Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 5, pp. 1263-1274

Title:

Baer's lower nilradical and classical prime submodules

Author(s):

E. Yılmaz and S. Kılıçarslan Cansu

BAER'S LOWER NILRADICAL AND CLASSICAL PRIME SUBMODULES

E. YILMAZ* AND S. KILIÇARSLAN CANSU
(Communicated by Shokrollah Salarian)

Abstract

Let N be a submodule of a module M and a minimal primary decomposition of N is known. A formula to compute Baer's lower nilradical of N is given. The relations between classical prime submodules and their nilradicals are investigated. Some situations in which semiprime submodules can be written as finite intersection of classical prime submodule are stated. Keywords: Envelopes, nilradical, classical prime submodules, semiprime submodules. MSC(2010): Primary: 13E05; Secondary: 13E15, 13C99, 13P99.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary.

Let R be a ring and M be an R-module. A proper submodule P of M is said to be primary if whenever $r m \in P$ where $r \in R$ and $m \in M$ then $m \in P$ or $r^{k} M \subseteq N$ for some positive integer k.

Recall that $(P: M)=\{r \in R \mid r M \subseteq P\}$. If P is a primary submodule of M and $p=\sqrt{P: M}$, then P is called p-primary submodule (see [10]).

A primary decomposition of a submodule N of M is a representation of N as an intersection of finitely many primary submodules of M. Such a primary decomposition $N=\cap_{i=1}^{n} Q_{i}$ with p_{i}-primary submodules Q_{i}

[^0]is called minimal if p_{i} 's are pairwise distinct and $Q_{j} \nsupseteq \cap_{i \not Ł_{j}} Q_{i}$ for all $j=1, \ldots, n$.

If R is a Noetherian ring and M is a finitely generated module, then every proper submodule N has a minimal primary decomposition. The first uniqueness theorem states that for such a minimal primary decomposition the set of primes $\left\{p_{1}, \ldots, p_{m}\right\}$ is uniquely defined. These primes are called the associated primes of N. We denote this set by $\operatorname{Ass}(M / N)$. It is clear that for any $p \in \operatorname{Ass}(M / N),(N: M) \subseteq p$.

The prime ideals in $\operatorname{Ass}(M / N)$ that are minimal with respect to inclusion are called the isolated primes of N, the remaining associated prime ideals are the embedded primes of N.

The second uniqueness theorem states that not only the primes but also the primary components corresponding to isolated primes, the isolated components of N in M, are uniquely defined. The other primary components, the embedded components of N in M, need not be defined uniquely. The concepts and theorems about the primary decomposition of modules can be found in chapter 9 of [12].

The radical \sqrt{I} of an ideal $I \subset R$ is characterized as the the set of elements $a \in R$ such that $a^{n} \in I$ for some positive integer n. The concept of envelope of a submodule is the generalization of this characterization to the modules. If N is a submodule of an R-module M, then the envelope of N in M is defined to be the set

$$
E_{M}(N)=\left\{r m: r \in R, m \in M \text { and } r^{k} m \in N \text { for some } k \in \mathbb{Z}^{+}\right\} .
$$

The submodule generated by the envelope is called (Baer's) lower nilradical and denoted by $\sqrt[n i l]{N}$. Although some methods to compute radical of a submodule, which defined to be intersection of prime submodules containing N, are given in [9] and [11]. It seems there is no description for the computation of the lower nilradical of a submodule in the literature. In Section 1, we give a formula for the computation of $\sqrt[n i l]{N}$ if a minimal primary decomposition of N is known. In this section, we use extensively the concepts and results from [8].

When M is a module, a proper submodule N of an R-module M is called a classical prime submodule if for each $m \in M$ and $a, b \in R$; $a b m \in N$ implies that $a m \in N$ or $b m \in N$. A proper submodule N of an R-module M is called a classical primary submodule if $a b m \in N$ where $a, b \in R$ and $m \in M$, then either $b m \in N$ or $a^{k} m \in N$ for some $k \geq 1$. We remark that these two concept are sometimes referred to in the literature as weakly prime submodules and weakly primary submodules,
respectively. This notion of classical (weakly) prime submodule was first introduced and studied in [4] and recently has received a good deal of attention from several authors; see for example [1, 2, 5]. Also, this notion of classical primary submodule was first introduced and studied in [3]. In Section 2, we investigated relations between classical prime submodules and their lower nilradicals. We also give an example to show a conjecture given in $[3]$ is false.

