Title:
Maximal elements of $\mathcal{F}_{C,\theta}$-majorized mappings and applications to generalized games

Author(s):
Y. M. Du
MAXIMAL ELEMENTS OF $\mathcal{F}_{C,\theta}$-MAJORIZED MAPPINGS AND APPLICATIONS TO GENERALIZED GAMES

Y. M. DU

(Communicated by Behzad Djafari-Rouhani)

ABSTRACT. In the paper, some new existence theorems of maximal elements for $\mathcal{F}_{C,\theta}$-mappings and $\mathcal{F}_{C,\theta}$-majorized mappings are established. As applications, some new existence theorems of equilibrium points for one-person games, qualitative games and generalized games are obtained. Our results unify and generalize most known results in recent literature.

Keywords: Maximal elements, generalized games, $\mathcal{F}_{C,\theta}$-majorized mappings, FC-space.

MSC(2010): Primary: 54A05; Secondary: 47H04.

1. Introduction

The existence of equilibrium is a main problem of investigating various kind of economic models in mathematical economics. In 1976, Borglin and Keiding [3] proved a new existence theorem for a compact generalized games with KF-majorized preference correspondence. Following the ideas, many authors have obtained the equilibrium existence theorem for generalized games, for example, Briec and Horvath [4], Tan and Yuan [27], Yuan and Tarafdar [28], Ansari and Yao [1], Kim et al. [21], Lin and Liu [22], Ding and Xia [9], Du and Deng [13], Deng and Du [7], Deng and Xia [8], Yang and Deng [29], Ding and Yao [10], and Hou [19] etc. In the setting, convexity assumptions play a crucial role. In 2005, Ding [11] introduce the concept of a FC-space, which is a topological space without any convexity structure and linear structure. Moreover,
FC-space include topological vector spaces, \(H\)-space \([17, 18]\), \(G\)-convex space \([24]\) and \(L\)-convex space \([2]\) as special cases. FC-space will be the framework of this paper.

In the paper, we introduce the notions of \(\mathcal{F}_{C,\theta}\)-mapping and \(\mathcal{F}_{C,\theta}\)-majorized mappings with transfer open lower sections in FC-space. We first establish some new existence theorems of maximal elements for \(\mathcal{F}_{C,\theta}\)-mappings and \(\mathcal{F}_{C,\theta}\)-majorized mappings in FC-space. Next, New notions for qualitative games and generalized games are introduced. As application of the existence theorems of maximal elements, we establish some existence theorems of equilibrium points for one-person games, qualitative games and generalized games. Our notions and results unify and generalize the corresponding notions and results introduced by many authors, for example, Borglin and Keiding \([3]\), Tan and Yuan \([27]\), Yuan and Tarafdar \([28]\), Ding and Xia \([9]\), Yang and Deng \([29]\), Chowdhury et al. \([5]\), Shen \([25]\), Lin \([23]\), Homidan et al. \([16]\) and etc.

Let \(X\) be a nonempty subset of topological space \(E\). We shall denote by \(2^X\) the family of all subsets of \(X\), by \(\langle X \rangle\) the family of all nonempty finite subsets of \(X\), by \(\text{int}_E(X)\) the interior of \(X\) in \(E\), and by \(\text{cl}_E(X)\) the closure of \(X\) in \(E\). Let \(\Delta_n\) denote the standard \(n\)-simplex, that is,

\[\Delta_n = \{ u \in \mathbb{R}^{n+1} : u = \sum_{i=1}^{n+1} \lambda_i(u)e_i, \lambda_i(u) \geq 0, \sum_{i=1}^{n+1} \lambda_i(u) = 1 \},\]

where \(e_i\) (\(i = 1, ..., n+1\)) is the \(i\)-th unit vector in \(\mathbb{R}^{n+1}\). In the paper, we suppose every topological space is Hausdorff.

If \(X\) and \(Y\) are topological spaces and \(T, S : X \to 2^Y\) are two mappings, for any \(D \subseteq X\) and \(y \in Y\), let \(S(D) = \cup_{x \in D} S(x)\) and \(S^{-1}(y) = \{ x \in X : y \in S(x) \}\). The notation \(\text{dom} S\) denotes the domain of \(S\), i.e., \(\text{dom} S = \{ x \in X : S(x) \neq \emptyset \}\), and \(T \cap S : X \to 2^Y\) is a mapping defined by \((T \cap S)(x) = T(x) \cap S(x)\) for each \(x \in X\). The graph of \(T\) is the set \(\text{Gr}(T) = \{(x, y) \in X \times Y : y \in T(x)\}\) and the mapping \(\overline{T} : X \to 2^Y\) is defined by \(\overline{T}(x) = \{ y \in Y : (x, y) \in \text{cl}_{X \times Y}(\text{Gr}(T))\}\). The mapping \(\text{cl}_T : X \to 2^Y\) is defined by \((\text{cl}_T)(x) = \text{cl}_Y(\overline{T}(x))\) for each \(x \in X\).

Let \(X\) be a nonempty set and \(Y\) be a topological space. The mapping \(F : X \to 2^Y\) is said to be transfer open valued on \(X\) if

\[\cup_{x \in X} F(x) = \cup_{x \in X} \text{int}_Y(F(x)).\]
The mapping $F : X \to 2^Y$ is said to be transfer closed valued on X if
\[\bigcap_{x \in X} F(x) = \bigcap_{x \in X} \text{cl}_Y(F(x)). \]
It is easy to prove that if F is transfer open valued, then the mapping $G : X \to 2^Y$ with $G(x) = Y \setminus F(x)$ for each $x \in X$ is transfer closed valued.

