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lems, the Schwartz symmetrization process and the compactness
lemma of Strauss, we prove that there is a nontrivial ground state
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1. Introduction

In [1, 2, 5, 6, 9], the authors studied the existence of a ground state
solution for the following problem

(1.1)

{
−△u+W (x)u = g(x, u) + f
u ∈ H1(RN )

subject to the condition that W > 0. In the case W < 0, various
difficulties arise in the study of (1.1). On this subject, the existence
of solutions has been studied by Ghimenti, Micheletti, Benrhouma and
Ounaies in [3, 4, 8, 11] under some special conditions.

It is well known that problems involving the p-Laplacian operator
appear in many areas of applied mathematics and physics. For example,
they may be found in the study of non-Newtonian fluids, non-linear
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elasticity and reaction-diffusions. In [7] and [12], the authors discussed
the existence of a ground state solution and the asymptotic behavior of
ground states for the following equation

(1.2) −△pu+ P (|x|)up−1 = Q(|x|)uq−1,

under the condition that P (|x|) > 0. In [10], Liu studied the existence
of ground states for a class of more general p-Laplacian equations.

To the best of author’s knowledge, not much is known about the
existence of a ground state solution to (1.2) and their general versions
in RN under the condition P (|x|) < 0.

In this paper, we study the existence of a ground state solution for
the following problem

(1.3)

 −△pu− |u|p−2u+ |u|q−2u = f(u)
u > 0
u ∈ W 1,p(RN ) ∩ Lq(RN )

where △pu = div(|∇u|p−2∇u), N ≥ 3, 1 ≤ q < p < N , f : R → R is a
continuous function satisfying the following standard condition

(1.4) f(s) ≤ C(sp
∗−1 + sp−1),

for all s > 0 and some constants C > 0.
Let F (s) =

∫ s
0 f(t)dt and

(1.5) G(s) =
1

p
|s|p + F (s)− 1

q
|s|q.

To guarantee the existence of a solution for problem (1.3), we suppose
that there exists ξ > 0 such that G(ξ) > 0 which is a necessary condition
for existence of a solution of problem (1.3) (see [5]).

It is worth pointing out that if there exist constants λ > 0 and m ∈
(p, p∗) such that f(s) ≥ λsm−1 holds for every s > 0, then λsm−1 ≤
f(s) ≤ C(sp

∗−1 + sp−1) and G(s) = 1
p |s|

p + F (s) − 1
q |s|

q > 0 can be

satisfied by large enough s > 0. Therefore, the hypotheses f(s) ≤
C(sp

∗−1+sp−1) for all s > 0 and G(ξ) > 0 for some ξ > 0 are reasonable.
The main result of this paper is

Theorem 1.1. Suppose that there exists a constant C > 0 such that
f(s) ≤ C(sp

∗−1 + sp−1) for all s > 0. If there exists ξ > 0 such that
G(ξ) > 0, then (1.3) possesses a nontrivial ground state solution.

Similar to [1], our result is obtained without the Ambrosetti-Rabinowitz

condition and the condition that f(s)
s is increasing in (0,∞).
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2. Notations and preliminaries

Since we seek positive solutions, without loss of generality, we may
assume that f(s) = 0 for s ≤ 0. In order to discuss the existence of a
ground state solution for (1.3), we consider the following minimization
problem

(2.1) A = inf{1
p

∫
RN

|∇u|p : u ∈ W 1,p(RN ) ∩ Lq(RN ),

∫
RN

G(u) = 1},

where G(s) is defined in (1.5) and F (s) =
∫ s
0 f(t)dt with f satisfying

condition (1.4).
Similar to [4] and [11], we let E = W 1,p(RN ) ∩ Lq(RN ). It is obvious

that E is a Banach space under the following norm

||u|| = ||∇u||p + ||u||q,

where || · ||r denotes the standard normal in Lr(RN ).
We recall that the Schwartz symmetrized function f∗ of f ∈ L1(RN )

is a radial, nonincreasing function of r = |x| such that

(2.2)

∫
RN

H(f)dx =

∫
RN

H(f∗)dx

for every continuous function H with H(f) is integrable (for more de-
tails, please see [5]). Since (1.3) is an autonomous problem, by (2.2) we
conclude that under the Schwartz symmetrization process we can mini-
mize problem (2.1) on the space Erad, the subspace of E formed by radi-
ally symmetric functions. Furthermore, according to the same method
as in [5], we can easily prove that the set {u ∈ W 1,p(RN ) ∩ Lq(RN ) :∫
RN G(u) = 1} is not empty.