2. Baer's lower nilradicals of submodules

Lemma 2.1. Let N be a submodule of a module M over a ring R. If $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{k}$ is a minimal primary decomposition of N where $\sqrt{Q_{i}: M}=p_{i}$ for all $i=1,2, \ldots, k$. If $S=\{1,2, \ldots, k\}$ and $\emptyset \neq T \subsetneq S$, then

$$
\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right) \subseteq \sqrt[n i l]{N}
$$

Proof. Let $n \in\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right)$. Then there exist $r_{j} \in \bigcap_{i \in T} p_{i}$ and $m_{j} \in \bigcap_{i \in S \backslash T} Q_{i}$ such that

$$
n=r_{1} m_{1}+r_{2} m_{2}+\cdots+r_{s} m_{s}
$$

for some $s \in \mathbb{Z}^{+}$.
Since $r_{j} \in \bigcap_{i \in T} p_{i}$, we have $r_{j}{ }^{k_{j}} M \subseteq \bigcap_{i \in T} Q_{i}$ for some $k_{j} \in \mathbb{Z}^{+}$. In particular, $r_{j}{ }^{k_{j}} m_{j} \in \bigcap_{i \in T} Q_{i}$ for all $j=1,2, \cdots, s$.

Since $m_{j} \in \bigcap_{i \in S-T} Q_{i}$, we have $r_{j}{ }^{k_{j}} m_{j} \in \bigcap_{i \in S-T} Q_{i}$ for all j. Thus, we have $r_{j}{ }^{k_{j}} m_{j} \in \bigcap_{i=1}^{k} Q_{i}=N$ which means that $r_{j} m_{j} \in E_{M}(N)$ for all j. Therefore, $n \in \sqrt[n i l]{N}$.

Before giving a formula for the nilradical of a submodule in terms of its associated primes and primary submodules in its primary decomposition, we need some technical prerequisites.
Definition 2.2. Let N be a submodule of a module M over a ring R. If I is an ideal of R, then the set

$$
N: I^{\infty}=\left\{m \in M: I^{k} m \subseteq N \text { for some positive integer } k\right\}
$$

is called the stable quotient of N by I in M.

Lemma 2.3. [8, Lemma 1] Let $P \subset M$ be a primary submodule of M and $f \in R$.
(i) $P:\langle f\rangle^{\infty}=M$ if $f \in \sqrt{P: M}$,
(ii) $P:\langle f\rangle^{\infty}=P$ if $f \notin \sqrt{P: M}$.

More generally, for arbitrary submodule N of M and its primary decomposition $N=\bigcap P_{i}$ into p_{i}-primary submodules P_{i} we get

$$
\text { (iii) } N:\langle f\rangle^{\infty}=\bigcap_{f \notin p_{i}} P_{i}
$$

and for arbitrary ideal I of R

$$
\text { (iv) } N: I^{\infty}=\bigcap_{I \not \subset p_{i}} P_{i} \text {. }
$$

We can easily show that.
Lemma 2.4. Let N be p-primary submodule of an R-module M. Then
(i) $N: h=N$, if $h \notin p$,
(ii) $N: h=M$, if $h \in(N: M)$.

The following theorem is the main result of this section.
Theorem 2.5. With the notation in Lemma 2.1,

$$
\sqrt[n i l]{N}=N+\left(\bigcap_{i=1}^{k} p_{i}\right) M+\sum_{\emptyset \neq T \subsetneq S}\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right) .
$$

Proof. Let $m \in \sqrt[n i l]{N}$. Then there exist $m_{j} \in M$, and $r_{j} \in R$ such that

$$
m=r_{1} m_{1}+r_{2} m_{2}+\cdots+r_{t} m_{t}
$$

By the definition of $\sqrt[n i l]{N}$, we have $m_{j} \in N:\left\langle r_{j}\right\rangle^{\infty}$ for each $j=$ $1,2, \ldots, t$.

For each $r_{j}, r_{j} \in R \backslash \bigcup_{i=1}^{k} p_{i}$, there is a maximal proper subset T of S such that $r_{j} \in \bigcap_{i \in T} p_{i}$ or $r_{j} \in p_{i}$ for all i.

