Bulletin of the Iranian Mathematical Society Vol. 35 No. 1 (2009), pp 167-173.

SOME PROPERTIES OF I-CLOSED MODULES

N. ZAMANI

Communicated by Jürgen Herzog

ABSTRACT. Let R be a commutative Noetherian ring, I an ideal of R and M an arbitrary R-module. We introduce and study some properties of the concept of I-closed and I-semiclosed modules. A relation between the I semiclosed property of local cohomologies $H_I^i(M)$ ($i \geq 0$) and that of M will be investigated.

1. Introduction

Throughout, R is a commutative Noetherian ring, I an ideal of R and M is an arbitrary R-module. For a non-negative integer i, the i-th local cohomology of M with respect to I is defined by:

$$H_I^i(M) := \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}_R^i(R/I^n, M).$$

Here, we define the concept of *I*-closed and *I*-semiclosed modules, and present some properties of these modules. We prove that for an *R*-module *M*, if $H_I^i(M)$ is *I*-semiclosed for all $i \ge 0$, then *M* is an *I*-semiclosed, *R*-module; i.e., $\text{Supp}_R \text{Ext}_R^i(R/I, M)$ is a finite set, for all $i \ge 0$.

MSC(2000): 13D45, 13D99

Keywords: *I*-closed modules, *I*-semiclosed modules, local cohomology. Received: 29 April 2008. Accepted: 12 August 2008

^{© 2009} Iranian Mathematical Society.

¹⁶⁷

Zamani

2. Main results

Definition 2.1. i) We say that M is a *closed* R-module if $\text{Supp}_R M$ is a finite set.

ii) We say that M is closed with respect to I or I-closed if the set $V(I) \cap \text{Supp}_R M$ is finite, where V(I) is the set of all prime ideals of R containing I.

iii) We say that M is I-semiclosed if the set $\text{Supp}_R \text{Ext}_R^i(R/I, M)$ is a finite set for all $i \ge 0$.

It is obvious from the definitions that for I = 0, the *I*-closed modules are just closed modules and any *I*-closed module is *I*- semiclosed.

The subcategory C of the category of R-modules and R-homomorphisms are said to be a *Serre subcategory*, if for any exact sequence of R-modules,

 $0 \to X \to Y \to Z \to 0,$

the *R*-module Y belongs to \mathcal{C} if and only if each of X and Z belongs to \mathcal{C} .

Proposition 2.2. i) The class of I-closed modules is a Serre subcategory of the category of R-modules. As a consequence, any finite direct sum of I-closed modules is I-closed.

ii) If N is a finitely generated R-module and M is an I-closed module, then $\operatorname{Ext}_{R}^{i}(N, M)$ and $\operatorname{Tor}_{i}^{R}(N, M)$ are I-closed for all $i \geq 0$.

iii) Let J be an ideal of R, $\overline{R} = R/J$ and $\overline{I} = (I+J)/J$. Let M be an \overline{R} -module. Then, M is I-closed as an R-module if and only if M is \overline{I} -closed as an \overline{R} -module.

iv) Let N and L be two finitely generated R-modules such that $\operatorname{Supp}_R L \subseteq \operatorname{Supp}_R N$. Then, for any non-negative integer t, if $\operatorname{Ext}^i_R(N,M)$ is Iclosed for all $i \leq t$, then so is $\operatorname{Ext}^i_R(L,M)$. In particular, M is Isemiclosed if and only if for any finitely generated R-module L with $\operatorname{Supp}_R L = V(I)$, the R-module $\operatorname{Ext}^i_R(L,M)$ is I-closed for all $i \geq 0$. Some properties of I-closed modules

v) Let M be an R-module and P be a pure submodule of M. Then, M is I-semiclosed if and only if both P and M/P are I-semiclosed (for the definition of a pure submodule, see [4], p. 94).

vi) Let J be an ideal of R, $\overline{R} = R/J$ and $\overline{I} = (I+J)/J$. Let M be an \overline{R} -module. Then, M is I-semiclosed as an R-module if and only if M is \overline{I} -semiclosed as an \overline{R} -module.

vii) If M is I-semiclosed R-module, then M/IM is I-closed.

viii) If $0 \to X \to Y \to Z \to 0$ is an exact sequence and two of the modules in the sequence is I-semiclosed, then so is the third one. Consequently, if $f: X \to Y$ is a homomorphism between two I-semiclosed modules and one of the three modules Kerf, Imf and Cokerf is I-semiclosed, then all three of them are I-semiclosed.

ix) If M is an R-module such that $\operatorname{Ass}_R M \subseteq V(I)$ and $\operatorname{Hom}_R(R/I, M)$ is (I-)closed, then the set $\operatorname{Ass}_R M$ is finite.

