + (q − 1)βj − εj ≤ 2 + (q − 1)β = β.

Taking bj = β − βj in (3.13) we compute

bj+1 = (q − 1)bj + εj = (q − 1)2bj−1 + (q − 1)εj−1 + εj = ... = (q − 1)jb1

+

j∑
i=1

(q − 1)iεj−i

≤ (q − 1)jb1 + j(q − 1)j → 0, as n → ∞,

and consequently, βj → β as j → ∞. Now, if b < β we can choose a
jb ∈ N so that b < βjb , hence

|u(x)| ≤ Cjb |x− x0|βjb ≤ Cjb |x− x0|b, in B1(x0).

This proves the first assertion. Now, suppose β is a positive non-integer,

since βj → β thus ⟨βj⟩ → ⟨β⟩ > 0, hence for a j0 ∈ N, ⟨βj⟩ > ⟨β⟩
2 , for

any j ≥ j0. Taking j0 large enough we have βj ≤ 2 + β and from (3.14)

with α := Cλ 2β
⟨β⟩ we get

(3.15)

Cj+1 ≤ αCq−1
j ≤ α1+(q−1)C

(q−1)2

j ≤ ... ≤ α1+(q−1)+...(q−1)j−j0
C

(q−1)j−j0

j0
.

Since 0 < q − 1 < 1, we have 1 + (q − 1) + ...(q − 1)j−j0 < 1
2−q and

(q− 1)j−j0 → 0 as j → ∞. Thus, (3.15) implies that {Cj} is a bounded
sequence. Taking j → ∞ in (3.12) we obtain

|u(x)| ≤ C|x− x0|β, in B1(x0),

which is the desired results.
For the last assertion, suppose that K is a compact subset of D. Since
u ∈ C2,q−1

loc (D), for x0 ∈ K ∩ Γ(u) we can choose a C0 uniform in x0
and depends only on u and K such that |u(x)| ≤ C0|x− x0| in Br0(x0)
for some r0 <

1
2dist(K, ∂D). Starting the above proof with this C0, the

rest of the proof shows that C is independent of x0. □
Theorem 3.7. Let n = 2 and x0 be a non-isolated point of S(u) then

(3.16) x0 ∈
∩
b<β

Ob(u),

and in the case β ̸∈ Z
(3.17) x0 ∈ Oβ(u).
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Proof. For simplicity take x0 = 0. We show that 0 ̸∈
∪[β]

m=1 Sm(u) and
then the conclusion follows from Theorem 3.6. Suppose this is not the
case, so there is an m ≥ 1 such that 0 ∈ Sm(u), hence

(3.18) u(x) = Hm(x) +O(|x|m+δ), in B1,

for some δ > 0, where 0 ̸≡ Hm ∈ Σm. Since 0 ∈ S(u) and u is a C2

function, then from (3.18) we get Hm(0) = |∇Hm(0)| = 0 follows that
m ≥ 2. Now, take a sequence of points xj ̸= 0 in S(u), where xj → 0.
From (3.18) and the homogeneity of degree m of Hm we get

Hm(
xj

2|xj |
) =

Hm(xj)

2m|xj |m
=

u(xj)

2m|xj |m
+

O(|xj |m+δ)

2m|xj |m
=

O(|xj |m+δ)

2m|xj |m
→ 0.

Taking yj =
xj

2|xj | , there is a subsequence yji and y with |y| = 1
2 such

that yji → y and Hm(y) = 0. Since ∇Hm is also homogeneous (of
degree m− 1), similar to the above argument (starting with xji instead
of xj) we can show that ∇Hm(y) = 0, and from the harmonicity of Hm,
λy ∈ S(Hm) for every λ ∈ R+. But this contradicts the fact that the
singular set of every harmonic function in R2 is isolated (for example,
see [12], Lemma 2.4.1), so Hm ≡ 0 in B1, which is a contradiction. □

To get a similar result in the case n ≥ 3, we need a density assumption
on the singular set S(u) near x0.

