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Abstract. The global generalized minimum residual (Gl-GMRES)
method is examined for solving the generalized Sylvester matrix
equation

q∑
i=1

AiXBi = C.

Some new theoretical results are elaborated for the proposed method
by employing the Schur complement. These results can be exploited
to establish new convergence properties of the Gl-GMRES method
for solving general (coupled) linear matrix equations. In addi-
tion, the Gl-GMRES method for solving the generalized Sylvester-
transpose matrix equation is briefly studied. Finally, some numer-
ical experiments are presented to illustrate the efficiently of the
Gl-GMRES method for solving the general linear matrix equations.
Keywords: Linear matrix equation, Krylov subspace, global GM-
RES, Schur complement.
MSC(2010): Primary: 65F10; Secondary: 15A24.

1. Introduction

Consider the generalized Sylvester matrix equation

(1.1)

q∑
i=1

AiXBi = C,
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where the matrices Ai ∈ Rn×n, Bi ∈ Rp×p (i = 1, 2, . . . , q) and C ∈ Rn×p

are given and X ∈ Rn×p is an unknown matrix to be determined.
The linear matrix equations arise in the solution of large eigenvalue

problems and in the boundary value problems. Moreover, they play a
central role in the control and communication theory and image restora-
tion; for further details see [1, 2, 11] and the references therein.

Note that the linear matrix equation (1.1) can be reformulated by the
following np× np linear system:

(1.2) Avec(X) = vec(C),

where A :=
q∑

i=1
(BT

i ⊗Ai). Evidently, (1.1) has a unique solution if and

only if the coefficient matrix A is nonsingular. Throughout this paper,
we assume that this condition is satisfied. It is true that the Krylov
subspace methods can be used to solve the linear system (1.2). Never-
theless, even for moderate values of n and p, the size of the coefficient
matrix A may become too large and the Krylov subspace methods con-
sume more computer time and memory once the size of the system is
large. To overcome these complications and drawbacks, we first consider
the following linear operator M defined as

M : Rn×p → Rn×p,

X 7→ M(X) :=

q∑
i=1

AiXBi.

Therefore, we can rewrite Equation (1.1) as follows:

(1.3) M(X) = C.

Hence, the Gl-GMRES method [6] can be utilized for solving (1.3) which
is equivalent to the matrix equation (1.1).

Notations: For a given matrix X ∈ Rn×p, the notation vec(X) stands
for a vector of dimension np obtained by stacking the columns of the ma-
trix X. For an arbitrary square matrix Z, det(Z) denotes the determi-
nant of Z, tr(Z) represents the trace of Z and λmin(Z) (λmax(Z)) signifies
the smallest (largest) eigenvalue of Z. For two given matrices X ∈ Rn×p

and Y ∈ Rq×l, the Kronecker product X ⊗ Y is the nq × pl matrix de-
termined by X ⊗ Y = [Xi,jY ]. For two given matrices Y,Z ∈ Rn×p, the
inner product ⟨Y, Z⟩

F
is specified by ⟨Y, Z⟩

F
= tr(Y TZ), the associate

norm is the well-known Frobenius norm denoted by ∥.∥
F
. Throughout
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this paper, a set of matrices in Rn×p is said to be F -orthonormal if it is
orthonormal with respect to the scalar product ⟨., .⟩

F
.

This paper is organized as follows. In Section 2, we recollect some
useful definitions and theorems and review some properties of the Schur
complement and the ⋄ and Kronecker products. Section 3 is devoted to
presenting the Gl-GMRES method for solving the generalized Sylvester
matrix equation (1.1). In Section 4, we establish some new theoretical
results for the Frobenius norm of the residual matrix obtained by the Gl-
GMRES method. In Section 5, the Gl-GMRES method is examined for
solving generalized Sylvester-transpose matrix equation by changing the
definition of linear operatorM. In Section 6, two numerical examples are
presented to demonstrate the applicability of the Gl-GMRES method for
solving generalized linear matrix equations. Finally, the paper is ended
with a brief conclusion in Section 7.

2. Preliminaries

In this section, we recall some theorems and concepts which are uti-
lized in the next sections.

Lemma 2.1. (The Kantorovich inequality ) Let B be any symmetric
positive definite real matrix and λmax, λmin be its largest and smallest
eigenvalues, respectively. Then,

(a)

⟨Bx, x⟩
2

⟨
B−1x, x

⟩
2

⟨x, x⟩2
2

≤ (λmax + λmin)
2

4λmaxλmin
, ∀x ̸= 0,

where ⟨x, x⟩2
2
= xTx.

(b)

⟨Bx, x⟩
2

⟨
B−1x, x

⟩
2

⟨x, x⟩2
2

≤ (1 + χ(B))2

4χ(B)
, ∀x ̸= 0,

where χ(Z) is the condition number of the matrix Z.