Definition 1.1. [11] $(E; \varphi_N)$ is said to be a finitely continuous space (in short, FC-space), if E is a topological space and for each $N = \{x_0, x_1, \cdots, x_n\} \in \langle E \rangle$, there exists a continuous mapping $\varphi_N : \triangle_N \to 2^E$. If X is a subset of E, X is said to be an FC-subspace of E if for each $N = \{x_0, x_1, \cdots, x_n\} \in \langle E \rangle$ and for any $\{x_{i_0}, x_{i_1}, \cdots, x_{i_k}\} \subset N \cap X$, $\varphi_N(\triangle_k) \subset X$, where $\triangle_k = \text{co}(\{e_{i_0}, \cdots, e_{i_k}\})$.

Definition 1.2. [29] Let $(E; \varphi_N)$ be an FC-space and A be a subset of E, define the FC-hull of A as follows:
\[FC-(A) = \cap \{B \subset E : A \subset B \text{ and } B \text{ is an FC-subspace of } E\}. \]

Definition 1.3. Let $(X; \varphi_N)$ be an FC-space and Y be a topological space. Let $\theta : X \to Y$ be a single valued mapping and $A : X \to 2^Y$ be a set-valued mapping. Then
(i) A is said to be a $\mathcal{F}_{C,\theta}$-mapping if
(a) $\varphi_N(\triangle_n) \cap \bigcap_{x \in N} A^{-}(\theta(x)) = \emptyset$ for each $N \in \langle X \rangle$; and
(b) $A^{-} : Y \to 2^X$ is transfer open valued in Y.
(ii) $(B_x; N_x)$ is said to be a $\mathcal{F}_{C,\theta}$-majorant of A at $x \in X$ if $B_x : X \to 2^Y$ is a set-valued mapping and N_x is an open neighborhood of x in X such that
(a) $A(z) \subset B_x(z)$ for each $z \in N_x$; and
(b) B_x is a $\mathcal{F}_{C,\theta}$-mapping.
(iii) A is said to be a $\mathcal{F}_{C,\theta}$-majorized mapping if for each $x \in \text{dom } A$, there exists a $\mathcal{F}_{C,\theta}$-majorant $(B_x; N_x)$ of A at x.

Remark 1.4. Definition 1.3 modifies Definition 1.2 of Shen [25] from H-space to FC-space, moreover, Definition 1.2 generalize the according notions in Borglin and Keiding [3], Tan and Yuan [27], Ding and Xia [9], Chowdhury et al. [5] and etc.

The following two propositions show that the intersection or union of finite transfer open valued mappings is still transfer open valued.

Proposition 1.5. Let X be a nonempty subset of topological space E and Y be a topological space. For each $i \in I = \{1, 2, \cdots, n\}$, the mapping...
$S_i : X \rightarrow 2^Y$ is transfer open valued on X, then the mapping $\cap_{i=1}^n S_i$ is transfer open valued on X.

Proof. It is clear that $\cup_{x \in X} \text{int}_Y(\cap_{i=1}^n S_i(x)) \subset \cup_{x \in X} (\cap_{i=1}^n S_i(x))$, thus we only need to prove that $\cup_{x \in X} (\cap_{i=1}^n S_i(x)) \subset \cup_{x \in X} \text{int}_Y(\cap_{i=1}^n S_i(x))$. If $z \notin \cup_{x \in X} \text{int}_Y(\cap_{i=1}^n S_i(x))$, for each $x \in X$, $z \notin \text{int}_Y(\cap_{i=1}^n S_i(x))$, $z \in \text{cl}_Y(Y \backslash (\cap_{i=1}^n S_i(x))) = \text{cl}_Y(\cup_{i=1}^n Y \backslash S_i(x))$, then for each open neighborhood N_z of z, there exists a $i_0 \in I$, such that $N_z \cap (Y \backslash S_{i_0}(x)) \neq \emptyset$. That is $z \in \text{cl}_Y(Y \backslash S_{i_0}(x))$, i.e. $z \notin \text{int}_Y(S_{i_0}(x))$. Since S_{i_0} is transfer open valued, then $z \notin \cup_{x \in X} \text{int}_Y(S_{i_0}(x)) = \cup_{x \in X} (S_{i_0}(x))$. But $\cup_{x \in X} (\cap_{i=1}^n S_i(x)) \subset \cup_{x \in X} S_{i_0}(x)$, thus $z \notin \cup_{x \in X} (\cap_{i=1}^n S_i(x))$. That is $\cup_{x \in X} (\cap_{i=1}^n S_i(x)) \subset \cup_{x \in X} \text{int}_Y(\cap_{i=1}^n S_i(x))$. \hfill \square

Proposition 1.6. Let X be a nonempty subset of the topological space E and Y be a topological space. If for each $i \in I = \{1, 2, \cdots, n\}$, the mapping $S_i : X \rightarrow 2^Y$ is transfer open valued on X, then the mapping $\cup_{i=1}^n S_i$ is transfer open valued on X.