Definition 3.8. For the set of points x1, ..., xk in S ⊂ Rn, k ≤ n, let
P x0
x1,...,xk

be the k-dimensional parallelogram (with one“vertex” x0) and

vectors −−→x0x1, ...,
−−→x0xk as the edges. Indeed we have

P x0
x1,...,xk

= {
k∑

i=1

ti
−−→x0xi; 0 ≤ ti ≤ 1}.

Note that

VolRkP x0
x1,...,xk

> 0 ⇔ −−→x0x1, ...,
−−→x0xk are linearly independent,

and

VolRkP 0
r1x1,...,rkxk

= r1...rkVolRkP 0
x1,...,xk

.

Now, let S ⊂ Rn and x0 ∈ S. We define

δr(S, x0, k) := sup{
VolRkP x0

x1,...,xk

rk
, x1, ..., xk ∈ S ∩Br(x0)},

and δr(S, k) := δr(S, 0, k).
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Remark 3.9. L. Caffarelli in [4] used the concept of minimal diameter,
that measures the thinness of the zero set of solution at a given point.
For a set S ⊂ Rn, define

δ′r(S, x0) :=
MD(S ∩Br(x0))

r
,

where MD(A), called minimal diameter of A, is the infimum of distances
between pairs of parallel planes such that A is contained in the strip
determined by the plane. Many authors used the condition

lim sup
r→0

δ′r(Γ(u), x0) > 0,

where x0 ∈ ∂Γ(u)∩D to analyze the free boundary. It is easy to see that
there is a constant C so that δ′r(S, x0) ≤ Cδr(S, x0, k) for every k ≤ n.

The following example shows that we can have δ′r(S, x0) = 0 while
δr(S, x0, n− 1) > C > 0, for every r > 0.

Example 3.10. Take S = {(0, y, |y|), y ∈ R} ⊂ R3. Then S is con-
tained in the strip determined by the planes x = ±ε for every ε > 0, so

δ′r(S, 0) = 0 for every r > 0. But it is easy to see that δr(S, 0, 2) =
√
3
2 ,

for every r > 0.

Theorem 3.11. Let n ≥ 3 and x0 be a non-isolated point of S(u).
Moreover,

(3.19) lim sup
r→0

δr(S(u), x0, n− 1) > 0.

Then

(3.20) x0 ∈
∩
b<β

Ob(u),

and in the case β ̸∈ Z
(3.21) x0 ∈ Oβ(u).

Proof. Without loss of generality take x0 = 0, then similar to the proof

of Theorem 3.7 it suffices to show 0 ̸∈
∪[β]

m=1 Sm. If this is not the
case, then u satisfies (3.18) in the proof of Theorem 3.7. Take δ :=
lim supr→0 δr(S(u), x0, n − 1), then from (3.19) we can find a sequence
{rj} of real numbers and sequences {x1,j},..., {xn−1,j} in S(u) with
|xi,j | ≤ rj → 0, i = 1, ..., n− 1 such that

(3.22) VolRn−1P 0
x1,j ,...,xn−1,j

≥ (δ − 1

j
)rn−1

j .
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Now, suppose that Hm ̸≡ 0 in B1. Similar to the proof of Theorem 3.7
we find x1, ..., xn−1 ∈ S(Hm) with (possibly passing to subsequences)
xi,j

|xi,j | → xi, i = 1, ..., n− 1. But then from (3.22) we get

VolRn−1P 0
x1,...,xn−1

= lim
n→∞

VolRn−1P 0
x1,j
|x1,j |

,...,
xn−1,j
|xn−1,j |

≥ lim(δ − 1

j
)

rn−1
j

|x1,j |...|xn−1,j |
≥ δ,

that shows x1, ..., xn−1 are linearly independent. Therefore, dim S(Hm) ≥
n−1. This contradicts the fact that the dimension of the singular set of
a harmonic homogeneous polynomial is ≤ n − 2 [[13], page 5], also see
[12]. Therefore, Hm ≡ 0 in B1, a contradiction. □

4. Structure of the singular set

Let u be a C2 solution of (1.2). By the implicit function theorem
Γ(u) \ S(u) = S1(u) is an (n − 1)-dimensional hypersurface at least
locally. The following example shows that dimOβ(u) can take every
number of 0, 1, ..., n.