If $r_{j} \in R \backslash \bigcup_{i=1}^{k} p_{i}$, then $N:\left\langle r_{j}\right\rangle^{\infty}=N$ by Lemma 2.3. Hence $m_{j} \in N$ and so $r_{j} m_{j} \in \underset{i=1}{N}$.

If $r_{j} \in \bigcap_{i \in T} p_{i}$, then

$$
N:\left\langle r_{j}\right\rangle^{\infty}=\bigcap_{i=1}^{k}\left(Q_{i}:\left\langle r_{j}\right\rangle^{\infty}\right)=\bigcap_{i \in S \backslash T} Q_{i}
$$

by Lemma 2.3. Hence,

$$
r_{j} m_{j} \in\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right) .
$$

If $r_{j} \in \bigcap_{i=1}^{k} p_{i}=\sqrt{N: M}$, then $r_{j} m_{j} \in \sqrt{N: M} M$.
Thus, we can conclude that

$$
\sqrt[n i l]{N} \subseteq N+\left(\bigcap_{i=1}^{k} p_{i}\right) M+\sum_{\emptyset \neq T \subsetneq S}\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right)
$$

For the other side of the inclusion, Lemma 2.1 implies that

$$
\sum_{\emptyset \neq T \subsetneq S}\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right) \subseteq \sqrt[n i l]{N}
$$

Moreover N and $\left(\bigcap_{i=1}^{k} p_{i}\right) M=\sqrt{N: M} M$ are clearly in $\sqrt[n i l]{N}$.
Corollary 2.6. If N is a p-primary submodule, then

$$
\sqrt[n i l]{N}=N+p M
$$

Now, we will give an application of Theorem 2.5. The computer algebra system Singular was used for the computations (see [7]).
Example 2.7. Let $R=\mathbb{Q}[x, y, z]$ and let $M=R \oplus R \oplus R$. Consider the submodule $N=\left\langle x z \mathbf{e}_{3}-z \mathbf{e}_{1}, x^{2} \mathbf{e}_{3}, x^{2} y^{3} \mathbf{e}_{1}+x^{2} y^{2} z \mathbf{e}_{2}\right\rangle$.

Primary decomposition of N is $N=Q_{1} \cap Q_{2} \cap Q_{3}$ where

$$
\begin{aligned}
& Q_{1}=\left\langle\mathbf{e}_{3}, z \mathbf{e}_{1}, y \mathbf{e}_{1}+z \mathbf{e}_{2}, z^{2} \mathbf{e}_{2}\right\rangle \text { is }\langle z\rangle-\text { primary }, \\
& Q_{2}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{3}, y^{2} \mathbf{e}_{2}\right\rangle \text { is }\langle y\rangle-\text { primary and } \\
& Q_{3}=\left\langle x \mathbf{e}_{1}, x \mathbf{e}_{3}-\mathbf{e}_{1}, x^{2} \mathbf{e}_{2}\right\rangle \text { is }\langle x\rangle-\text { primary } .
\end{aligned}
$$

By Theorem 2.5,

$$
\begin{aligned}
\sqrt[n i l]{N}= & N+\left(p_{1} \cap p_{2} \cap p_{3}\right) M+p_{1}\left(Q_{2} \cap Q_{3}\right)+p_{2}\left(Q_{1} \cap Q_{3}\right) \\
& +p_{3}\left(Q_{1} \cap Q_{2}\right)+\left(p_{1} \cap p_{2}\right) Q_{3}+\left(p_{1} \cap p_{3}\right) Q_{2}+\left(p_{2} \cap p_{3}\right) Q_{1} .
\end{aligned}
$$