Proof. It is clear that $\cup_{x \in X} \text{int}_Y(\cup_{i=1}^n S_i(x)) \subset \cup_{x \in X} (\cup_{i=1}^n S_i(x))$, thus we only need to prove that $\cup_{x \in X} (\cup_{i=1}^n S_i(x)) \subset \cup_{x \in X} \text{int}_Y(\cup_{i=1}^n S_i(x))$. If $z \notin \cup_{x \in X} \text{int}_Y(\cup_{i=1}^n S_i(x))$, for each $x \in X$, $z \notin \text{int}_Y(\cup_{i=1}^n S_i(x))$, $z \in \text{cl}_Y(Y \backslash (\cup_{i=1}^n S_i(x))) = \text{cl}_Y(\cup_{i=1}^n Y \backslash S_i(x))$, for each $i \in I$, that is $z \in \text{cl}_Y(Y \backslash S_i(x))$, $z \notin \text{int}_Y(S_i(x))$. Since S_i is transfer open valued on X, $z \notin \cup_{x \in X} \text{int}_Y(S_i(x)) = \cup_{x \in X} S_i(x)$, that is $z \notin \cup_{x \in X} (\cup_{i=1}^n S_i(x))$. Hence, $\cup_{x \in X} (\cup_{i=1}^n S_i(x)) \subset \cup_{x \in X} \text{int}_Y(\cup_{i=1}^n S_i(x))$. \hfill \square

The following result is a special case of Lemma 2.3 in Yang [29].

Lemma 1.7. Let X be a nonempty FC-subspace of a FC-space $(E; \varphi_N)$, K be a nonempty compact subset of X and $T : X \rightarrow 2^E$ be such that

(i) T is transfer closed valued in X;

(ii) for each $N \in \langle X \rangle$, $\varphi_N(\Delta_n) \subset \cup_{x \in X} T(x)$;

(iii) for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \backslash K$, there is an $x \in L_N \cap X$ satisfying $y \notin \text{cl}_X(T(x))$. Then $K \cap \bigcap_{x \in X} T(x) \neq \emptyset$.

2. Existence theorem of maximal elements

Let X be a topological space and $T : X \rightarrow 2^X$ be a mapping. A point $\hat{x} \in X$ is called a maximal element of T if $T(\hat{x}) = \emptyset$.

In this section, we shall establish some new existence theorems of maximal elements for $\mathcal{F}_{C;\theta}$-mapping and $\mathcal{F}_{C;\theta}$-majorized mapping defined on noncompact FC-space.
Theorem 2.1. Let X be a nonempty FC-subspace of an FC-space $(E; \varphi_N)$, K be a nonempty compact subset of X and Y be a topological space. Suppose $A : X \to 2^Y$ be a $\mathcal{F}_{C,\theta}$-mapping such that

(i) $\theta : X \to Y$ is a single valued mapping with $\theta(X) = Y$; and

(ii) for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X(A^-(\theta(x)))$. Then there exists a point $\hat{x} \in K$ such that $A(\hat{x}) = \emptyset$.

Proof. Since A is a $\mathcal{F}_{C,\theta}$-mapping then

(a) $\varphi_N(\Delta_n) \cap \bigcap_{x \in N} A^-(\theta(x)) = \emptyset$ for each $N \in \langle X \rangle$; and

(b) $A^- : Y \to 2^X$ is transfer open valued in Y.

Define a mapping $B : X \to 2^X$ by $B(x) = X \setminus A^-(\theta(x))$, for each $x \in X$. Then we claim that B is transfer closed valued in X. Indeed, we only need to prove that $A^- \circ \theta : X \to 2^X$ is transfer open valued in X. Put $x_0 \in X$, $z_0 \in A^-\circ\theta(x_0) \subset \bigcup_{y \in Y} A^-\circ\theta(y)$. Since $A^-\circ\theta$ is transfer open valued in X, i.e., $\bigcup_{y \in Y} A^-\circ\theta(y) = \bigcup_{y \in Y} \text{int}_X(A^-\circ\theta(y))$, there exists a point $y' \in Y$ such that $z_0 \in \text{int}_X(A^-\circ\theta(y'))$. By (i), there exists a point $x' \in X$ so that $\theta(x') = y'$. Thus, $z_0 \in \text{int}_X(A^-\circ\theta(x')) \subset \bigcup_{x \in X} \text{int}_X(A^-\circ\theta(x))$, and $\bigcup_{x \in X} A^-\circ\theta(x) = \bigcup_{x \in X} \text{int}_X(A^-\circ\theta(x))$, therefore, $A^- \circ \theta$ is transfer open valued in X.

By (a), $\varphi_N(\Delta_n) \subset \bigcup_{x \in N} (X \setminus A^-\circ\theta(x)) = \bigcup_{x \in N} B(x)$ for each $N \in \langle X \rangle$.

By (ii), for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X(A^-\circ\theta(x)))$. This follows $y \notin X \setminus \text{int}_X(A^-\circ\theta(x))) = \text{cl}_X(B(x))$. Therefore, B satisfies all the hypotheses of Lemma 1.7. By Lemma 1.7, $K \cap \bigcap_{x \in X} B(x) \neq \emptyset$. Then there exists a point $\hat{x} \in K$ such that $\hat{x} \notin A^-\circ\theta(x)$ for each $x \in X$. That is $\theta(x) \notin A(\hat{x})$ for each $x \in X$, thus $A(\hat{x}) = \emptyset$ by (i). This completes the proof. \square

For a topological space (X, τ), the compactly generated extension of the topology τ is the new topology consisting of all compactly closed respectively, open] subsets. In this way, we have the following modified form of Theorem 2.1 which is equivalent to Theorem 3.1 of Yang and Deng [29].