Example 4.1. For j = 1, 2, ..., n and β = 2
2−q , 1 < q < 2 the following

functions

uj : R
n → R, uj(x1, ..., xn) = γj |(x1, ..., xj , 0, ..., 0)|β,

are solutions of the equation

∆u(x) = |u(x)|q−1,

in B1 for a suitable γj. Note that we have dimOβ(uj) = n − j, j =
1, 2, ..., n. Also the following function constructed in [17]

u(x) = (

√
2

β
)β|x− s|β, for s ≤ x,

u(x) = 0, for x ≤ s,

is a solution of

∆u(x) = (q − 1)|u(x)|q−1, in D = (−1, 1),

u0(−1) = 0, u0(1) = h > 0,

for small h and s > −1. Then dimOβ(u) = dim[−1, s] = 1.
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In the sequel we study the structure of Sm(u) for m ≥ 2 and give
some partial results by assuming some conditions on the range of q or
the higher order regularity of solution u. To do this we use an approach
similar to the one in [11], also see [12].
Let 1 < q < 4

3 , then 2 < β = 2
2−q < 3 and thus from Theorem 3.6 we

have

(4.1) S(u) = S2(u) ∪ Oβ(u),

where by the definition of Sm(u)

S2(u) = {x0;u(x) = H2(x− x0) +O(|x− x0|2+δ), 0 ̸≡ H2 ∈ Σ2, δ > 0}.
Indeed, in this case we have

(4.2) S2(u) = {x0;u(x) = H2(x− x0) +O(|x− x0|2q), 0 ̸≡ H2 ∈ Σ2}.
To see this, let x0 ∈ S2(u), then there exists C such that |u(x)|≤C|x−x0|2
in Br0(x0) for some r0 > 0. From (1.2) it follows that |∆u(x)|≤C

′ |x−x0|2(q−1)

in Br0(x0). Thus by Lemma 3.4

u(x) = P (x− x0) +R(x), in Br0(x0),

where P is a harmonic polynomial of degree [2(q − 1)] + 2 = 2 and
R(x) = O(|x− x0|2q). Now, since x0 ∈ S2(u) and 2q > 2 we must have
P (x) = xTD2P (x0)x ∈ Σ2 thus (4.2) holds. Also, note that since u is
in C2 and from Lemma 3.4 it is easy to show that

(4.3) S2(u) = {x0;u(x0) = |∇u(x0)| = 0, D2u(x0) ̸= 0}.
The next theorem shows that S2(u) is locally countably (n−2)-rectifiable.
The proof is essentially the same as that of Theorem 2.1 in [11] where the
author studied the structure of the singular sets of solutions of homoge-
neous elliptic differential equations of the second order. The following
lemma ([11], Lemma 2.3) is crucial for the proof.

Lemma 4.2. Suppose A ⊂ Rn has the following property: for any x ∈ A
there exists a j-dimensional linear subspace lx such that for any sequence
{xk ⊂ A} with xk → x, we have

Angle⟨xxk, lx⟩ → 0.

Then A is on a countable union of j-dimensional Lipschitz graphs.

