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Abstract. In this paper, a spectral Tau method for solving frac-
tional Riccati differential equations is considered. This technique
describes converting of a given fractional Riccati differential equa-
tion to a system of nonlinear algebraic equations by using some
simple matrices. We use fractional derivatives in the Caputo form.
Convergence analysis of the proposed method is given and rate of
convergence is established in the weighted L2−norm. Numerical
results are presented to confirm the high accuracy of the method.
Keywords: Fractional Riccati differential equations, Caputo de-
rivative, spectral Tau method.
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1. Introduction

Fractional differential equations are suitable to describe some physical
phenomena such as damping laws, rheology, diffusion processes, and so
on [3, 13, 18, 22]. Recently, linear fractional differential equations with
variable coefficients have been solved by adapting various analytical and
numerical methods [4–6, 8, 9]. Nowadays, applications have included
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some classes of nonlinear fractional differential equations, and this re-
sults in considering numerical methods for solving these equations. Re-
cently, several numerical methods have been proposed for solving non-
linear fractional differential equations; see [2, 7, 11,12,14,17,23].

Spectral Tau method was proposed by Ortiz and it was applied to or-
dinary differential equations [19], eigenvalue problems [20], partial differ-
ential equations [21], integral equations [10], linear multi order fractional
differential equations [9], nonlinear fractional integro differential equa-
tions [16] etc. In this method approximations are defined by truncated
series expansions, such that residual which should be exactly equal to
zero, is forced to be zero only in an approximate sense. This approach
has two main advantages. First, it reduces the given problems to those of
solving a system of algebraic equations and approximate representation
of a smooth function converges exponentially; see [24].

In this paper, we use spectral Tau method for the numerical solution
of fractional Riccati differential equation

(1.1)

{
Dα(u(t)) = u(t) +A(t)u2(t) +B(t),

u(i)(0) = ui, i = 0, 1, ...,m− 1,

where α is fractional derivative order. m is an integer satisfying m−1 <
α ≤ m. Coefficients A(t), B(t) are known real functions and u(t) is the
exact solution. ui, i = 0, 1, ...,m−1 are constants and Dα is the Caputo
fractional derivative which is given by(see [3, 13,18,22])

(1.2) Dαu(t) =
1

Γ(m− q)

t∫
0

(t− s)m−α−1u(m)(s)ds.

The organization of this paper is as follows: Section 2 is devoted to
solve (1.1) by adopting the spectral Tau method. In Section 3, we prove
convergence of the Tau solution of (1.1). In Section 4, we illustrate some
examples to demonstrate the efficiency of the proposed method.

2. Numerical approach

In this section, we present a numerical solution of (1.1) by using the
spectral Tau method based on shifted Jacobi basis functions on I = [0, 1].
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Define uN (t) as an approximate solution of (1.1) as
(2.1)

uN (t) =

N∑
i=0

aiV
ρ,σ
i (t) = a V ρ,σ = aV ρ,σXt, a = [a0, a1, ..., aN , 0, ...],

where V ρ,σ := [V ρ,σ
0 (t), V ρ,σ

1 (t), ..., V ρ,σ
N (t), ...]T = V ρ,σXt with param-

eters ρ, σ ∈ (−1, 1) showing arbitrary shifted Jacobi polynomial bases.
V ρ,σ is infinitely nonsingular lower triangular coefficient matrix. Xt =

[1, t, t2, ..., tN , ...]T is the standard basis and V ρ,σ
i (t), for i = 0, 1, ... , are

arbitrary shifted Jacobi polynomials with degree at most i which are
orthogonal with respect to the weight function wρ,σ(t) = 2ρ+σtσ(1− t)ρ

on I.
Substituting (2.1) in (1.1) we get

(2.2) Dα(a V ρ,σ) = a V ρ,σ +A(t)
(
a V ρ,σ

)2
+B(t).

Now, we find suitable matrix forms for Dα(a V ρ,σ) and
(
a V ρ,σ

)2
.

First, we consider Dα(a V ρ,σ). To this end, we have
(2.3)

Dα(a V ρ,σ) = Dα
(
aV ρ,σXt

)
= aV ρ,σDα

(
Xt

)
= aV ρ,σDα[1, t, t2, ..., tN , ...]T .