Theorem 2.2. Let X be a nonempty FC-subspace of an FC-space $(E; \varphi_N)$ and K be a nonempty compact subset of X. Suppose the mapping $A : X \to 2^X$ be such that

(i) $x \notin FC(A(x))$ for each $x \in X$;
(ii) $A^- : X \to 2^X$ is transfer compactly open valued in X;
(iii) for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X(A^-(x))$. Then there exists a point $\hat{x} \in K$ such that $A(\hat{x}) = \emptyset$.

Proof. Replace the topology of E by its compactly generated extension, then $(E; \varphi_N)$ with this new topology is another FC-space. It is easy to prove that $x \not\in FC-(A(x))$ for all $x \in X$ implies $\varphi_N(\Delta_n) \cap (\bigcap_{x \in X} A^-(x)) = \emptyset$ for each $N \in \langle X \rangle$. Let $\theta = I_X$ be the identity mapping on X, then A becomes a $\mathcal{F}_{C,\theta}$-mapping. All the hypotheses of Theorem 2.1 are satisfied. By Theorem 2.1, there exists a point $\hat{x} \in K$ such that $A(\hat{x}) = \emptyset$. This completes the proof. \hfill \square

Remark 2.3. Theorem 2.1 improves Corollary 2.2 of Shen [25] from CH-space to FC-space. Moreover, Theorem 2.1 generalizes Theorem 3.1 of Ding and Xia [9], Theorem 3.1 of Chowdhury et al. [5] and Theorem 6 of Lin [23] with weaker assumptions.

Moreover, it is easy to prove that Theorem 2.2 is equivalent to the following fixed point theorem.

Theorem 2.4. Let X be a nonempty FC-subspace of an FC-space $(E; \varphi_N)$ and K be a nonempty compact subset of X. Suppose the mapping $A : X \to 2^X$ be such that
(i) $A(x) \neq \emptyset$ for each $x \in K$;
(ii) $A^- : X \to 2^X$ is transfer open valued in X;
(iii) for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X(A^-(x))$.
Then there exists a point $\hat{x} \in K$ such that $\hat{x} \in FC-(A(\hat{x}))$.

Remark 2.5. Theorem 2.4 generalizes Theorem 3.2 of Yuan and Tarafdar [28] and Theorem 3.2 of Ding and Xia [9] in several aspects.

Theorem 2.6. Let X be a nonempty FC-subspace of an FC-space $(E; \varphi_N)$, K be a nonempty compact subset of X and Y be a topological space. Suppose $A : X \to 2^Y$ is a $\mathcal{F}_{C,\theta}$-majorized mapping such that
(i) $\theta : X \to Y$ is a single valued mapping with $\theta(X) = Y$;
(ii) there exists a paracompact subset G of X such that $\{x \in X : A(x) \neq \emptyset\} \subseteq G$; and
(iii) for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$.
satisfying \(y \in \text{int}_X(A^-(\theta(x))) \).

Then there exists a point \(\hat{x} \in K \) such that \(A(\hat{x}) = \emptyset \).

Proof. Suppose that \(A(x) \neq \emptyset \) for each \(x \in X \). By (ii), \(X \) is paracompact. Since \(A \) is a \(\mathcal{F}_{C,\theta} \)-majorized mapping, for each \(x \in X \), there exists an open neighborhood \(N_x \) of \(x \) in \(X \) and a mapping \(B_x : X \rightarrow 2^Y \) such that

(a) \(A(z) \subset B_x(z) \) for each \(z \in N_x \);
(b) \(\varphi_N(\Delta_n) \cap \bigcap_{i \in N} B_x^-(\theta(z)) = \emptyset \) for each \(N \in \langle X \rangle \); and
(c) \(B_x^- : Y \rightarrow 2^X \) is transfer open valued in \(Y \).

By Theorem VIII.1.4 of Dugundji [14], the open covering \(\{ N_x : x \in X \} \) of \(X \) has an open precise neighborhood finite refinement \(N'_x \) with \(\text{cl}_X N'_x \subset N_x \). For each \(x \in X \), define \(B'_x : X \rightarrow 2^Y \) by

\[
B'_x(z) = \begin{cases}
B_x(z) & \text{if } z \in \text{cl}_X N'_x, \\
Y & \text{if } z \notin \text{cl}_X N'_x.
\end{cases}
\]

and \(B : X \rightarrow 2^Y \) by \(B(z) = \cap_{x \in X} B'_x(z) \) for each \(z \in X \).

For each \(N \in \langle X \rangle \), \(t \in \cap_{z \in N} B^- \theta(\theta(z)), \) then for each \(z \in N, \theta(z) \in B(t). \) Since \(t \in X, \) then there exists an \(x_0 \in X \) such that \(t \in \text{cl}_X N'_{x_0}, \theta(z) \in B(t) \subset B_{x_0}(t). \) By (b), \(t \notin \varphi_N(\Delta_n) \). Thus we have \(\varphi_N(\Delta_n) \cap \bigcap_{i \in N} B^- \theta(\theta(z)) = \emptyset. \)

Now, we show \(B^- : Y \rightarrow 2^X \) is transfer open valued in \(Y \). For each \(x \in X, \ y \in Y, \) we have

\[
(B'_x)^-(y) = \{ z \in \text{cl}_X N'_x : y \in B'_x(z) \} \cup \{ z \in X \setminus \text{cl}_X N'_x : y \in B'_x(z) \}
\]

\[
= \{ z \in \text{cl}_X N'_x : y \in B_x(z) \} \cup (X \setminus \text{cl}_X N'_x)
\]

\[
= [B_x^-(y) \cap (\text{cl}_X N'_x)] \cup (X \setminus \text{cl}_X N'_x)
\]

\[
(2.1)
\]