Theorem 4.3. Let 1 < q < 4
3 and u be a solution of (1.2) in B1. Then

S2(u) given in (4.1) is countably (n− 2)-rectifiable.
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Proof. We show that

S2(u) =
n−2∪
j=0

Sj
2(u),

where Sj
2(u) is on a countable union of j-dimensional C1 manifolds,

j = 0, 1, ..., n− 2. To do this take y ∈ S2(u) and let H2,y be the leading
polynomial of u at y as in the definition of S2(u). Since H2,y is a nonzero
homogeneous harmonic polynomial of degree 2, thus

S2(H2,y) = {x;H2,y(x) = |∇H2,y(x)| = 0, D2H2,y(x) ̸= 0}

is a linear subspace with dimS2(H2,y) ≤ n − 2 [[11], page 10], also see
[12]. Indeed, assuming H2,y(x) =

∑
|ν|=2 aνx

ν , then if z ∈ S2(H2,y) from

H2,y(z) = |∇H2,y(z)| = 0 we getH2,y(x) =
∑

|ν|=2 aν(x−z)ν . Therefore,

H2,y(x) = H2,y(x+ z), x ∈ Rn

which gives H2,y(x) = H2,y(x + λz) for x ∈ Rn and λ ∈ R (note that
H2,y is a homogeneous harmonic polynomial). Therefore, H2,y(λz) =
|∇H2,y(λz)| = 0 gives λz ∈ S2(H2,y). Now, it is easy to see that S2(H2,y)
is a linear subspace. To prove that dimS2(H2,y) ≤ n − 2, take d :=
dimS2(H2,y) then from the above fact that H2,y(x) = H2,y(x + z), for
x ∈ Rn and z ∈ S2(H2,y), H2,y must be a function of n − d variables.
But if d = n− 1 then H2,y must be a second order harmonic polynomial
of one variable which is impossible, so d = n− 2. Now, define

Sj
2(u) = {y ∈ S2(u); dimS2(H2,y) = j}, j = 0, 1, ..., n− 2.

Let y, yk ∈ Sj
2(u), with yk → y. Then we have

H2,yk(x− yk) = (x− yk)
TD2u(yk)(x− yk) → (x− y)TD2u(y)(x− y)

= H2,y(x− y),(4.4)

uniformly in C2(B1). Also, if we take zk = yyk
|yyk|

→ z, then similar to

the proof of Theorem 3.7 we can prove that z ∈ S2(H2,y). Now, let
ly := S2(H2,y), which is a j-dimensional linear subspace, then the latter
fact together with (4.4) and the equality Angle⟨w, ly⟩ = Angle⟨ w

|w| , ly⟩,
for 0 ̸= w ∈ Rn, show that

Angle⟨yyk, ly⟩ → 0.

Now, applying Lemma 4.2 completes the proof. □
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Remark 4.4. If one can prove that a solution u of (1.2) is in C
[β]
loc(D),

then similar to the proof of Theorem 4.2 can prove that Sm(u) is locally
countably (n − 2)-rectifiable for 2 ≤ m ≤ [β] . Indeed, for such u using
Lemma 3.3 we have

Sm(u) = {x0;u(x) = Hm(x−x0)+O(|x−x0|m+δ), 0 ̸≡ Hm ∈ Σm, δ > 0}
= {x0 ∈ S(u);Dαu(x0) = 0 for any |α| < m,Dmu(x0) ̸= 0}.

Thus, using the fact that dimSm(Hm) ≤ n−2 for any non-zero homoge-
neous harmonic polynomial Hm of degree m and by a completely similar
argument as above we can show that for any 2 ≤ m ≤ [β] there exists
the following decomposition

Sm(u) =

n−2∪
j=0

Sj
m(u),

where Sj
m(u) is on a countable union of j-dimensional C1 manifolds for

j = 0, 1, ..., n− 2.

Acknowledgements

The author would like to thank an anonymous referee for his/her help-
ful comments and suggestions. Also, the author deeply thanks Professor
Henrik Shahgholian for suggesting this problem and for many stimulat-
ing discussions, comments, suggestions and the continuous guidance and
support. Moreover, this paper was prepared while the author was visit-
ing the KTH Royal Institute of Technology, Stockholm, in the period of
his sabbatical leave. It would be a pleasure to thank Iran University of
Science and Technology (IUST) for its financial support and KTH for
its hospitality. Also the author would like to thank Göran Gustafsson
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