By using the relation(see [3, 13,18,22])

Dαti =

{ i!
Γ(i−α+1) t

i−α, i ∈ N and i ≥ m or i /∈ N and i > m,

0, i ∈ N and i < m,

we rewrite (2.3) as

(2.4)

Dα(a V ρ,σ) = aV ρ,σ[ 0, 0, ..., 0︸ ︷︷ ︸
m−1

,
m!

Γ(m− α+ 1)
tm−α, ...,

N !

Γ(N − α+ 1)
tN−α, ...]T

= aV ρ,σ[ 0, 0, ..., 0︸ ︷︷ ︸
m−1

,
m!

Γ(m− α+ 1)

∞∑
j=0

δm,jV
ρ,σ
j (t), ...,

N !

Γ(N − α+ 1)

∞∑
j=0

δN,jV
ρ,σ
j (t), ...]T

= aV ρ,σΩV ρ,σ
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where

Ω =



0 · · · 0 · · ·
...

...
...

...
0 . . . 0 · · ·

m!
Γ(m−α+1)δm,0 . . . m!

Γ(m−α+1)δm,N · · ·
(m+1)!

Γ(m−α+2)δm+1,0 . . . (m+1)!
Γ(m−α+2)δm+1,N · · ·

...
...

...
...

N !
Γ(N−α+1)δN,0 . . . N !

Γ(N−α+1)δN,N · · ·
...

...
...

...


,

with

δi,j =
(ti−α, V ρ,σ

j )ρ,σ

(V ρ,σ
j , V ρ,σ

j )ρ,σ
,

i ≥ m
j = 0, . . . , N.

The symbol (., .)ρ,σ stands for the weighted inner product defined by
(f, g)ρ,σ =

∫
I f(t)g(t)w

ρ,σ(t)dt.

Now we obtain a matrix form for
(
a V ρ,σ

)2
. To this end, we have

(2.5)
(
a V ρ,σ

)2
=

(
aV ρ,σXt

)2
= aV ρ,σ

(
Xt ×

(
aV ρ,σXt

))
= aV ρ,σ

(
Xt ×

∞∑
s=0

∞∑
r=0

arv
ρ,σ
r,s t

s
)

= aV ρ,σ
[ ∞∑
s=0

( ∞∑
r=0

arv
ρ,σ
r,s

)
ts+i

]∞
i=0

= aV ρ,σΥXt,

where

Υ =


aṼ ρ,σ

0 aṼ ρ,σ
1 aṼ ρ,σ

2 . . .

0 aṼ ρ,σ
0 aṼ ρ,σ

1 . . .

0 0 aṼ ρ,σ
0 . . .

...
...

...
. . .

 ,

with Ṽ ρ,σ
i = {vρ,σj,i }∞j=0.

putting (2.4) and (2.5) into (2.2) we get

(2.6) aV ρ,σΩXt = aV ρ,σXt +A(t)
(
aV ρ,σΥXt

)
+B(t).
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If we take c(t) = cXt where c = [c0, c1, ..., cN , ...] to be a polynomial
and

(2.7) A(t) = A Xt, A = [A0, A1, ...],

we can write

A(t)c(t) = cA(µ)Xt,

where µ is a nonsingular matrix with only nonzero elements µi+1,i =
1, i = 1, 2, ...; see [19].

Using (2.7) and assuming B(t) = BV σ,ρ, B = [B0, B1, ...] we can
rewrite (2.6) as

(2.8) aV ρ,σΩXt = aV ρ,σXt + aV ρ,σΥA(µ)Xt +BV ρ,σXt.

Since Xt =
(
V ρ,σ

)−1
V ρ,σXt =

(
V ρ,σ

)−1
V ρ,σ, from (2.8) we can

conclude that

(2.9) aV ρ,σ
(
Ω− Id−Υ

)(
V ρ,σ

)−1
V ρ,σ = B V ρ,σ,

where Id is the infinite identity matrix.
To obtain algebraic form of the spectral Tau discretization for (1.1) it

is sufficient to obtain a matrix form for the initial conditions u
(i)
N (0) =

ui, i = 0, 1, ...,m− 1. Using the relation

u
(i)
N (t) = aV ρ,σηiXt,

we can obtain the following matrix form for initial conditions

(2.10) aΦ = u, u = [u0, u1, ..., um−1]
T , Φ =

[
Φi

]m−1

i=0
,

where Φi = V ρ,σηie1 is the ith column of Φ. η is a nonsingular matrix
with only non zero elements ηi+1,i = i, i = 1, 2, ...;(see [19]).