It is clear that $\left(p_{1} \cap p_{2} \cap p_{3}\right) M=\left\langle x y z \mathbf{e}_{1}, x y z \mathbf{e}_{2}, x y z \mathbf{e}_{3}\right\rangle$. We also get

$$
\begin{aligned}
p_{1}\left(Q_{2} \cap Q_{3}\right) & =\left\langle x z \mathbf{e}_{1}, x z \mathbf{e}_{3}-z \mathbf{e}_{1}, x^{2} y^{2} z \mathbf{e}_{2}\right\rangle \\
p_{2}\left(Q_{1} \cap Q_{3}\right) & =\left\langle x y z \mathbf{e}_{3}-y z \mathbf{e}_{1}, x^{2} y \mathbf{e}_{3}, x^{2} y^{2} \mathbf{e}_{1}+x^{2} y z \mathbf{e}_{2}\right\rangle \\
p_{3}\left(Q_{1} \cap Q_{2}\right) & =\left\langle x \mathbf{e}_{3}, x z \mathbf{e}_{1}, x y^{3} \mathbf{e}_{1}+x y^{2} z \mathbf{e}_{2}\right\rangle \\
\left(p_{1} \cap p_{2}\right) Q_{3} & =\left\langle x y z \mathbf{e}_{1}, x y z \mathbf{e}_{3}-y z \mathbf{e}_{1}, x^{2} y z \mathbf{e}_{2}\right\rangle \\
\left(p_{1} \cap p_{3}\right) Q_{2} & =\left\langle x z \mathbf{e}_{1}, x z \mathbf{e}_{3}, x y^{2} z \mathbf{e}_{2}\right\rangle \\
\left(p_{2} \cap p_{3}\right) Q_{1} & =\left\langle x y \mathbf{e}_{3}, x y z \mathbf{e}_{1}, x y^{2} \mathbf{e}_{1}+x y z \mathbf{e}_{2}, x y z^{2} \mathbf{e}_{2}\right\rangle
\end{aligned}
$$

Thus

$$
\sqrt[n i l]{N}=\left\langle z \mathbf{e}_{1}, x \mathbf{e}_{3}, x y z \mathbf{e}_{2}, x y^{2} \mathbf{e}_{1}\right\rangle
$$

Corollary 2.8. If $\sqrt[n i l]{N}=N$, then each isolated component of primary decomposition of N must be prime.

Proof. Let $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ with Q_{i} 's are p_{i}-primary submodules. Let Q_{k} be one of the isolated components of N. If Q_{k} 's were not a prime submodule, then there would exist $x \in p_{k} \backslash\left(Q_{k}: M\right)$. Hence, there exists $m \in M$ such that $x m \notin Q_{k}$. Since p_{k} is an isolated prime, we can find an element $y \in\left(\bigcap_{j \neq k} p_{j}\right) \backslash p_{k}$. Then

$$
x y m \in\left(\bigcap_{j=1}^{n} p_{j}\right) M \subseteq \sqrt[n i l]{N}=N \subseteq Q_{k}
$$

Since Q_{k} is p_{k}-primary and $x m \notin Q_{k}, y \in p_{k}$ which is a contradiction.

3. Classical prime submodules

In this section we investigate the relations between classical prime submodules and their nilradicals.
Lemma 3.1. If N is a classical prime submodule, then $\sqrt[n i l]{N}=N$.

Proof. Let $x \in \sqrt[n i l]{N}$. Then there exist elements $r_{i} \in R$ and $m_{i} \in M$ $(1 \leq i \leq k)$ such that

$$
x=r_{1} m_{1}+\cdots+r_{k} m_{k} \quad \text { with } \quad r_{i}^{t_{i}} m_{i} \in N
$$

for some $t_{i} \in \mathbb{Z}^{+}$. Since N is classical prime, $r_{i}^{t_{i}} m_{i} \in N$ implies that $r_{i} m_{i} \in N$ or $r_{i}^{t_{i}-1} m_{i} \in N$. If $r_{i} m_{i} \in N$, then $x=r_{1} m_{1}+\cdots+r_{k} m_{k} \in N$. If $r_{i}^{t_{i}-1} m_{i} \in N$, then $r_{i} m_{i} \in N$ or $r_{i}^{t_{i}-2} m_{i} \in N$. By the same process, $r_{i} m_{i} \in N$ for all cases. Hence, $x \in N$, which means that $\sqrt[n i l]{N} \subseteq N$. Other side of the inclusion is obvious.

The classical quasi-primary submodules are introduced in [6]. We will take one of the equivalence definitions in Noetherian modules.

Definition 3.2. A proper submodule N of a Noetherian module M is called classical quasi-primary if abm $\in N$ where $a, b \in R$ and $m \in M$ implies that either $a^{k} m \in N$ or $b^{k} m \in N$ for some $k \in \mathbb{N}$.