Proof. See [8]. □

2.1. The ⋄ product.

Definition 2.2. (R. Bouyouli et al. [3] ). Let A = [A1, A2, . . . , Ap] and
B = [B1, B2, . . . , Bℓ] be two given matrices of dimensions n × ps and



On the Gl-GMRES for general Sylvester matrix equation 1100

n× ℓs, respectively, where Ai and Bj are n× s matrices. Then the p× ℓ
matrix AT ⋄B = [(AT ⋄B)ij ] is defined by

(AT ⋄B)ij = ⟨Ai, Bj⟩
F
, i = 1, 2, . . . , p, j = 1, 2, . . . , ℓ.

Proposition 2.3. Let A,B,C ∈ Rn×ps, D ∈ Rn×n, L ∈ Rp×p. Then, we
have
(1) (A+B)T ⋄ C = AT ⋄ C +BT ⋄ C.
(2) AT ⋄ (B + C) = AT ⋄B +AT ⋄ C.
(3) (AT ⋄B)T = BT ⋄A.
(4) (DA)T ⋄B = AT ⋄ (DTB).
(5) AT ⋄ (B(L⊗ Is)) = (AT ⋄B)L.
(6)

∥∥AT ⋄B
∥∥

F
≤ ∥A∥

F
∥B∥F .

Proof. See [3]. □

2.2. Some Schur complement identities. In the current subsection,
we recall the definition of Schur complement and present some of its
properties; see [7, 9, 10] for more details.

Definition 2.4. Let M be a matrix partitioned into four blocks as fol-
lows:

M =

[
A B
C D

]
,

where the submatrix D is assumed to be square and nonsingular. The
Schur complement of D in M is denoted by (M/D) and defined by:

(M/D) = A−BD−1C.

Proposition 2.5. Let A ∈ Rn×s, B ∈ Rn×ks, C ∈ Rk×p, G ∈ Rk×kand
E ∈ Rn×s. If the matrix G is nonsingular, then

ET ⋄
((

A B
C ⊗ Is G⊗ Is

)/
G⊗ Is

)
=

(
ET ⋄A ET ⋄B

C G

)/
G.

Proof. See [3]. □

Proposition 2.6. If the matrices M and D are square and nonsingular,
then

M−1 =

(
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 +D−1C(M/D)−1BD−1

)
.

Proof. See [10]. □
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3. Gl-GMRES for generalized Sylvester matrix equations

In this section we employ the Gl-GMRES method for solving the gen-
eralized Sylvester matrix equation (1.1). Here, we would like to point
out that the Gl-GMRES for solving (1.1) has been experimentally exam-
ined in [2] and the main contribution of the current work is to analyze
the application of the method form a theoretical point of view. To this
end, consider the block Krylov subspace

(3.1) Km(M, R0) = span{R0,M(R0), . . . ,Mm−1(R0)},

where R0 = C −M(X0) and X0 ∈ Rn×p is a given initial guess for the
solution of Equation (1.1).

Now, the global Arnoldi process is presented which constructs an
F -orthonormal basis for the Km(M, R0).

Algorithm 1. Global Arnoldi process.
1. Set V1 = R0/ ∥R0∥F

.
2. For j = 1, 2, . . . ,m Do
3. W := M(Vj)
4. For i = 1, 2, . . . , j Do
5. hij := ⟨W,Vi⟩F
6. W := W − hijVi

7. End for
8. hj+1,j := ∥W∥

F
. If hj+1,j := 0, then stop.

9. Vj+1 := W/hj+1,j

10. End for

Let Vm = [V1, V2, . . . , Vm] and let H̄m = [hij ](m+1)×m
be the Hessenberg

matrix whose nonzero entries are computed by Algorithm 1. Suppose
that Hm is the m×m matrix obtained from H̄m by deleting its last row.
It is not difficult to verify that the global Arnoldi process produces an
F -orthonormal basis V1, V2, . . . , Vm for the block Krylov subspace Km,
i.e., for i, j = 1, 2, . . . ,m, we have{

tr(V T
i Vj) = 0, (i ̸= j)

tr(V T
i Vi) = 1.

Or equivalently, VT
m ⋄ Vm = Im.
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Theorem 3.1. Let Vm, Hm, and H̄m be defined as before. Then the
following relations hold

[M(V1),M(V2), . . . ,M(Vm)] =

q∑
i=1

AiVm(Im ⊗Bi)

= Vm(Hm ⊗ Ip) + hm+1,mVm+1(e
T
m ⊗ Ip),(3.2)

[M(V1),M(V2), . . . ,M(Vm)] =

q∑
i=1

AiVm(Im ⊗Bi)

= Vm+1(H̄m ⊗ Ip).(3.3)

Proof. The relation (3.2) follows from the fact that

q∑
i=1

AiVm(Im ⊗Bi) =

[
q∑

i=1

AiV1Bi,

q∑
i=1

AiV2Bi, . . . ,

q∑
i=1

AiVmBi

]
,

and the following equality obtained from Lines 3-6 and 9 of Algorithm
1,

q∑
i=1

AiVjBi =

j+1∑
k=1

hkjVk, j = 1, 2, . . . ,m.