Following (2.9) and (2.10) we obtain the system of algebraic equations

(2.11)

{
aV ρ,σ

(
Ω− Id−Υ

)(
V ρ,σ

)−1
V ρ,σ = B V ρ,σ,

aΦ = u.

If we set Π = V ρ,σ
(
Ω − Id − Υ

)(
V ρ,σ

)−1
, then, because of the or-

thogonality of
[
V ρ,σ
i (t)

]∞
i=0

projecting (2.11) onto
[
V ρ,σ
i (t)

]N
i=0

we get

aΠj = Bj , j = 0, 1, 2, ...
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where Πj is the jth column of Π. By setting

Π̃ = [Φ0,Φ1, ...,Φm−1,Π0,Π1, ...,ΠN ], B̃ = [u0, u1, ..., um−1, B0, B1, ..., BN ],

we obtain aΠ̃ = B̃. We restrict this nonlinear system to its first
N + 1 columns and solve resulted system to find the unknown vector
[a0, a1, ...aN ].

3. Convergence analysis

The purpose of this section is to analyze convergence of the proposed
method to the numerical solution of (1.1). From [3] we can see that
some derivatives of the solutions of fractional differential equations have
discontinuity at the origin. As discussed in [15] the solutions of fractional
differential equations belong to the space Cm

−1(I), where

Cm
−1(I) :=

{
u|u ∈ Cm−1(I), u(m)(t) = tpũ(t); p > −1, ũ ∈ C(I)

}
.

Previously, some authors provided convergence analysis for the nu-
merical solution of fractional differential equations using spectral meth-
ods but their convergence theorems are based on the restrictive assump-
tions on the exact solution. Ghoreishi and Mokhtary [8] proposed spec-
tral Collocation method based on the Jacobi polynomials for solving
linear fractional differential equations and error analysis of the proposed
method was discussed. To recover the spectral rate of convergence, au-
thors changed the main equation into a new equation which has smooth
solution and Collocation scheme with spectral rate of convergence for the
new equation was presented. Ghoreishi and Yazdani [9], provided a con-
vergence analysis for approximation of linear multi order fractional dif-
ferential equations with smooth solution using the Tau method. In [16],
Mokhtary and Ghoreishi proved that if solutions of nonlinear fractional
Integro differential equations were sufficiently smooth then their Tau
solutions have exponential rate of convergence.

Thus providing a suitable convergence analysis to the spectral solu-
tions of fractional differential equations with the exact solutions belong
to the space Cm

−1(I) is important and a new problem in the literature.
In this section, we study convergence behaviour of the spectral Tau

method to the numerical solutions of (1.1) with the exact solutions be-
long to the space Cm

−1(I). In this section C denotes a generic positive
constant that is independent of N .
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Bk
ρ,σ(I) denotes the non-uniform Jacobi-Sobolev space of all functions

u(t) on I such that u(t) and its derivatives of order l are in L2
ρ+l,σ+l(I)

for 0 ≤ l ≤ k, where L2
ρ,σ(I) is the weighted L2 space of all functions

u(t) : I → R with ||u(t)||ρ,σ < ∞, and

||u(t)||2ρ,σ =

∫
I

u2(t) wρ,σ(t)dt.

We define the following norm for the space Bk
ρ,σ(I)

||u||Bk
ρ,σ(I)

=
( k∑

l=0

||u(l)||2ρ+l,σ+l

) 1
2
.

We recall that the L∞-norm of a function u over I is defined as follows

∥u∥∞ = sup
x∈I

|u(t)|.