3. Some lemmas

To prove Theorem 1.1, we need to establish some useful lemmas.

Lemma 3.1. There exists a constant d > 0 such that for any u ∈ E we
have

1

q
||u||qq ≥ (C +

2

p
)||u||pp − d||u||p

∗

p∗ ,

where p∗ = pN
N−p > p > q.
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Proof. Consider the following function

h(s) =
(C + 2

p)|s|
p − 1

q |s|
q

|s|p∗
, s ̸= 0.

We observe that if 0 < |s| < ( 1
q(C+ 2

p
)
)

1
p−q , then h(s) < 0. On the other

hand, since p∗ = pN
N−p > p > q, we have lim|s|→+∞ h(s) = 0. Therefore

we conclude that there exists d > 0 such that

(3.1) (C +
2

p
)|s|p − 1

q
|s|q ≤ d|s|p∗ .

Putting s = |u| in (3.1) and then integrating, the lemma is proved. □

Lemma 3.2. Any minimizing sequence {un} for (2.1) is bounded in
Erad.

Proof. If {un} is a minimizing sequence for (2.1), then we have

(3.2) lim
n→∞

1

p

∫
RN

|∇un|p = A and

∫
RN

G(un) = 1.

By (1.4), we obtain

(3.3) F (s) =

∫ s

0
f(t)dt ≤ C(sp

∗
+ sp).

According to (1.5), (3.2) and (3.3), we get

(3.4) 1 ≤ 1

p
||un||pp + C||un||pp + C||un||p

∗

p∗ −
1

q
||un||qq.

By Lemma 3.1 and (3.4), we get

(3.5) 1 +
1

p
||un||pp ≤ (C + d)||un||p

∗

p∗ .

Since limn→∞
1
p

∫
RN |∇un|p = A, then

∫
RN |∇un|p is bounded. By the

Gagliardo-Nirenberg inequality we conclude that ||un||p
∗

p∗ is also bounded.

Thus, it follows from (3.5) that ||un||pp is bounded. By (3.4), ||un||qq
is bounded, and consequently, we conclude that {un} is bounded in
Erad. □

Lemma 3.3. The number A given by (2.1) is positive, that is, A > 0.
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Proof. From the definition of A, it is clear that A ≥ 0. Assume by
contradiction that A = 0. Similar to [1], we let {un} be a minimizing
sequence in Erad to A = 0, then we have

lim
n→∞

1

p

∫
RN

|∇un|p = 0 and

∫
RN

G(un) = 1.

Therefore, by the Gagliardo-Nirenberg inequality we conclude that

lim
n→∞

∫
RN

|un|p
∗
= 0.

On the other hand, by (3.5) we have ||un||p
∗

p∗ ≥ 1
C+d . Therefore, we get

a contradiction which means that A > 0. □
Lemma 3.4. ([5]) If u ∈ Lp(RN ), and 1 ≤ p < +∞ is a radial nonin-
creasing function, then

|u(x)| ≤ |x|−
N
p (

N

|SN−1|
)
1
p ||u||p, x ̸= 0,

where |SN−1| is the volume of the unit sphere in RN .

Lemma 3.5. The number A given by (2.1) is attained by some functions
in the following set

W = {u ∈ W 1,p(RN ) ∩ Lq(RN ) :

∫
RN

G(u) = 1}.

Proof. Let {un} ⊂ Erad be a minimizing sequence for (2.1). By Lemma
3.2, we conclude that there is a subsequence of {un}, we also denoted
{un} such that {un} converges weakly in E almost everywhere in RN to a
function u ∈ E. Since every un is radial, nonnegative and nonincreasing
with r = |x|, then u is radial, nonnegative and nonincreasing with r =
|x|. Note that un ∈ Lq(RN ), and by Lemma 3.4 we have

(3.6) |un(x)| ≤ |x|−
N
q (

N

|SN−1|
)
1
q ||un||q.