It is not difficult to verify that the relation (3.3) is a reformulation of
(3.2). □

For a given initial guess X0 ∈ Rn×p, with the corresponding resid-
ual R0 = C −M(X0), the Gl-GMRES computes the new approximate
solution Xm such that

(3.4) Xm ∈ X0 +Km(M, R0),

and

(3.5) Rm ⊥FKm(M,M(R0)),

where Rm = C −M(Xm).
Let Vm be the F -orthonormal basis for Km(M, R0) constructed by the
global Arnoldi process. From (3.4), it can be verified that

(3.6) Xm = X0 + Vm(ym ⊗ Ip),
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where the vector ym ∈ Rm is obtained by imposing the orthogonality
condition (3.5). On the other hand, by some straightforward compu-
tations, it can be shown that ym is the solution of the following least-
squares problem too

min
y∈Rm

∥∥∥∥∥R0 − [

q∑
i=1

AiVm(y ⊗ Ip)Bi]

∥∥∥∥∥
F

= min
y∈Rm

∥∥∥∥∥R0 − [

q∑
i=1

AiVm(Im ⊗Bi)](y ⊗ Ip)

∥∥∥∥∥
F

.(3.7)

Note that in the relation (3.7), we have utilized the following relation

(y ⊗ Ip)Z = (Im ⊗ Z)(y ⊗ Ip).

where Z is an arbitrary p× p real matrix, y ∈ Rm and m is a given
integer. On the other hand, from (3.3), we have∥∥∥∥∥R0 − [

q∑
i=1

AiVm(Im ⊗Bi)](y ⊗ Ip)

∥∥∥∥∥
F

=
∥∥Vm+1((βe1 − H̄my)⊗ Ip)

∥∥
F
.

Therefore, we conclude that ym is the solution of the following least-
squares problem

(3.8) min
y∈Rm

∥∥βe1 − H̄my
∥∥

2
.

Like the GMRES algorithm [8], in application, the Gl-GMRES algo-
rithm is restarted every m inner iterations, where m is a given fixed
integer and the corresponding algorithm is denoted by Gl-GMRES (m)
and presented as follows:

Algorithm 2. Gl-GMRES (m) algorithm for (1.1).
1. Choose X0, and a tolerance ϵ. Compute R0 = C − M(X0) and
V1 = R0.
2. Construct the orthonormal basis V1, V2, . . . , Vm by Algorithm 1.
3. Determine ym as the solution of the least-squares problem

min
y∈Rm

∥∥βe1 − H̄my
∥∥

2
.

4. Calculate Xm = X0 + Vm(ym ⊗ Ip).
5. Compute the residual Rm and ∥Rm∥

F
.

6. If
∥Rm∥

F
∥R0∥

F

< ϵ Stop; else R0 := Rm, V1 := R0, Go to 2.
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The weighted versions of the Krylov subspace methods for solving
the matrix equation AX = B are studied in [5]. To improve the speed
of convergence of the Gl-GMRES method to solve general (coupled)
linear matrix equations, the application of weighted versions of the Gl-
GMRES method can also be a subject of interest to be discused from
both theoretical and experimental points of view.

3.1. Complexity considerations. In the following, a rough estima-
tion of the operation requirements for each restart of Algorithm 2 is
determined. In the second line of the algorithm, the global Arnoldi
process (Algorithm 1) is performed. Accordingly, we first compute the
complexity of Algorithm 1. Suppose that Nz(Ai) and Nz(Bi) are the
number of nonzero elements of Ai and Bi for i = 1, 2, . . . , q respectively.

In Line 3 of Algorithm 1, we must establish by calculation M(Vj)
where Vj ∈ Rn×p and

M(Vj) =

q∑
i=1

AiVjBi, j = 1, 2, . . . m.

For calculating Si = AiVjBi, in practice, we first figure Si = AiVj and
then Si = SiBi. That is, p matrix-vector and n vector-matrix products
are computed to obtain Si = AiVjBi. Hence, the total operations over
m steps can be approximated by

2mp

q∑
i=1

Nz(Ai) + 2mn

q∑
i=1

Nz(Bi).

Each one of the Frobenius scalar products requires 2np operations. Thence,
each of the Gram-Schmidt steps (Lines 5 and 6 of Algorithm 1) needs
approximately 4 × j × np operations which offer m steps to roughly
2m2np operations.

To compute the rest of the required operations in Algorithm 2, we
point out that the costs of Lines 4, 5 and 6 are trifling relative to the
cost of Line 3. In Line 3 of Algorithm 2, we must solve a least-square
problem of size (m + 1) × m at each restart. To this end, the QR
decomposition of H̄m based on Givens rotations is exploited (see pages
162 and 163 of [8]). It is not difficult to verify that the number of
required operations for computing ym in Line 3 of Algorithm 2 can be
estimated by m2 + 3(m− 1)(m− 2) + 18m. Therefore the total costs of
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Algorithm 2, at each restart, is roughly

2mp

q∑
i=1

Nz(Ai) + 2mn

q∑
i=1

Nz(Bi) + 2m2np+ 4m2.