The following estimates hold(see [24], [1])

(3.1) ∥u(t)− uN (t)∥Bl
ρ,σ(I)

≤ CN l−k∥u(k)∥ρ+k,σ+k,

for u ∈ Bk
ρ,σ(I) and 0 ≤ l ≤ k ≤ N + 1, as well as

(3.2) ∥u(t)− uN (t)∥∞ ≤ C
(
1 + ΛN

)
N−k∥u(k)∥∞,

for k ≥ 0, ∥u(k)∥∞ < ∞ and

(3.3) ΛN =

{
log(N), −1 < ρ, σ ≤ −1

2 ,

Nγ+ 1
2 , γ = max(ρ, σ), otherwise.

An important fact is that the shifted Jacobi polynomials
{
V ρ,σ
i (t)

}
i≥0

form a complete orthogonal system in L2
ρ,σ(Λ). Thus we define

P ρ,σ
N := span

{
V ρ,σ
0 , V ρ,σ

1 , ..., V ρ,σ
N

}
,

and consider the orthogonal projection Pρ,σ
N := L2

ρ,σ(Λ) → P ρ,σ
N defined

by (
u− Pρ,σ

N u, vN

)
ρ,σ

= 0 ∀vN ∈ P ρ,σ
N .

To prove the error estimate in L2-norm, we need the generalized
Hardy’s inequality:
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Lemma 3.1. (generalized Hardy’s inequality [9])For all measurable func-
tion f ≥ 0, the following generalized Hardy’s inequality

(

∫ b

a
|(λf)(t)|qw1(t)dt)

1/q ≤ C(

∫ b

a
|f(t)|pw2(t)dt)

1/p,

holds if and only if

sup
a<t<b

(∫ b

t
w1(t)dt

)1/q (∫ t

a
w1−p′

2 (t)

)1/p′

< ∞, p′ =
p

p− 1
,

for 1 < p ≤ q < ∞. Here, λ is an operator of the form

(λf)(t) =

∫ t

a
k(t, s)f(s)ds,

with k(t, s) a given kernel, w1, w2 weight functions, and −∞ ≤ a < b ≤
∞.

Now we state and prove the main result of this section regarding
the error estimate of the proposed method for the numerical solution of
(1.1).

Theorem 3.2. Assume the approximated solution uN (t) of the form
(2.2) is given by the proposed spectral Tau scheme in the previous section.
If A(t) is continuous and B(t) ∈ L2

ρ,σ(I), then there exist parameters
ρ, σ ∈ (−1, 1) such that for sufficiently large N , we have

∥eN∥2ρ,σ ≤ C1N
−s∥u(s)∥ρ+s,σ+s

(
F0(u) + F1(u) + F2(u)

)
.

where u(t) ∈ Bs
ρ,σ(I) for s ≥ m, eN (t) = u(t)− uN (t) and

F0(u) = C2N
−s

(
3 + ΛN

)
∥A(t)∥∞∥u∥∞∥u(s)∥ρ+s,σ+s,

F1(u) = C4N
m−s∥u(s)∥ρ+s,σ+s,

F2(u) = C5

((
∥Dαu∥ρ,σ + F1(u)

)
+

(
∥u∥ρ,σ +N−s∥u(s)∥ρ+s,σ+s

)
+ ∥A∥∞

(
(1 + ΛN )∥u∥∞

)2
+ ∥B∥ρ,σ

)
.

Proof. Consider the residual function

(3.4) RN (t) = DαuN (t)− uN (t)−A(t)u2N (t)−B(t).
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According to the proposed method we have(
RN (t), V ρ,σ

i (t)
)
ρ,σ

= 0, 0 ≤ i ≤,

which yields

(3.5) Pρ,σ
N (RN ) =

N∑
i=0

(
RN , V ρ,σ

i

)
ρ,σ

∥V ρ,σ
i ∥2ρ,σ

V ρ,σ
i (t) = 0.

Subtracting (1.1) from (3.5), we get

(3.6) Dαu(t)− u(t)−A(t)u2(t)−B(t)− Pρ,σ
N (RN ) = 0.