Proposition 3.3. [6, Proposition 3.4] Let M be a Noetherian R-module and N is a proper submodule of M. Suppose that $N=Q_{1} \cap Q_{2} \cap \cdots \cap$ Q_{s} where each Q_{i} is p_{i}-primary submodule. Then N is classical quasiprimary if and only if $\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ is a chain of prime ideals.

Theorem 3.4. If N is a classical quasi-primary submodule and $\sqrt[n i l]{N}=$ N, then N is classical prime submodule.

Proof. Suppose that $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{s}$ where each Q_{i} is $p_{i^{-}}$ primary submodule with $p_{1} \subset p_{2} \subset \cdots \subset p_{s}$. Since $p_{1} \subset p_{2} \subset \cdots \subset p_{s}$, by the Theorem 2.5

$$
N=\sqrt[n i l]{N}=N+p_{1} M+\sum_{i=2}^{s} p_{i}\left(\bigcap_{j=1}^{i-1} Q_{j}\right)
$$

Let $a b m \in N$ with $a, b \in R$ and $m \in M$. Let i be the first index for which $m \notin Q_{i}$. Since Q_{i} is p_{i}-primary, $a b \in p_{i}$ and so either $a \in p_{i}$ or $b \in p_{i}$. If $i=1$, then since $p_{1} M \subset \sqrt[n i l]{N}=N$, either $a m \in N$ or $b m \in N$. Let $i>1$. Since $p_{i}\left(\bigcap_{j=1}^{i-1} Q_{j}\right) \subset \sqrt[n i l]{N}=N$, either $a m \in N$ or $b m \in N$. Hence N is a classical prime submodule.

The following conjecture is stated in [3]: Let R be a ring and M be an R-module. Then for every classical primary submodule Q of $M, \sqrt[n i l]{Q}$ is a classical prime submodule.

The next example shows that the conjecture is false.

Example 3.5. Let $R=\mathbb{Q}[x, y]$ and let $M=R \oplus R$. Consider the submodule $N=\left\langle x \mathbf{e}_{1}+y^{3} \mathbf{e}_{2}, x^{2} \mathbf{e}_{1}, x \mathbf{e}_{2}\right\rangle$. One can easily see that (N :
$M)=\left\langle x^{2}\right\rangle$ and N is $\langle x\rangle$-primary submodule. Hence

$$
\sqrt[n i l]{N}=N+\langle x\rangle M=\left\langle x \mathbf{e}_{1}, x \mathbf{e}_{2}, y^{3} \mathbf{e}_{2}\right\rangle
$$

Then $\sqrt[n i l]{N}$ is not classical prime submodule since $y^{2}(0, y)=\left(0, y^{3}\right) \in$ $\sqrt[n i l]{N}$ but $y(0, y)=\left(0, y^{2}\right) \notin \sqrt[n i l]{N}$.

If we weaken the conditions of the conjecture as follows, then we can obtain the desired result as a consequence of Theorem 3.4.

Corollary 3.6. Let R be a Noetherian ring and M be a finitely generated R-module. Then for every classical primary submodule Q of M; if $\sqrt[n i l]{Q}=Q$, then Q is classical prime.

We also have the following.
Corollary 3.7. Let $N=Q_{1} \cap Q_{2}$ be a submodule of M where Q_{i} is p_{i}-primary. If $\sqrt[n i l]{N}=N$, then either Q_{1} and Q_{2} are both prime or N is classical prime.

Proof. We have two cases: $p_{1} \nsubseteq p_{2}$ or $p_{1} \subseteq p_{2}$. If $p_{1} \nsubseteq p_{2}$, then both p_{1} and p_{2} are isolated primes. From Corollary 2.8, Q_{1} and Q_{2} are prime submodules. If $p_{1} \subseteq p_{2}$, then Theorem 3.4 implies that N is classical prime.

Definition 3.8. A proper submodule N of an R-module M is called semiprime if whenever $r^{k} m \in N$ for some $r \in R, m \in M$ and natural number k, then $r m \in N$.

The question when a semiprime submodule can be expressed as a finite intersection of classical prime submodules was discussed in [5]. We try to make some contributions to this discussion. First of all, the following lemma shows that semiprime submodules can be defined in terms of their lower nilradicals.