We assume that Ai and Bi (i = 1, 2, . . . , q) are sparse matrices. Conse-
quently, at each restart, the total cost of Algorithm 2 may be approxi-
mated by O(m2np).

4. New theoretical results on the Gl-GMRES

Recently, Bouyouli et al. [3, 4] have established some new theoretical
results for the global minimal residual (Gl-MR) method to solving the
multiple linear system AX = B. However different versions of these
results can be derived by using the orthonormal basis of the block Krylov
subspace constructed by the global Arnoldi process.

Considering the orthonormal basis Vm of Km(M, R0). We develop
some new theoretical results for the Gl-GMRES method for solving (1.1).

For simplicity, we signify Wm as follows:

(4.1) Wm := [M(V1),M(V2), . . . ,M(Vm)] =

q∑
i=1

AiVm(Im ⊗Bi).

The orthogonality condition (3.5) implies that

0 = WT
m ⋄Rm

= WT
m ⋄ [R0 −

q∑
i=1

AiVm(Im ⊗Bi)(y ⊗ Ip)]

= WT
m ⋄R0 −WT

m ⋄ (Wm(y ⊗ Ip)).

Consequently, ym is the solution of the following linear system

(4.2) (WT
m ⋄Wm)ym = WT

m ⋄R0.

From Equation (4.2), we infer that ym exists if and only if WT
m ⋄Wm is

a nonsingular matrix. In this paper, we assume that this condition is
satisfied. Straightforward computations demonstrate that

Rm = R0 −Wm[(WT
m ⋄Wm)−1(WT

m ⋄R0)⊗ Ip]

= R0 −Wm[(WT
m ⋄Wm)−1 ⊗ Ip][(WT

m ⋄R0)⊗ Ip].
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From the definition of the Schur complement, we derive:
(4.3)

Rm =

([
R0 Wm

(WT
m ⋄R0)⊗ Ip (WT

m ⋄Wm)⊗ Ip

]/
(WT

m ⋄Wm)⊗ Ip

)
.

Theorem 4.1. Assume that WT
m ⋄ Wm is nonsingular. The residual

matrix Rm, obtained by the Gl-GMRES algorithm at step m, satisfies
the following relation

(4.4) ∥Rm∥2
F
=

det[V̄T
m+1 ⋄ V̄m+1]

det[WT
m ⋄Wm]

,

where V̄m+1 = [R0,Wm].

Proof. From the orthogonality condition (3.5), we get

RT
m ⋄Rm = RT

0 ⋄Rm.

By using Proposition 2.5 and Equation (4.3), we have

RT
0 ⋄Rm =

([
RT

0 ⋄R0 RT
0 ⋄Wm

WT
m ⋄R0 WT

m ⋄Wm

]/
WT

m ⋄Wm

)
= (V̄T

m+1 ⋄ V̄m+1/WT
m ⋄Wm).

Or equivalently,

(4.5) RT
m ⋄Rm = (V̄T

m+1 ⋄ V̄m+1/WT
m ⋄Wm).

(Note that ∥Rm∥2
F
= RT

m ⋄Rm is a scalar.) □

Theorem 4.2. At step m, assume that Rm denotes the residual produced
by the Gl-GMRES method. Then we have

(4.6) ∥Rm∥2
F
=

det

([
β2 βeT1 Hm

βHT
me1 H̄T

mH̄m

])
det[H̄T

mH̄m]
,

where β = ∥R0∥F
.

Proof. Invoking Equation (3.3), it can be derived that

WT
m ⋄Wm = (Vm+1(H̄m ⊗ Ip))

T ⋄ (Vm+1(H̄m ⊗ Ip)).

Since VT
m+1 ⋄ Vm+1 = I, we deduce that

(4.7) WT
m ⋄Wm = H̄T

m(VT
m+1 ⋄ Vm+1)H̄m = H̄T

mH̄m.
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Using Equation (3.2), we may verify that

RT
0 ⋄Wm = RT

0 ⋄ [Vm(Hm ⊗ Ip) + hm+1,mVm+1(e
T
m ⊗ Ip)]

= (RT
0 ⋄ Vm)Hm + hm+1,m(RT

0 ⋄ Vm+1)e
T
m.(4.8)

It is known that RT
0 = βV1 and V T

1 ⋄ Vi = 0 for i ≠ 1. Hence, we can
rewrite (4.8) as follows:

(4.9) RT
0 ⋄Wm = (RT

0 ⋄ Vm)Hm = βeT1 Hm.

On the other hand,

(4.10) V̄T
m+1 ⋄ V̄m+1 =

[
RT

0 ⋄R0 RT
0 ⋄Wm

WT
m ⋄R0 WT

m ⋄Wm

]
.