Proof. i) This is obvious.

ii) Let

$$\mathbf{F}_{\bullet}:\cdots \to F_1 \to F_0 \to 0,$$

be a finite free resolution of N. Then, $\operatorname{Ext}_{R}^{i}(N, M) = H^{i}(\operatorname{Hom}_{R}(\mathbf{F}_{\bullet}, M))$, as a subquitent of a direct sum of finitely many copies of M, is *I*-closed by i). The proof of the *I*-closed property of $\operatorname{Tor}_{i}^{R}(N, M)$ is similar.

iii) We note that for an R-module X,

$$V(I) \cap \operatorname{Supp}_{\bar{R}} X = \{\mathfrak{p}/J : \mathfrak{p} \in V(I) \cap \operatorname{Supp}_{R} X\}.$$

So, the result follows.

iv) Since $\operatorname{Supp}_R L \subseteq \operatorname{Supp}_R N$, we get by Grusons's Theorem (Theorem 4.1 in [5]), that there exists a finite filtration,

$$0 = L_0 \subset L_1 \subset \cdots \subset L_{s-1} \subset L_s = L,$$

such that for any i = 1, ..., s, the factor module L_i/L_{i-1} is a homomorphic image of N^{n_i} , for some integer $n_i > 0$. Using the short exact sequences $0 \to L_{i-1} \to L_i \to L_i/L_{i-1} \to 0$, for i = 1, ..., s, we can reduce to the case s = 1. Therefore, there is an exact sequence $0 \to U \to N^n \to L \to 0$, for some n > 0 and some finitely generated submodule U of N. Now, using the long exact sequence,

$$0 \to \operatorname{Hom}_R(L, M) \to \operatorname{Hom}_R(N^n, M) \to \cdots$$

 $\cdots \to \operatorname{Ext}_R^{i-1}(U,M) \to \operatorname{Ext}_R^i(L,M) \to \operatorname{Ext}_R^i(N^n,M) \to \cdots,$

the first claim follows by induction argument on i and part i). The second claim now is obvious.

v) We note that Cohen's Characterization of purity (Theorem 3.65 in [4]) implies that the sequence,

$$0 \to \operatorname{Ext}^{i}_{R}(R/I, P) \to \operatorname{Ext}^{i}_{R}(R/I, M) \to \operatorname{Ext}^{i}_{R}(R/I, M/P) \to 0,$$

is exact for all $i \ge 0$ (see the proof of Proposition 2.7 in [3]). Hence, the result follows by part i).

vi) The proof of this part is similar to Proposition 2 in [2]. We present its proof for the reader's convenience.

We note that $\operatorname{Supp}_R M \subseteq V(\mathfrak{a})$ if and only if $\operatorname{Supp}_{\bar{R}} M \subseteq V(\bar{\mathfrak{a}})$. Now, we consider the Change of Rings spectral sequences,

$$E_2^{p,q} = \operatorname{Ext}_{\bar{R}}^p(\operatorname{Tor}_q^R(\bar{R}, R/\mathfrak{a}), M) \underset{p}{\Rightarrow} \operatorname{Ext}_R^{p+q}(R/\mathfrak{a}, M).$$

Suppose first that M is $\bar{\mathfrak{a}}$ -semiclosed. For each $t \geq 0$, there is a finite filtration,

$$0 = \phi^{t+1} H^t \subseteq \phi^t H^t \subseteq \ldots \subseteq \phi^1 H^t \subseteq \phi^0 H^t = H^t = \operatorname{Ext}_R^t(R/\mathfrak{a}, N),$$

such that $E_{\infty}^{p,t-p} \cong \phi^p H^t / \phi^{p+1} H^t$, for all $0 \le p \le t$.