Lemma 3.9. A proper submodule N is semiprime if and only if $\sqrt[n i l]{N}=$ N.

Proof. Suppose that N is semiprime. Let $x \in \sqrt[n i l]{N}$. Then there exist elements $r_{i} \in R, m_{i} \in M(1 \leq i \leq k)$ such that

$$
x=r_{1} m_{1}+\cdots+r_{k} m_{k} \quad \text { with } \quad r_{i}^{t_{i}} m_{i} \in N
$$

for some $t_{i} \in \mathbb{Z}^{+}$. Since N is semiprime, $r_{i} m_{i} \in N$ for all i. Hence $x \in N$ and $\sqrt[n i l]{N}=N$.

Conversely, suppose that $\sqrt[n i l]{N}=N$. Let $r^{k} m \in N$ for some $r \in$ $R, m \in M$ and natural number k. By definition of the envelope, $r m \in$ $E_{M}(N) \subseteq \sqrt[n i l]{N}=N$. Hence, N is semiprime.

Proposition 3.10. A finite intersection semiprime submodules is also semiprime.

Proof. Let $N=N_{1} \cap N_{2} \cap \cdots \cap N_{s}$ where each N_{i} is semiprime. If $x \in \sqrt[n i l]{N}$, then $x=r_{1} m_{1}+r_{2} m_{2}+\cdots r_{t} m_{t}$ where $r_{i}^{k_{i}} m_{i} \in N$ for some $k_{i} \in \mathbb{N}$. Therefore for each i and $j, r_{i}^{k_{i}} m_{i} \in N_{j}$. Since each N_{j} is semiprime, $r_{i} m_{i} \in N_{j}$ for $j=1, \ldots, s$. Hence $x \in N$. By Lemma 3.9, N is semiprime.

Definition 3.11. A submodule N is called a quasi-p-primary submodule in M, if N has a unique isolated prime p (and possibly embedded primes).

Definition 3.12. A quasi-p-primary submodule N is called simple quasi-p-primary if for any distinct associated primes p_{i}, p_{j} and p_{k} of $N, p_{i} \subset p_{k}$ and $p_{j} \subset p_{k}$ implies either $p_{i} \subset p_{j}$ or $p_{j} \subset p_{i}$.

In the language of graph theory, we can say N is a simple quasiprimary submodule, if Hasse diagram of associated primes of N with respect to set inclusion form a rooted tree.

Lemma 3.13. Let N be a simple quasi-p p_{1}-primary submodule for a prime ideal p_{1}. If N is also semiprime, then N can be expressed as an intersection of finitely many classical prime submodules containing N.

Proof. Let $\operatorname{Ass}(M / N)=\left\{p_{1}, \ldots, p_{s}\right\}$ and $S=\{1, \ldots, s\}$. If N contains only one maximal associated prime with respect to inclusion, then its associated primes form a chain $p_{1} \subset \cdots \subset p_{s}$. Hence, N is classical prime by Theorem 3.4.

Suppose that N has more than one maximal element. For each maximal p_{j}, we have a unique chain of associated primes $p_{1}=p_{j_{1}} \subset p_{j_{2}} \subset$ $\cdots \subset p_{j_{t}}=p_{j}$. Let $N_{j}=Q_{j_{1}} \cap Q_{j_{2}} \cdots \cap Q_{j_{t}}$ where $Q_{j_{1}}=Q_{1}$ and $Q_{j_{t}}=Q_{j}$. From Theorem 2.5,

$$
\sqrt[n i l]{N}=N+p_{1} M+\sum_{T \subset S}\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right)
$$

and

$$
\sqrt[n i l]{N_{j}}=N_{j}+p_{1} M+\sum_{i=2}^{t} p_{j_{i}}\left(\bigcap_{k=1}^{i-1} Q_{j_{k}}\right) .
$$