(2.1)

For each \(y \in Y \) let \(t \in B^-(y) \) be arbitrarily fixed. Since \(\{ N'_x : x \in X \} \) is a neighborhood finite refinement, there exists an open neighborhood \(V_t \) of \(t \) in \(X \) such that \(\{ x \in X : V_t \cap N'_x \neq \emptyset \} = \{ x_1, x_2, \ldots, x_n \}. \) If \(x \notin \{ x_1, x_2, \ldots, x_n \}, \) then \(V_t \cap N'_x = V_t \cap \text{cl}_X N'_x = \emptyset. \) Thus \(B'_x(z) = Y \) for all \(z \in V_t, \) that is \(B(z) = \cap_{i=1}^n B'_{x_i}(z) \) for each \(z \in V_t. \) By formula (2.1), we have

\[
B^-(y) = \{ z \in X : y \in B(z) \} \supset \{ z \in V_t : y \in \bigcap_{i=1}^n B'_{x_i}(z) \}
\]

\[
= V_t \cap \bigcap_{i=1}^n (B'_{x_i})^-(y) = \bigcap_{i=1}^n \{ V_t \cap [B^-_{x_i}(y) \cup (X \setminus \text{cl}_X N'_{x_i})] \}.
\]
By Proposition 1.5 and Proposition 1.6, $B^{-} : Y \to 2^X$ is transfer open valued in Y. Thus B is a $\mathcal{F}_{C;g}$-mapping.

By (a) and the definition of B, we have $A(z) \subseteq B(z)$ for each $z \in X$, thus by the assumption (iii), for each $N \in (X)$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X(A^{-}(\theta(x))) \subseteq \text{int}_X(B^{-}(\theta(x)))$. All conditions of Theorem 2.1 are satisfied. By Theorem 2.1, there exists a point $\hat{x} \in K$ such that $B(\hat{x}) = \emptyset$. Since $A(z) \subseteq B(z)$ for each $z \in K$, thus $A(\hat{x}) = \emptyset$, which is a contradiction. Hence, there exists a point $\hat{x} \in X$ such that $A(\hat{x}) = \emptyset$. By condition (iii), \hat{x} must be in K. This completes the proof.

\begin{remark}
Theorem 2.6 improves Theorem 1 of Ding and Tan [12] from paracompact topological vector spaces to nonparacompact FC-space. Moreover, Theorem 2.4 generalizes Theorem 3.3 of Ding and Xia [9], Theorem 3.3 of Yang and Deng [29] and Theorem 2.3 of Shen [25].
\end{remark}

3. Existence of equilibria points

Let I be a (finite or infinite) set of players. Let its strategy set X be a nonempty FC-subspace of an FC-space $(E; \varphi_N)$, and Y_i be a topological space for each $i \in I$ with $Y = \prod_{i \in I} Y_i$. Let $P_i : X \to 2^{Y_i}$ be the preference correspondence of ith player. The collection $\Lambda = (X; Y_i; P_i)_{i \in I}$ will be called a qualitative game. A point $\hat{x} \in X$ is said to be an equilibrium of the qualitative game, if $P_i(\hat{x}) = \emptyset$ for each $i \in I$.

A generalized game (=abstract economy) is a quintuple family $\Lambda = (X; Y_i; A_i; B_i; P_i; \theta_i)_{i \in I}$ where X is a nonempty FC-subspace of an FC-space $(E; \varphi_N)$, I is a (finite or infinite) set of players such that for each $i \in I$, Y_i is a topological space with $Y = \prod_{i \in I} Y_i$. Let $A_i, B_i : X \to 2^{Y_i}$, $\theta_i : X \to Y_i$ be the constraint correspondences and let $P_i : X \to 2^{Y_i}$ be the preference correspondence. An equilibrium of the generalized game Λ is a point $\hat{x} \in X$ such that for each $i \in I, \theta_i(\hat{x}) \in B_i(\hat{x})$ and $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$. If $X = Y = \prod_{i \in I} Y_i$ and $\theta_i = \pi_i : Y \to Y_i$ is the projection of Y onto Y_i, then our definition of an equilibrium point coincides with the standard definition given by Yang and Deng [29], moreover, our definition of an equilibrium point generalizes the standard definition; e.g., Borglin and Keiding [3], Chowdhury et al. [5], Gale and Mas-Colell [15], Kim [20], Yannelis and Prabhakar [30], Cubiotti and Yao [6].

As an application of Theorem 2.6, we firstly prove the following existence theorem of equilibrium points for one person game.
Theorem 3.1. Let X be a nonempty paracompact FC-subspace of an FC-space $(E; \varphi_N)$, K be a nonempty compact subset of X and Y be a topological space. Suppose the mappings $A, B, P : X \rightarrow 2^Y$ are such that

(i) $\theta : X \rightarrow Y$ is a single valued and continuous mapping with $\theta(X) = Y$;

(ii) $\text{dom} A = X$, A is a $\mathcal{F}_{C, \beta}$-mapping and P is a $\mathcal{F}_{C, \beta}$-majorized mapping;

(iii) for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X((A \cap P)^-(\theta(x)))$.