By substituting (4.7) and (4.9) in the above relation, the result follows
from Theorem 4.1 immediately. □

Theorem 4.3. Let V̄m+1 = [R0,Wm]. Moreover, suppose that V̄T
m+1 ⋄

V̄m+1 and WT
m ⋄ Wm are nonsingular matrices. Then, the residual Rm

satisfies the following relation

(4.11) ∥Rm∥2
F
=

1

eT1 (V̄T
m+1 ⋄ V̄m+1)−1e1

.

Proof. By the assumption V̄T
m+1 ⋄ V̄m+1 and WT

m ⋄ Wm are nonsingular

matrices, therefore the Schur complement (V̄T
m+1 ⋄ V̄m+1)/(WT

m ⋄Wm) is
nonzero. Using Proposition 2.6, we achieve to the following relation

eT1 (V̄T
m+1 ⋄ V̄m+1)

−1e1 =
1

(V̄T
m+1 ⋄ V̄m+1/WT

m ⋄Wm)
.

Now, the result follows immediately from (4.5).
□

Proposition 4.4. Assume that Z = [Z1, Z2, . . . , Zk] and Zi ∈ Rn×p

for i = 1, 2, . . . , k. Furthermore, suppose that ZT ⋄ Z is a nonsingular
matrix. Then ZT ⋄ Z is a symmetric positive definite matrix.
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Proof. Evidently ZT ⋄ Z is a symmetric matrix. Assume that y ∈ Rk is
an arbitrary nonzero vector. Using Proposition 2.3, we have

yT (ZT ⋄ Z)y = yT (ZT ⋄ (Z(y ⊗ Ip)))

= (Z(y ⊗ Ip))
T ⋄ (Z(y ⊗ Ip))

= ∥Z(y ⊗ Ip)∥2
F
≥ 0.

Now, it is sufficient to show that

∥Z(y ⊗ Ip)∥2
F
> 0.

To this end, suppose that ∥Z(y ⊗ Ip)∥2
F
= 0 which implies that Z(y ⊗

Ip) = 0. Thus, ZT ⋄ (Z(y ⊗ Ip)) = 0. This is equivalent to say that
(ZT ⋄ Z)y = 0, which is a contradiction. □

Theorem 4.5. Under the same assumptions as in Theorem 4.3, the
residual Rm satisfies the following relation

4χ(V̄T
m+1 ⋄ V̄m+1)

(1 + χ(V̄T
m+1 ⋄ V̄m+1))2

≤
∥Rm∥2

F

∥R0∥2F
≤ 1,

where χ(V̄T
m+1⋄V̄m+1) is the condition number of the matrix V̄T

m+1⋄V̄m+1.

Proof. From Proposition 4.4, we may conclude that (WT
m ⋄ Wm)−1 is a

symmetric positive definite matrix. Hence, the relations (4.5) and (4.10)
imply that

∥Rm∥2
F
= (V̄T

m+1 ⋄ V̄m+1/WT
m ⋄Wm)

= RT
0 ⋄R0 − [RT

0 ⋄Wm](WT
m ⋄Wm)−1[RT

0 ⋄Wm]T ≤ RT
0 ⋄R0.(4.12)

By Theorem 4.3, Lemma 2.1 and the fact that

RT
0 ⋄R0 = eT1 (V̄T

m+1 ⋄ V̄m+1)e1,

we may conclude that

RT
0 ⋄R0 ≥

1

eT1 (V̄T
m+1 ⋄ V̄m+1)

−1e1
≥

4χ(V̄T
m+1 ⋄ V̄m+1)

(1 + χ(V̄T
m+1 ⋄ V̄m+1))

2
RT

0 ⋄R0.

□

Remark 4.6. The above theorem shows that the Gl-GMRES is not con-
vergent as long as the matrix V̄T

m ⋄ V̄m is well conditioned.
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Remark 4.7. From (4.12), it can be easily verified that where RT
0 ⋄

Wm ̸= 0, at each restart, the norm of the residual matrix decreases
strictly. On the other hand, from (4.9), it can be concluded that if
RT

0 ⋄ Wm = 0 then the matrix Hm is singular. Therefore, it seems
that if at each iteration the matrix Hm is a nonsingular matrix the well
conditioning of V̄T

m ⋄ V̄m does not cause losing of the convergence.

Here, we would like to comment that by developing the approach
elaborated in Chapter 5 of [8], an upper bound for the norm of the
residual matrix can be established. To this end, considering the relation
(4.12), it is can be observed that

∥Rm∥2
F
= RT

0 ⋄R0 − [RT
0 ⋄Wm](WT

m ⋄Wm)−1[RT
0 ⋄Wm]T .

By (4.9), it is known that RT
0 ⋄Wm = ∥R0∥F

eTH. Assume that ∥R0∥F
̸=

0, Hm is nonsingular and H1,m stands for its first row. Under the same
assumptions as in Theorem 4.3, straightforward computations show that

∥Rm∥2
F
= ∥R0∥2F

[
1−

⟨
(WT

m ⋄Wm)−1H1,m , H1,m

⟩
2

]
= ∥R0∥2F

[
1−

⟨
(WT

m ⋄Wm)−1H1,m ,H1,m

⟩
2⟨

H1,m ,H1,m

⟩
2

⟨
H1,m ,H1,m

⟩
2

]
.