Our aim is to show that $\sqrt[n i l]{N_{j}}=N_{j}$. Clearly $p_{1} M \subset \sqrt[n i l]{N}=N \subset N_{j}$. Let $B=\operatorname{Ass}(M / N) \backslash \operatorname{Ass}\left(M / N_{j}\right)$. Take $x \in p_{j_{i}}$ and $m \in \bigcap_{k=1}^{i-1} Q_{j_{k}}$. Since p_{j} is a maximal prime and N is simple quasi-primary, there exists $y \in\left(\bigcap_{p \in B} p\right) \backslash p_{j}$. Hence,

$$
y x m \in\left(p_{j_{i}} \cap\left(\bigcap_{p \in B} p\right)\right)\left(\bigcap_{k=1}^{i-1} Q_{j_{k}}\right) \subset \sqrt[n i l]{N}=N \subset N_{j} \subset Q_{j_{k}} .
$$

Since each $Q_{j_{k}}$ is $p_{j_{k}}$-primary and $y \notin p_{j_{k}}, x m \in Q_{j_{k}}$. Hence, $x m \in N_{j}$. This implies $\sqrt[n i l]{N_{j}}=N_{j}$ and N_{j} is classical prime by Theorem 3.4. Since $N=\cap N_{j}, N$ is intersection of finitely many classical prime submodules.

The following proposition is crucial for computing primary decompositions and is quite useful for our purpose.

Proposition 3.14. [8, Proposition 1] Assume that $L=\left\{p_{1}, \ldots, p_{k}\right\}$ are the isolated primes of N. For $i, j=1, \ldots, k$ take $f_{i} \in R$ such that $f_{i} \in p_{j}$ if $i \neq j$, but $f_{i} \notin p_{i}, N_{i}=N: f_{i}^{\infty}$ and take integers e_{i} such that $f_{i}^{e_{i}} N_{i} \subset N$.

Then:
(i) N_{i} is a quasi-p p_{i} primary module in M.
(ii) The sets $A_{i}=\operatorname{Ass}\left(M / N_{i}\right)=\left\{p \in \operatorname{Ass}(M / N): f_{i} \notin p\right\}$ are pairwise disjoint.
(iii) For $J:=\left\langle e_{1}, e_{2}, \ldots, e_{k}\right\rangle$ we have

$$
N=\left(\bigcap N_{i}\right) \cap(N+J M)
$$

This is a decomposition of N into quasi-primary components N_{i} and a component $N^{\prime}:=N+J M \subset M$ of lower (relative) dimension.

Theorem 3.15. Assume that $L=\left\{p_{1}, \ldots, p_{k}\right\}$ are the isolated primes of a semiprime submodule N and define N_{i} 's as in the previous proposition. If $N=N_{1} \cap N_{2} \cap \cdots N_{k}$ and each N_{i} is simple quasi-p p_{i}-primary, then $\sqrt[n i l]{N_{i}}=N_{i}$ for $i=1, \ldots, k$. Hence N can be written as a finite intersection of classical prime submodules.

Proof. For a fixed i, let $\operatorname{Ass}\left(M / N_{i}\right)=\left\{p_{i_{1}}=p_{i}, p_{i_{2}}, \ldots, p_{i_{s_{i}}}\right\}$ and $p_{i} \subseteq$ $p_{i_{k}}$ for every k and let $N_{i}=Q_{i_{1}} \cap \cdots \cap Q_{i_{s_{i}}}$ where each $Q_{i_{k}}$ is $p_{i_{k}}$-primary. By Theorem 2.5,

$$
\sqrt[n i l]{N}=N+\left(\bigcap_{i=1}^{k} p_{i}\right) M+\sum_{\emptyset \neq T \nsubseteq S}\left(\bigcap_{j \in T} p_{i_{j}}\right)\left(\bigcap_{j \in S \backslash T} Q_{i_{j}}\right)
$$

and

$$
\sqrt[n i l]{N_{i}}=N_{i}+p_{i} M+\sum_{\emptyset \neq T \mp S_{i}}\left(\bigcap_{r \in T} p_{i_{r}}\right)\left(\bigcap_{r \in S_{i} \backslash T} Q_{i_{r}}\right\rangle
$$

where $S_{i}=\left\{i_{1}, i_{2}, \ldots, i_{s_{i}}\right\}$ and $S=\bigcup_{i=1}^{k} S_{i}$.
Let $x \in p_{i}$ and $m \in M$. Take $y \in\left(\bigcap_{j \neq i} p_{j}\right) \backslash\left(\bigcup_{t=2}^{s_{i}} p_{i_{t}}\right)$. This is possible since associated primes of N_{i} 's are pairwise disjoint. Then

$$
y x m \in\left(\bigcap_{j=1}^{k} p_{j}\right) M \subseteq \sqrt[n i l]{N} \subseteq Q_{i_{t}}
$$

for $t=1, \ldots, s_{i}$. Since $Q_{i_{t}}$ is primary and $y \notin p_{i_{t}}, x m \in Q_{i_{t}}$. Hence $x m \in N_{i}$.