Then there exists a point $\hat{x} \in K$ such that $\theta(\hat{x}) \in \overline{B}(\hat{x})$ and $A(\hat{x}) \cap P(\hat{x}) = \emptyset$.

Proof. Let $W = \{x \in X : \theta(x) \notin \overline{B}(x)\}$, then W is open in X since θ is continuous. Define $Q : X \rightarrow 2^Y$ by

$$Q(z) = \begin{cases} A(z) \cap P(z) & \text{if } z \notin W; \\ A(z) & \text{if } z \in W. \end{cases}$$

By (ii), P is a $\mathcal{F}_{C, \beta}$-majorized mapping, for each $x \in \text{dom} P$, there exists an open neighborhood M_x of x in X and $\psi_x : X \rightarrow 2^Y$ such that

(a) $\varphi_N(\Delta_n) \cap \bigcap z \in N \psi^-_x(\theta(z)) = \emptyset$ for each $N \in \langle X \rangle$ and $P(z) \subset \psi_x(z)$ for all $z \in M_x$;

(b) $\psi^-_x : Y \rightarrow 2^X$ is transfer open valued in Y.

Now, for each $x \in X$ with $Q(x) \neq \emptyset$, let

$$N_x = \begin{cases} M_x & \text{if } x \notin W; \\ W & \text{if } x \in W. \end{cases}$$

and define $\Psi_x : X \rightarrow 2^Y$ by

$$\Psi_x(z) = \begin{cases} A(z) \cap \psi_x(z) & \text{if } z \notin W; \\ A(z) & \text{if } z \in W. \end{cases}$$

Then for each $y \in Y$,

$$\Psi^-_x(y) = \{z \in X \setminus W : y \in \Psi_x(z)\} \cup \{z \in W : y \in \Psi_x(z)\}$$

$$= \{z \in X \setminus W : y \in A(z) \cap \psi_x(z)\} \cup \{z \in W : y \in A(z)\}$$

$$= [(X \setminus W) \cap A^-(y) \cap \psi^-_x(y)] \cup [W \cap A^-(y)]$$

$$= [W \cup \psi^-_x(y)] \cap A^-(y) = [W \cap A^-(y)] \cup [\psi^-_x(y) \cap A^-(y)],$$

thus

$$\Psi^-_x(\theta(z)) = [W \cap A^-(\theta(z))] \cup [\psi^-_x(\theta(z)) \cap A^-(\theta(z))].$$
Hence we have

(a') \(\varphi_N(\Delta_n) \cap \bigcap_{z \in N} \Psi_x(z) = \emptyset\) for each \(N \in \langle X \rangle\) by (ii) and (a);
(b') for each \(z \in N_x\), \(Q(z) \subseteq \Psi_x(z)\) by (a); and
(c') \(\Psi_x : Y \to 2^X\) is transfer open valued in \(Y\) by Proposition 1.5 and Proposition 1.6. Therefore, \((\Psi_x; N_x)\) is a \(\mathcal{F}_{C,\theta}\)-majorant of \(Q\) at \(x\).

From the definition of \(Q\), it follows that \((A \cap P)(z) \subseteq Q(z)\) for each \(z \in X\). By (iii), for each \(N \in \langle X \rangle\), there exists a compact \(FC\)-subspace \(L_N\) of \(E\) containing \(N\) such that for each \(y \in L_N \setminus K\), there is an \(x \in L_N \cap X\) satisfying \(y \in \text{int}_X((A \cap P)(\theta(x))) \subseteq \text{int}_X(Q(\theta(x)))\). All conditions of Theorem 2.6 are satisfied. By Theorem 2.6, there exists a point \(\hat{x} \in K\) such that \(Q(\hat{x}) = \emptyset\). By the definition of \(Q\), we have \(\theta(\hat{x}) \in B(\hat{x})\) and \(A(\hat{x}) \cap P(\hat{x}) = \emptyset\). This completes the proof. \(\square\)

Remark 3.2. Theorem 3.1 unifies Theorem 4.1 of Chowdhury et al. [5], Theorem 3.1 of Shen [25] and Theorem 2 in Ding and Tan [12] where \(X = Y\) and \(\theta = I_X\) is the identical mapping.

By using Theorem 2.6, we shall show an equilibrium existence theorem for a qualitative game.

Theorem 3.3. Let \(\Lambda = (X; Y_i; P_i)_{i \in I}\) be a qualitative game. Where \(X\) is a nonempty paracompact \(FC\)-subspace of an \(FC\)-space \((E; \varphi_N)\), \(K\) be a nonempty compact subset of \(X\) and \(Y_i(i \in I)\) is a topological space with \(Y = \prod_{i \in I} Y_i\). For each \(i \in I\), suppose the mapping \(P_i : X \to 2^{Y_i}\) be such that

(i) \(\theta_i : X \to Y_i\) is a single valued mapping with \(\theta_i(X) = Y_i\);
(ii) \(W_i = \text{dom} P_i\) is open and \(P_i : X \to 2^{Y_i}\) is a \(\mathcal{F}_{C,\theta_i}\)-majorized mapping; and
(iii) for each \(N \in \langle X \rangle\), there exists a compact \(FC\)-subspace \(L_N\) of \(E\) containing \(N\) such that for each \(y \in L_N \setminus K\), there is an \(x \in L_N \cap X\) satisfying \(y \in \text{int}_X(P_i^{-1}(\theta_i(x)))\).