Note that Proposition 4.4 implies that (WT
m ⋄ Wm)−1 is a symmetric

positive definite matrix, consequently⟨
(WT

m ⋄Wm)−1H1,m ,H1,m

⟩
2⟨

H1,m ,H1,m

⟩
2

≥ λmin

(
(WT

m ⋄Wm)−1
)
.

Hence, it can be concluded that

∥Rm∥2
F
≤ ∥R0∥2F

{
1− λmin

(
(WT

m ⋄Wm)−1
) ∥∥H1,m

∥∥2
2

}
,

which is equivalent to say that

∥Rm∥
F
≤ ∥R0∥F

{
1− λmax

(
WT

m ⋄Wm

) ∥∥H1,m

∥∥2
2

} 1
2
.

Let m be a given positive integer. In the rest of this section, suppose

that H
(s)
m and V(s)

m = [V
(s)
1 , V

(s)
2 , . . . , V

(s)
m ] are computed by the global

Arnoldi process at sth restart. Corresponding to V(s)
m , at sth restart,

we consider W(s)
m = [W

(s)
1 ,W

(s)
2 , . . . ,W

(s)
m ] in which W

(s)
j = M(V

(s)
j )

for j = 1, 2, . . . ,m. In what follows, at each restart, we assume that



On the Gl-GMRES for general Sylvester matrix equation 1110

(W(s)
m )T ⋄ W(s)

m is a nonsingular matrix. Moreover, suppose that R
(s)
m

and R
(s)
0 are the corresponding residual matrices computed in Algorithm

2. Note that R
(s)
0 = R

(s−1)
m . From Theorem 4.5, it is known that the

sequence ∥R(s)
m ∥F should generally converge but not necessarily toward

0. Consider the case that ∥R(s)
m ∥F converges to a nonzero constant. It

means that for (eventually) large s, the norm of ∥R(s)
m ∥F becomes a

nonzero constant. In this case, from (4.12), we get

(R
(s)
0 )T ⋄W(s)

m = 0.

Now, (4.9) implies that H
(s)
m is a singular matrix.

In the following theorem, we present sufficient conditions under which

the sequence ∥R(s)
m ∥F converges to zero as s → ∞, i.e., conditions under

which Algorithm 2 converges to the exact solution of (1.1).

Theorem 4.8. Let V(s)
m = [V

(s)
1 , V

(s)
2 , . . . , V

(s)
m ] and W(s)

m = [W
(s)
1 ,W

(s)
2 ,

. . . ,W
(s)
m ] be defined as before. Assume that at each restart of Algorithm

2, (W(s)
m )T ⋄ W(s)

m is a nonsingular matrix (s = 1, 2, . . .). If the linear
operator M satisfies the following condition

(4.13) ⟨Z,M(Z)⟩
F
̸= 0, ∀Z ∈ Rn×p (Z ̸= 0),

then,

∥R(s)
m ∥F → 0 as s → ∞,

where R
(s)
m = C−M(X

(s)
m ) and X

(s)
m is the approximate solution to (1.1)

computed by Algorithm 2 (Gl-GMRES (m)).

Proof. From Theorem 4.5, it can be found that ∥R(s)
m ∥F is a convergent

sequence. Let ∥R(s)
m ∥F → ℓ as s → ∞. It is known that (W(s)

m )T ⋄ W(s)
m

is a symmetric positive definite matrix. Assume that ℓ ̸= 0. Hence,

we conclude that R
(s)
0 ̸= 0. Therefore, using (4.12) and the fact that

V
(s)
1 = R

(s)
0 /β(s), we find that β(s)((V

(s)
1 )T ⋄W(s)

m ) → 0 as s → ∞ where

β(s) = ∥R(s)
0 ∥F . That is, (V

(s)
1 )T ⋄ W(s)

m = 0 for (eventually) large s.

Hence, we have
⟨
V

(s)
1 ,M(V

(s)
1 )

⟩
F

= 0 whereas V
(s)
1 ̸= 0 which is on the

contrary with (4.13). □
Remark 4.9. Recently, Beik and Salkuyeh [1] have introduced the ⊚
product to illustrate how the Gl-FOM and Gl-GMRES methods can be
handled for solving the coupled linear matrix equations. The theoretical



1111 Panjeh Ali Beik

results, presented in this section, can be extended for the Gl-GMRES
method for solving the mentioned coupled linear matrix equations in [1].
To this end, it is sufficient to replace the ⋄ product by the ⊚ product.