Since $\operatorname{Supp}_{\bar{R}}(\operatorname{Tor}_{q}^{R}(\bar{R}, R/\mathfrak{a})) \subseteq V(\bar{\mathfrak{a}})$, for all q, by Proposition 2.4 iii), it follows that $E_{2}^{p,q}$ is $\bar{\mathfrak{a}}$ -closed for all p and q. So, $E_{r}^{p,q}$, as a subquotient of $E_{2}^{p,q}$, is $\bar{\mathfrak{a}}$ -closed \bar{R} -module for all r and all $p, q \geq 0$ by Lemma 2.3 i). As $E_{2}^{p,q} = E_{r}^{p,q}$ for all $p, q \geq 0$, and all large values of r, we can therefore deduce using Proposition 2.3 i), successively, that $H^{t} = \operatorname{Ext}_{R}^{t}(R/\mathfrak{a}, N)$ is an $\bar{\mathfrak{a}}$ -closed \bar{R} -module for all $t \geq 0$. Hence, M is an \mathfrak{a} -semiclosed Rmodule by Proposition 2.4 ii).

Conversely, suppose that M is \mathfrak{a} -closed. We prove that

$$E_2^{t,0} = \operatorname{Ext}_{\bar{R}}^t(\bar{R}/\mathfrak{a}\bar{R},M)$$

is an $\bar{\mathfrak{a}}$ -closed *R*-module for all $t \ge 0$. We proceed by induction on *t*. For t = 0,

$$E_2^{0,0} = \operatorname{Hom}_{\bar{R}}(\bar{R}/\mathfrak{a}\bar{R}, M) \cong \operatorname{Hom}_R(R/\mathfrak{a}, M),$$

Some properties of I-closed modules

is $\bar{\mathfrak{a}}$ -closed by Proposition 2.4 ii). So, let t > 0 and assume that the claim is true for p < t. By Proposition 2.4 iii), it follows that $E^{p,q}$ is $\bar{\mathfrak{a}}$ -closed for all p < t and all $q \ge 0$. We have $E_r^{t,0} \cong E_{\infty}^{t,0}$, for sufficiently large r. Since $H^t = \operatorname{Ext}_R^t(R/\mathfrak{a}, N)$ is $\bar{\mathfrak{a}}$ -closed, then it follows that $E_{\infty}^{p,t-p}$ is $\bar{\mathfrak{a}}$ -closed for $0 \le p \le t$. Thus, by induction hypothesis, we deduce that $\operatorname{Im}(E_r^{t-r,r-1} \to E_r^{t,0})$ is $\bar{\mathfrak{a}}$ -closed. Hence, $\operatorname{Ker}(E_r^{t,0} \to E_{r+1}^{t,0})$ is $\bar{\mathfrak{a}}$ -closed. We can continue to work this way to see that $E_2^{t,0} = \operatorname{Ker}(E_2^{t,0} \to 0)$ is $\bar{\mathfrak{a}}$ -closed.

vii) Let $\{x_1, ..., x_n\}$ be a generating set for I.

Let $\phi: S = R[X_1, ..., X_n] \to R$ be the natural ring epimorphism such that $\phi(X_i) = x_i$ for i = 1, ..., n. We may assume that R = S/J, where $J = (X_1, \dots, X_n)$. Then, by assumption and part vi), M is J-semiclosed. That is, $\operatorname{Ext}_S^i(S/J, M)$ is J-closed, for all $i \ge 0$. In particular, the set $\operatorname{Supp}_S \operatorname{Ext}_S^n(S/J, M)$ is finite. Let $K_{\bullet}(X, M)$ denote the Koszul complex of $X = X_1, ..., X_n$ with coefficients in M and with Koszul cohomologies $H^i(X, M)$. Then, since $X_1, ..., X_n$ is a regular sequence on S, we have,

$$M/IM = M/JM = H^n(X, M) = \operatorname{Ext}^n_S(S/J, M).$$

That is, M/IM is J-closed. Now, by part iii), it should be I-closed.