Then \(\Lambda\) has an equilibrium point in \(\hat{x} \in K\).

Proof. For each \(x \in X\), let \(I(x) = \{i \in I : P_i(x) \neq \emptyset\}\). For each \(i \in I\), define \(P_i'(x) : X \to 2^Y\) by

\[P_i'(x) = \pi_i^{-1}(P_i(x)),\] for each \(x \in X\),

where \(\pi_i : Y \to Y_i\) is the projection of \(Y\) onto \(Y_i\). Furthermore, define \(P : X \to 2^Y\) by

\[P(x) = \begin{cases} \cap_{i \in I(x)} P_i'(x) & \text{if } I(x) \neq \emptyset; \\ \emptyset & \text{if } I(x) = \emptyset. \end{cases}\]
Clearly, for each \(x \in \text{dom } P \) if and only if \(I(x) \neq \emptyset \). Let \(x \in \text{dom } P \), for any fixed \(i \in I(x) \), by (ii), there exist an open neighborhood \(N_x \) of \(x \) in \(X \) and a mapping \(\psi_{i,x} : X \to 2^{Y_i} \) such that

(a) \(\varphi_N(\Delta_n) \cap \bigcap_{z \in N} \psi_{i,x}^{-1}(\theta_i(z)) = \emptyset \) for each \(N \in \langle X \rangle \) and \(P_i(z) \subset \psi_{i,x}(z) \) for each \(z \in N_x \);

(b) \(\psi_{i,x}^{-1} : Y_i \to 2^X \) is transfer open valued in \(Y_i \).

By (ii), we may assume that \(N_x \subset W_i \) so that \(P_i(z) \neq \emptyset \) for all \(z \in N_x \).

Define \(\Psi_x : X \to 2^Y \) by

\[
\Psi_x(z) = \pi_i^{-1}(\psi_{i,x}(z)) \quad \text{for each } z \in X.
\]

For each \(y \in Y \),

\[
\Psi_x^{-1}(y) = \{ z \in X : y \in \Psi_x(z) \} = \{ z \in X : y_i \in \psi_{i,x}(z) \} = \psi_{i,x}^{-1}(y_i).
\]

By condition (iii), for each \(z \in N_x \), we get

\[
\varphi_N(\Delta_n) \cap \bigcap_{z \in N} \Psi_x^{-1}(z) = \varphi_N(\Delta_n) \cap \bigcap_{z \in N} \psi_{i,x}^{-1}(z) = \emptyset,
\]

and for each \(z \in N_x \),

\[
P(z) = \bigcap_{i \in I(z)} P_i(z) \subset P_i(z) = \pi_i^{-1}(P_i(z)) \subset \pi_i^{-1}(\psi_{i,x}(z)) = \Psi_x(z).
\]

(\(b' \)) by (b) and formula (3.1), \(\Psi_x^{-1} : Y \to 2^X \) is transfer open valued in \(Y \).

Hence \((N_x; \Psi_x) \) is a \(\mathcal{F}_{C,\theta} \)-majorant of \(P \) at \(x \), \(P \) is a \(\mathcal{F}_{C,\theta} \)-majorized mapping.

By the definitions of \(P \), we have \(P^{-1}(y) = P_i^{-1}(\pi_i(y)) \) for each \(y \in Y \). By condition (iii), for each \(N \in \langle X \rangle \), there exists a compact FC-subspace \(L_N \) of \(E \) containing \(N \) such that for each \(y \in L_N \setminus K \), there is an \(x \in L_N \cap X \) satisfying \(y \in \text{int}_X(P^{-1}(\theta(x))) \). All hypotheses of Theorem 2.6 are satisfied. By Theorem 2.6, there exists a point \(\hat{x} \in K \) such that \(P(\hat{x}) = \emptyset \), which implies \(I(\hat{x}) = \emptyset \). Therefore, \(P_i(\hat{x}) = \emptyset \) for all \(i \in I \). The proof is completed.

\[\square\]

Remark 3.4. If for each \(i \in I \), \(X_i = Y_i \), \(X = \prod_{i \in I} X_i \) and \(\theta_i = \pi_i \) is the projection from \(X \) onto \(X_i \), Theorem 3.3 unifies Theorem 3.2 of Shen [25] from \(CH \)-space to \(FC \)-space. Moreover, Theorem 3.2 improves
Corollary 3 of Borglin and Keiding [3], Theorem 3.1 of Tan and Yuan [27] and Theorem 4.2 of Chowdhury et al. [5].

Theorem 3.5. Let \(\Lambda = (X; Y_i; A_i; B_i; P_i; \theta_i)_{i \in I} \) be a generalized qualitative game. Where \(X \) is a nonempty paracompact FC-space of an FC-space \((E; \varphi_N)\), \(K \) be a nonempty compact subset of \(X \) and \(Y_i (i \in I) \) is a topological space with \(Y = \prod_{i \in I} Y_i \). For each \(i \in I \), suppose the mapping \(A_i, B_i, P_i : X \to 2^{Y_i} \) be such that

(i) \(W_i = \{x \in X : (A_i \cap P_i)(x) \neq \emptyset \} \) is open in \(X \);

(ii) \(\theta_i : X \to Y_i \) is a single valued and continuous mapping with \(\theta_i(X) = Y_i \);

(iii) \(\text{dom } A_i = X \), \(A_i \) is a \(\mathcal{F}_{C; \theta_i} \)-mapping and \(P_i \) is a \(\mathcal{F}_{C; \theta_i} \)-majorized mapping; and

(iv) for each \(N \in (X) \), there exists a compact FC-space \(L_N \) of \(E \) containing \(N \) such that for each \(y \in L_N \setminus K \), there is an \(x \in L_N \cap X \) satisfying \(y \in \text{int}_X((A_i \cap P_i)(\theta_i(x))) \).