5. Gl-GMRES for more general linear matrix equation

Recently, Xie et al. [11] have considered the following general linear
matrix equation

(5.1)

p∑
i=1

AiXBi +

q∑
i=1

CiX
TDi = F,

where Ai ∈ Rr×m, Bi ∈ Rn×s, Ci ∈ Rr×n, Di ∈ Rm×s and F ∈ Rr×s

are given constant matrices, X ∈ Rm×n is the unknown matrix to be
determined. In the case that (5.1) has a unique solution, a gradient based
iterative algorithm with its convergence analysis have been presented
for solving (5.1). Given an arbitrary initial approximate solution X(0),
the proposed method computes the sequence of approximate solutions{
X(k)

}∞
k=1

of (5.1) by the following recursive formulas

X(k) = 1
p+q

[
p∑

j=1

X
(k)
j +

q∑
l=1

X
(k)
p+l

]
,

X
(k)
j = X(k−1) + µAT

j

[
F −

p∑
i=1

AiX
(k−1)Bi −

q∑
l=1

Ci(X
(k−1))TDi

]
BT

j ,

X
(k)
p+l = X(k−1) + µDl

[
F −

p∑
i=1

AiX
(k−1)Bi −

q∑
l=1

Ci(X
(k−1))TDi

]T
Cl.

A conservative choice of the convergence factor µ is 0 < µ < µ0 where

(5.2)

µ0 = 2


p∑

j=1

λmax

[
AjA

T
j

]
λmax

[
BT

j Bj

]
+

q∑
l=1

λmax

[
ClC

T
l

]
λmax

[
DT

l Dl

]
−1

.

As seen, the presented method is not suitable for large matrices (for
further details see [11]).

Consider a special case where the matrices Ai, Bi, Ci and Di are
squares matrices of the same order. In this section, we show that the
Gl-GMRES method can be applied for solving (5.1) with a minor change
in Algorithms 1 and 2. In Section 6, we examine the numerical example
presented in [11]. The reported results reveal that even for small size
matrices the Gl-GMRES method surpasses the gradient based iterative



On the Gl-GMRES for general Sylvester matrix equation 1112

in terms of both number of iterations and CPU-times(s). In what fol-
lows, we presume that in (5.1) the coefficient matrices Ai, Bi, Ci and Di

are n× n real matrices.
With a similar to the manner exploited in Section 1, we may rewrite

(5.1) by M̂(X) = F where the linear operator M̂ is specified as

M̂ : Rn×n → Rn×n,

X 7→ M̂(X) =

p∑
i=1

AiXBi +

q∑
i=1

CiX
TDi.

Using the linear operator M̂ instead of M in the Line 3 of Algo-
rithm 1, we may construct an F -orthonormal basis for Km(M̂, R0) =

span{R0,M̂(R0), . . . ,M̂m−1(R0)}.
In the rest of this section, we suppose that the linear operator M̂ is

utilized in Line 3 of Algorithm 1 and m steps of the algorithm have been
performed. We set Vm = [V1, V2, . . . , Vm] and V̂m = [V T

1 , V T
2 , . . . , V T

m ]
where the n× n matrices Vj for j = 1, 2, . . . ,m are computed by Algo-

rithm 1 in which the linear operator M̂ is used instead of M. It is not
difficult to establish the following theorem.

Theorem 5.1. Assume that Vm, V̂m Hm, and H̄m have the same struc-
tures defined as before and obtained from Algorithm 1 where the linear
operator M̂ is used in Line 3. Then the following relations hold

[M̂(V1),M̂(V2), . . . ,M̂(Vm)]=

p∑
i=1

AiVm(Im ⊗Bi) +

q∑
i=1

CiV̂m(Im ⊗Di)

=Vm(Hm ⊗ Ip) + hm+1,mVm+1(e
T
m ⊗ Ip),(5.3)

[M̂(V1),M̂(V2), . . . ,M̂(Vm)]=

p∑
i=1

AiVm(Im ⊗Bi) +

q∑
i=1

CiV̂m(Im ⊗Di)

= Vm+1(H̄m ⊗ Ip).(5.4)

Proof. We may prove relations 5.3 and 5.4 with the same strategy em-
ployed in the proof of Theorem 3.1. □

Assume that m is a given fixed integer. With Theorem 5.1 and similar
discussions in Section 3, it is natural to present the Gl-GMRES(m) for
solving (5.1) as follows.
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Algorithm 3. Gl-GMRES (m) for solving (5.1).

1. Choose X0, and a tolerance ϵ. Compute R0 = F − M̂(X0), and
V1 = R0.
2. Construct the orthonormal basis V1, V2, . . . , Vm by Algorithm 1 (the

linear operator M̂ is used instead of M in the line 3 of Algorithm 1).
3. Determine ym as the solution of the least-squares problem:

min
y∈Rm

∥∥βe1 − H̄my
∥∥
2
.

4. Calculate Xm = X0 + Vm(ym ⊗ Ip).

5. Compute the residual Rm = F − M̂(Xm) and ∥Rm∥
F
.

6. If
∥Rm∥

F
∥R0∥

F

< ϵ Stop; else R0 := Rm, V1 := R0, Go to 2.