Now, let $x \in \bigcap_{r \in T} p_{i_{r}}, m \in \bigcap_{S_{i} \backslash T} Q_{i_{r}}$ for some $T \nsubseteq S_{i}$. Take

$$
y \in\left(\bigcap_{j \neq i} p_{j}\right) \backslash\left(\bigcup_{t=2}^{s_{i}} p_{i_{t}}\right) .
$$

Then

$$
y x m \in\left[\left(\bigcap_{j \neq i} p_{j}\right) \cap\left(\bigcap_{r \in T} p_{i_{t}}\right)\right]\left(\bigcap_{r \in S_{i} \backslash T} Q_{i_{r}}\right) .
$$

Since

$$
\bigcap_{j \neq i} p_{j}=\bigcap_{j \neq i} \bigcap_{t=1}^{s_{j}} p_{j_{t}},
$$

we have

$$
\left[\left(\bigcap_{j \neq i} p_{j}\right) \cap\left(\bigcap_{r \in T} p_{i_{t}}\right)\right]\left(\bigcap_{r \in S_{i} \backslash T} Q_{i_{r}}\right) \subseteq \sqrt[n i l]{N} \subseteq N_{i}
$$

Thus $y x m \in Q_{i_{t}}$ for $t=1, \ldots, s_{i}$. Since $Q_{i_{t}}$ is primary and $y \notin p_{i_{t}}$, $x m \in Q_{i_{t}}$ and hence $x m \in N_{i}$. Therefore $\sqrt[n i l]{N_{i}}=N_{i}$ and the conclusion easily follows.

We also have the following result.

Proposition 3.16. Let N be a classical primary submodule of M. Then N is semiprime if and only if N is classical prime.

Proof. Suppose N is semiprime. Then by Lemma 3.9, $\sqrt[n i l]{N}=N$. Since N is classical primary, N is classical prime by Corollary 3.6.

References

[1] A. Azizi, Weakly prime submodules and prime submodules, Glasg. Math. J. 48 (2006), no. 2, 343-346.
[2] A. Azizi, Radical formula and weakly prime submodules, Glasg. Math. J. 51 (2009), no. 2, 405-412.
[3] M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (2009), no. 3, 351-362.
[4] M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
[5] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2008), no. 3, 243-254.
[6] M. Behboodi, R. Jahani-Nezhad and M. H. Naderi, Classical quasi-primary submodules, Bull. Iranian Math. Soc. 37 (2011), no. 4, 51-71.
[7] W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular- A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2011.
[8] G. G. Grabe, Minimal primary decomposition and factorized Grobner bases, Appl. Algebra Engrg. Comm. Comput. 8 (1997), no. 4, 265-278.
[9] A. Marcelo and C. Rodriguez, Radical of submodules and symmetric algebra, Comm. Algebra 28 (2000), no. 10, 4611-4617.
[10] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803-1817.
[11] R. L. McCasland and P. F. Smith, Generalised associated primes and radicals of submodules, Int. Electron. J. Algebra 4 (2008) 159-176.
[12] R. Y. Sharp, Steps in Commutative Algebra, London Math. Soc. Student Texts, 51, Cambridge University Press, Cambridge, 1990.
(Erol Yılmaz) Department of Mathematics, Abant Izzet Baysal University, Faculty of Science and Letters, Bolu, Turkey

E-mail address: yilmaz_e2@ibu.edu.tr
(Sibel Kılıçarslan Cansu) Department of Mathematics, Abant Izzet Baysal University, Faculty of science and Letters, Blou, Turkey

E-mail address: kilicarslan_s@ibu.edu.tr

[^0]: Article electronically published on October 27, 2014.
 Received: 8 December 2012, Accepted: 20 September 2013.

 * Corresponding author.