viii) The first claim follows from the long exact sequence,

$$0 \to \operatorname{Hom}_{R}(R/I, X) \to \operatorname{Hom}_{R}(R/I, Y) \to \operatorname{Hom}_{R}(R/I, Z) \to$$
$$\operatorname{Ext}_{R}^{1}(R/I, X) \to \cdots \to \operatorname{Ext}_{R}^{i}(R/I, X) \to \operatorname{Ext}_{R}^{i}(R/I, Y)$$
$$\to \operatorname{Ext}_{R}^{i}(R/I, Z) \to \operatorname{Ext}_{R}^{i+1}(R/I, X) \to \cdots.$$

The second claim follows using the exact sequences,

$$0 \longrightarrow \operatorname{Ker} f \to X \to \operatorname{Im} f \to 0,$$

and

$$0 \to \operatorname{Im} f \to Y \to \operatorname{Coker} f \to 0,$$

and the corresponding long exact sequences of the Ext-modules as in the first part.

ix) By assumption, the set $\operatorname{Ass}_R\operatorname{Hom}_R(R/I, M) \subseteq \operatorname{Supp}_R\operatorname{Hom}_R(R/I, M)$ is a finite set. So, the result follows from Exercise 1.2.27 in [1]. \Box

Theorem 2.3. Let t be a non-negative integer and let M be an R-module such that $H_I^i(M)$ is I-semiclosed for all $i \leq t$. Then, $\operatorname{Ext}_R^i(R/I, M)$ is closed for all $i \leq t$.

Proof. Since $\operatorname{Supp}_R \operatorname{Ext}_R^i(R/I, M) \subseteq V(I)$, then it is enough to prove that $\operatorname{Ext}_R^i(R/I, M)$ is *I*-closed for all $i \leq t$. We proceed by induction on $i \geq 0$. In the case i = 0, since $\operatorname{Hom}_R(R/I, M) \cong \operatorname{Hom}_R(R/I, H_I^0(M))$, then the result follows by assumption. So, let 0 < i < t and set $\overline{M} = M/H_I^0(M)$. The short exact sequence,

$$0 \to H^0_I(M) \to M \to \bar{M} \to 0,$$

gives the long exact sequence,

$$\cdots \to \operatorname{Ext}^{i}_{R}(R/I, H^{0}_{I}(M)) \to \operatorname{Ext}^{i}_{R}(R/I, M) \to \operatorname{Ext}^{i}_{R}(R/I, \bar{M}) \to \cdots,$$

of Ext-modules and the isomorphism $H_I^i(M) \cong H_I^i(\overline{M})$, for all i > 0. So, in view of Proposition 2.2 i), we may assume that $H_I^0(M) = 0$. Now, let E(M) be the injective hull of M and put L = E(M)/M. Then, $H_I^0(E(M)) = 0 = \operatorname{Hom}_R(R/I, E(M))$. Therefore, using the exact sequence,

$$0 \to M \to E(M) \to L \to 0,$$

we get $H_I^{i+1}(M) \cong H_I^i(L)$ and $\operatorname{Ext}_R^{i+1}(R/I, M) \cong \operatorname{Ext}_R^i(R/I, L)$, for all $i \ge 0$, and the result follows by induction.

Corollary 2.4. Let M be an R-module. If $H_I^i(M)$ is I-semiclosed for all i, then M is I-semiclosed.

Proof. This follows from Theorem 2.3.

Acknowledgments

The author thanks the referee for useful suggestions.

References

- W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge, 1993.
- [2] D. Delfino and T. Marley, Cofinite modules and local cohomolohy, J. Pure Appl. Algebra 121(1) (1997) 45-52.

Some properties of I-closed modules

- [3] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra **285** (2005) 649-668.
- [4] J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1979.
- [5] W. Vasconcelos, *Divisor Theory in Module Categories*, North-Holland, Amsterdom, 1974.

N. Zamani

Faculty of Science , University of Mohaghegh Ardabili, P.O. Box 179, Ardail, Iran. Email: naserzaka@yahoo.com