Since ||un||qq is bounded, by (3.6) we conclude that there exists a constant

b > 0 such that |un(x)| ≤ b|x|−
N
q . Therefore, we have

(3.7) |un(x)|p ≤ bp|x|−
pN
q and |un(x)|p

∗ ≤ bp
∗ |x|−

p∗N
q .

Since p > q and p∗ > q, we have |x|−
pN
q ∈ L1(RN ) and |x|−

p∗N
q ∈

L1(RN ). Thus, by (3.7) we get

(3.8) F (un) ≤ C(|un|p
∗
+|un|p) ≤ C(bp|x|−

pN
q +bp

∗ |x|−
p∗N
q ) ∈ L1(RN ).
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Since {un} converges almost everywhere in RN to u and F is continuous,
then we have F (un) → F (u) almost everywhere. Therefore, by (3.8) and
Lebesgue’s dominated convergence theorem we obtain

(3.9) F (un) → F (u) in L1(RN ).

On the other hand, since ||un||qq and ||un||p
∗

p∗ are bounded,

(3.10) sup
n

∫
RN

(|un|q + |un|p
∗
) < +∞.

By (3.6), we have un(x) → 0 as |x| → +∞, uniformly with respect to n.
It follows from p∗ > p > q ≥ 1 that

(3.11) lim
|s|→0

|s|p

|s|q + |s|p∗
= lim

|s|→0

|s|p−q

1 + |s|p∗−q
= 0,

and

(3.12) lim
|s|→+∞

|s|p

|s|q + |s|p∗
= 0.

Since |un|p converges to |u|p almost everywhere in RN , by (3.10), (3.11),
(3.12) and the compactness lemma of Strauss we conclude that

(3.13) lim
n→+∞

∫
RN

|un|p =
∫
RN

|u|p.

By (1.5), (3.9), (3.13) and Fatou’s lemma, we have

(3.14) 1 ≤ 1

p

∫
RN

|u|p +
∫
RN

F (u)− 1

q

∫
RN

|u|q.

The inequality (3.14) means that
∫
RN G(u) ≥ 1. If u is not in W , one

should have

(3.15)

∫
RN

G(u) > 1.

Similar to [1], we define a function h : [0, 1] → R as h(t) =
∫
RN G(tu). It

is obvious that h is continuous. Since G(tu) = 1
p |tu|

p + F (tu) − 1
q |tu|

q,

F (tu) ≤ C(|tu|p∗ + |tu|p) and p∗ > p > q ≥ 1, we conclude that h(t) < 1
for t close to 0. By (3.15), we have h(1) > 1. Therefore, there exists
t0 ∈ (0, 1) such that h(t0) = 1, which means that t0u ∈ W . On the other
hand, since the minimizing sequence {un} for (2.1) converges weakly to
u, then

(3.16)
1

p

∫
RN

|∇u|p ≤ lim inf
n→+∞

1

p

∫
RN

|∇un|p = A.
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Since t0 ∈ (0, 1) and t0u ∈ W , by (3.16) we have

A ≤ 1

p

∫
RN

|∇t0u|p =
tp0
p

∫
RN

|∇u|p < A.

This is a contradiction. Therefore, u ∈ W and 1
p

∫
RN |∇u|p = A. □

Let T (u) = 1
p

∫
RN |∇u|p and V (u) =

∫
RN G(u). It is well known that

T and V are C1 functionals on E.

Lemma 3.6. Suppose that J(w) = 1
p

∫
RN |∇w|p −

∫
RN H(w) is a C1

function on a suitable Banach space. If u is a critical point of J , then

(3.17) (N − p)

∫
RN

|∇u|p = pN

∫
RN

H(u).

Proof. Let σ > 0 and

uσ = u(
x

σ
) = u(

x1
σ
,
x2
σ
, · · · , xN

σ
) = u(y1, y2, · · · , yN ).