Then \(\Lambda \) has an equilibrium point in \(\hat{x} \in K \).

Proof. For each \(i \in I \), let \(U_i = \{x \in X : \theta_i(x) \notin B_i(x)\} \), then \(U_i \) is open in \(X \) by (ii). Define \(Q_i : X \to 2^{Y_i} \) by

\[
Q_i(x) = \begin{cases}
A_i(x) \cap P_i(x) & \text{if } x \notin U_i; \\
A_i(x) & \text{if } x \in U_i.
\end{cases}
\]

Now, we will show that the qualitative game \(\Lambda' = (X; Y_i; Q_i)_{i \in I} \) satisfies all assumptions of Theorem 3.3. For each \(i \in I \), the set

\[
\{x \in X : Q_i(x) \neq \emptyset\} = \{x \in U_i : A_i(x) \neq \emptyset\} \\
\cup \{x \in X \setminus U_i : A_i(x) \cap P_i(x) \neq \emptyset\} \\
= U_i \cup [(X \setminus U_i) \cap W_i] = U_i \cup W_i
\]

is open in \(X \).

Since \(P_i \) is a \(\mathcal{F}_{C; \theta_i} \)-majorized mapping, for each \(x \in \text{dom } P_i \), there exist an open neighborhood \(M_x \) of \(x \) in \(X \) and a mapping \(\psi_{i, x} : X \to 2^{Y_i} \) such that

(a) \(\varphi_N(\Delta_n) \cap \bigcap_{z \in N} \psi_{i, z}(\theta_i(z)) = \emptyset \) for each \(N \in (X) \) and \(P_i(z) \subset \psi_{i, x}(z) \) for each \(z \in N_x \);

(b) \(\psi_{i, x} : Y_i \to 2^X \) is transfer open valued in \(Y_i \).

Now, for each \(x \in X \) with \(Q_i(x) \neq \emptyset \), let

\[
N_x = \begin{cases}
M_x & \text{if } x \notin U_i; \\
U_i & \text{if } x \in U_i.
\end{cases}
\]
and define $\Psi_{i,x} : X \to 2^{Y_i}$ by

$$
\Psi_{i,x}(z) = \begin{cases}
A_i(z) \cap \psi_{i,x}(z) & \text{if } z \not\in U_i; \\
A_i(z) & \text{if } z \in U_i.
\end{cases}
$$

For each $y \in Y_i$, we have

$$
\Psi^-_{i,x}(y) = \{ z \in X \setminus U_i : y \in \Psi_{i,x}(z) \} \cup \{ z \in U_i : y \in \Psi_{i,x}(z) \} \\
= \{ z \in X \setminus U_i : y \in A_i(z) \cap \psi_{i,x}(z) \} \cup \{ z \in U_i : y \in A_i(z) \} \\
= [(X \setminus U_i) \cap A_i^-(y) \cap \psi_{i,x}^-(y)] \cup [U_i \cap A_i^-(y)] \\
= [U_i \cup \psi_{i,x}^-(y)] \cap A_i^-(y) \\
= [U_i \cap A_i^-(y)] \cup [\psi_{i,x}^-(y) \cap A_i^-(y)].
$$

Thus, we have

(a') $\varphi_N(\triangle_n) \cap \bigcap_{z \in N} \Psi^-_{i,x}(\theta_i(z)) = \emptyset$ for each $N \in \langle X \rangle$ and $Q_i(z) \subset \Psi_{i,x}(z)$ for each $z \in N_x$ by (a) and (iii);

(b') By Proposition 1.5 and Proposition 1.6, $\Psi^-_{i,x} : Y_i \to 2^X$ is transfer open valued in Y_i. Hence $(N_x ; \Psi_{i,x})$ is a majorant of Q_i at x, i.e., Q_i is a \mathcal{F}_c,θ_i-majorized mapping.

By condition (iv) and the definition of Q_i, for each $N \in \langle X \rangle$, there exists a compact FC-subspace L_N of E containing N such that for each $y \in L_N \setminus K$, there is an $x \in L_N \cap X$ satisfying $y \in \text{int}_X((A_i \cap P_i)^-(\theta_i(x))) \subset \text{int}_X(Q_i^-\theta_i(x)))$. All assumptions of Theorem 3.3 are satisfied. By Theorem 3.3, there exists a point $\hat{x} \in K$ such that $Q_i(\hat{x}) = \emptyset$ for all $i \in I$. By the definition of Q_i, we must have that for each $i \in I$, $\theta_i(\hat{x}) \in B_i(\hat{x})$ and $A_i(\hat{x}) \cap P_i(\hat{x}) = \emptyset$. \Box

Remark 3.6. Theorem 3.5 generalized Theorem 3.3 of Shen [25], Theorem 4 of Ding and Tan [12] and Corollary 3.4 of Tan and Yuan [26] in weaker assumptions.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant No. 51203112 and 51202161). The author is deeply grateful to the referees for valuable comments and suggestions.
REFERENCES

(Yan-Mei Du) **Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, P. R. China**

School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China

E-mail address: duyamei@tjpu.edu.cn