Remark 5.2. It is not difficult to verify that all of the theoretical results
proved in Section 4 stay valid when the Gl-GMRES method is applied to
solve (5.1). To this end, we only need to change the definition of Wm in
Equation (4.1) to

Wm = [M̂(V1),M̂(V2), . . . ,M̂(Vm)]

=
p∑

i=1
AiVm(Im ⊗Bi) +

q∑
i=1

CiV̂m(Im ⊗Di).

6. Numerical experiments

In this section, two numerical examples are presented to illustrate the
effectiveness of the Gl-GMRES method for solving (1.1) and (5.1). All
the numerical procedures are performed in Mathematica 6.

In the first example, the test was stopped as soon as

Err :=
∥Rm∥

F

∥R0∥F

< 10−8,

and the initial guess was taken to be zero.

Example 6.1. Assume that the p× p matrix Td,p is defined as

Td,p = tridiag

(
−1 +

10

p+ 1
, d,−1 +

10

p+ 1

)
.
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Table 1. Numerical results for Example 6.1.

n iters Err
250 57 0.969446× 10−8

500 58 0.807621× 10−8

750 57 0.622639× 10−8

1000 57 0.801407× 10−8

Consider the linear matrix equation A1XB1 +A2XB2 = C where

A1 =


4 −1 −1

−1 4
. . .

. . .
. . . −1

−1 −1 4


n×n

, A2 =


8 −2 −2

−2 8
. . .

. . .
. . . −2

−2 −2 8


n×n

,

B1 = T2,10 and B2 = T3,10. The matrix C is generated such that X =
[Xij ] is the exact solution of A1XB1 + A2XB2 = C where the nonzero
elements of X are Xii = 1, i = 1, 2, . . . ,min(n, p), and Xi,i−1 = Xi−1,i =
−1 for i = 2, 3, . . . ,min(n, p). The numerical results for different values
of n are reported in Table 1 in which “iters” stands for the number of
iterations required for the convergence.

Example 6.2. In this example, we compare the application of Gl-
GMRES(5) with gradient based iterative method presented in [11]. To
this end, the second example in the numerical experiment of [11] is
chosen in which

(6.1) A1XB1 +A2XB2 + C1X
TD1 + C2X

TD2 = F,

where

A1 =

(
1 0
2 −1

)
, A2 =

(
0 1
3 −1

)
, B1 =

(
2 −1
1 1

)
,

B2 =

(
3 −1
2 1

)
, C1 =

(
1 2
−1 2

)
, C2 =

(
−1 3
−1 2

)
,

D1 =

(
2 −1
1 2

)
, D2 =

(
1 1
−1 0

)
, F =

(
35 9
20 7

)
.



1115 Panjeh Ali Beik

Table 2. Numerical results for Example 6.2.

Gl-GMRES(5) Gradient based [11]
Iters 10 223
CPU-time(s) 0.047 0.187

As described in [11], it can be verified that the exact solution of (6.1) is

X =

(
1 2
3 1

)
.

In this example, we set X0 = 10−6I2×2 as the initial guess and the
following stopping criterion is used

δk =
∥Xk −X∥

F

∥X∥
F

< 10−5,

where Xk stands for the kth approximate solution.
In Table 2, the numerical results of the Gl-GMRES(5) algorithm to-

gether with the gradient based iterative method [11] have been illus-
trated. In this table, the corresponding CPU-time (in seconds) for com-
puting the approximate solutions has been also reported. As observed,
for this example the numerical results in terms of both number of iter-
ations and CPU-time(s) for the Gl-GMRES(5) algorithm outperforms
the gradient based iterative method proposed in [11]. We point out that
in the gradient based iterative method the convergence factor µ should
be chosen such that 0 < µ ≤ µ0 where µ0 defined by (5.2). For Example
6.2, µ0 = 1

121.2 as given in [11]. However, the condition (5.2) for µ is a
sufficient condition and the gradient based method may converge when
µ /∈ (0, µ0]. In fact, the way of choosing a best convergence factor for
gradient based algorithm is still a project to be studied which is a dis-
advantage for the gradient based algorithm. In [11], the best numerical
result was reported for µ = 1

50 which does not satisfy (5.2). Hence, in

Table 2 for the gradient based method we have set µ = 1
50 .

7. Conclusion and further works

The applicability of the Gl-GMRES method for solving the general lin-
ear matrix equations has been studied. Some new theoretical results
for the Gl-GMRES method, to solve the mentioned linear matrix equa-
tions, have been established. Numerical experiments have been given to
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illustrate the good performance of the Gl-GMRES method in compar-
ison with the gradient based iterative method. The theoretical results
elaborated in this work may be utilized for presenting links between
Gl-GMRES method and its weighted versions for solving the general
(coupled) linear matrix equations. In order to improve the speed of the
convergence of the Gl-GMRES method for solving the large and sparse
(coupled) linear matrix equations, the application of suitable precondi-
tioners can be a subject of interest.
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