Direct calculation shows that∫
RN

|∇uσ|pdx =
1

σp

∫
RN

{( ∂u
∂y1

)2 + (
∂u

∂y2
)2 + · · ·+ (

∂u

∂yN
)2}

p
2 dx

=
1

σp

∫
RN

σN{( ∂u
∂y1

)2 + (
∂u

∂y2
)2 + · · ·+ (

∂u

∂yN
)2}

p
2 dy

= σN−p

∫
RN

|∇u|p.

Similarly, we have
∫
RN H(uσ) = σN

∫
RN H(u). Thus, we obtain

J(uσ) =
σN−p

p

∫
RN

|∇u|p − σN

∫
RN

H(u).

Since u is a critical point of J , then d
dσ |σ=1J(uσ) = 0, which means that

(3.17) holds. □

Lemma 3.7. If u is a solution of (1.3), then S(u) = 1
N T (u) > 0, where

S(u) = 1
p

∫
RN |∇u|p −

∫
RN G(u), T (u) = 1

p

∫
RN |∇u|p.

Proof. By Lemma 3.6, we have

S(u) =
1

p
(1− N − p

N
)T (u) =

1

N
T (u) > 0.

□
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4. The proof of Theorem 1.1

Proof. Suppose that un, u, V and T are functions defined in Section
3. Since V and T are C1 functionals on E, there exists a Lagrange
multiplier θ such that T ′(u) = θV ′(u). If θ = 0 or V ′(u) = 0, then
A = 0 which contradicts Lemma 3.3. Therefore, θ ̸= 0 and V ′(u) ̸= 0.
Choose a function w ∈ C∞

0 (RN ) such that ⟨V ′(u), w⟩ > 0. It is obvious
that V (u+ εw) = V (u) + ε⟨V ′(u), w⟩+ o(ε) and

T (u+ εw) = T (u) + εθ⟨V ′(u), w⟩+ o(ε) for ε → 0.

If θ < 0, then one can find ε > 0 small enough so that v = u + εw
satisfies V (v) > V (u) = 1 and T (v) < T (u) = A. Therefore, there exists
σ ∈ (0, 1) such that vσ = v(xσ ) satisfies V (vσ) = 1 and T (vσ) < A, which
is impossible. Hence θ > 0. Thus u satisfies, at least in the distribution
sense, the equation

−△pu = θ(|u|p−2u− |u|q−2u+ f(u)) in RN .

Set uσ = u(xσ ). Direct calculation shows that∇uσ = 1
σ∇u and |∇uσ|p−2 =

1
σp−2∇u. Therefore, we have

△puσ = |∇uσ|p−2△uσ + (p− 2)|∇uσ|p−3∇uσ · ∇|∇uσ| =
1

σp
△pu.

Thus, we conclude that u( x
p√
θ
) = u p√

θ is a solution of problem (1.3).

Using Lemma 3.6 and Lemma 3.7, similar to the method in the proof of
Theorem 3 in [5], we have

0 < S(u p√
θ) ≤ S(v),

where v is any solution of problem (1.3). Therefore, u p√
θ is a ground

state solution of problem (1.3). □
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Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 6, 947–974.

[8] M. Ghimenti and A. M. Micheletti, Solutions for a nonhomogeneous nonlinear
Schrödinger equation with double power nonlinearity, Differential Integral Equa-
tions 20 (2007), no. 10, 1131–1152.

[9] L. Jeanjean and K. Tanaka, A remark on least energy solutions in RN , Proc.
Amer. Math. Soc. 131 (2003), no. 8, 2399–2408

[10] S. B. Liu, On ground states of superlinear p-Laplacian equations in RN , J. Math.
Anal. Appl. 361 (2010), no. 1, 48–58

[11] H. Ounaies, Study of an elliptic equation with a singular potential, Indian J.
Pure Appl. Math. 34 (2003), no. 1, 111–131.

[12] J. B. Su, Z. Q. Wang and M. Willem, Weighted sobolev embedding with un-
bounded and decaying radial potentials, J. Differential Equations 238 (2007),
no. 1, 201–219.

(Yi Hua Deng) Department of Mathematics and Computational science,
Hengyang Normal University, P.O. Box 421002, Hengyang, China

E-mail address: dengchen4032@126.com


	1. Introduction
	2. Notations and preliminaries
	3. Some lemmas
	4. The proof of Theorem 1.1
	References