By some simple calculation we can rewrite (3.6) as

(3.7) |eN (t)| = |DαeN −A(t)
(
u2(t)− u2N (t)

)
− ePρ,σ

N
(RN )|

≤ |DαeN |+ |A(t)
(
u2(t)− u2N (t)

)
|+ |ePρ,σ

N
(RN )|,

where ePρ,σ
N

(RN ) = RN (t)−Pρ,σ
N (RN ) is the truncation error of a Jacobi

series.
Since Pρ,σ

N (RN ) = 0, we have

(3.8)


ePρ,σ

N
(RN ) = RN (t)−Pρ,σ

N (RN ) = RN (t),

u2(t)− u2N (t) = (u− uN )(u+ uN ) = 2ueN − e2N .

Putting (3.8) into (3.7) we get

(3.9) |eN (t)| ≤ |DαeN |+ |A(t)
(
2ueN − e2N

)
|+ |RN |.

Now we multiply two sides of (3.9) by |eN (t)|wρ,σ(t) and integrate
over I. Thus(
|eN |, |eN |

)
ρ,σ

≤
(
|DαeN |, |eN |

)
ρ,σ

+
(
|A(t)

(
2ueN − e2N

)
|, |eN |

)
ρ,σ

+
(
|RN |, |eN |

)
ρ,σ

.(3.10)

Using (|eN |, |eN |)ρ,σ = ∥eN∥2ρ,σ and the weighted Cauchy-Schwartz
inequality we rewrite (3.10) as
(3.11)

∥eN∥2ρ,σ ≤
(
∥DαeN∥ρ,σ+∥RN∥ρ,σ

)
∥eN∥ρ,σ+

(
|A(t)

(
2ueN−e2N

)
|, |eN |

)
ρ,σ

.
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On the other hand we have

(3.12)(
|A(t)

(
2ueN − e2N

)
|, |eN |

)
ρ,σ
=

∫
I

(
|A(t)

(
2ueN − e2N

)
||eN |

)
wρ,σ(t)dt

≤
∫
I
|A(t)|

(
|2u(t)||eN |2 + |eN |3

)
wρ,σ(t)dt

≤ ∥A(t)∥∞
(
2∥u∥∞ + ∥eN∥∞

)
∥eN∥2ρ,σ.

By inserting (3.12) in (3.11) and using (3.1) with l = 0 for ∥eN∥ρ,σ
and applying (3.2) with k = 0 for ∥eN∥∞ we conclude

(3.13) ∥eN∥2ρ,σ ≤ C1N
−s∥u(s)∥ρ+s,σ+s

(
∥DαeN∥ρ,σ+F0(u)+∥RN∥ρ,σ

)
,

where

F0(u) = C2N
−s

(
3 + ΛN

)
∥A(t)∥∞∥u∥∞∥u(s)∥ρ+s,σ+s.

Now, it is sufficient to derive suitable bounds for ∥DαeN∥ρ,σ and
∥RN∥ρ,σ. First, we consider ∥DαeN∥ρ,σ. To this end, if ρ, σ ∈ (−1, 1),
using Hardy inequality(Lemma 3.1) with w1(t) = 1, w2(t) = wρ−α,σ−α(t)

and K̂(t, s) = (t− s)m−α−1(w
m+α

2
,m+α

2 (s))−1 we may write

(3.14) ∥DαeN∥ρ,σ = ∥ 1

Γ(m− α)

t∫
0

K̂(t, s)e
(m)
N (s)w

m+α
2

,m+α
2 (s)ds∥ρ,σ

≤ C3∥w
m+α

2
,m+α

2 e
(m)
N (t)∥ρ−α,σ−α

≤ C3∥e(m)
N (t)∥ρ+m,σ+m ≤ C3∥eN∥Bm

ρ,σ(I)
.

Putting (3.1) in (3.14) we get

(3.15) ∥DαeN∥ρ,σ ≤ F1(u), F1(u) = C4N
m−s∥u(s)∥ρ+s,σ+s.

By inserting (3.15) in (3.13), we obtain

(3.16) ∥eN∥2ρ,σ ≤ C1N
−s∥u(s)∥ρ+s,σ+s

(
F1(u) + F0(u) + ∥RN∥ρ,σ

)
.

Next, we find a suitable bound for ∥RN∥ρ,σ. From (3.4) we have

∥RN∥ρ,σ ≤ ∥DαuN∥ρ,σ + ∥uN∥ρ,σ + ∥A(t)u2N∥ρ,σ + ∥B(t)∥ρ,σ.
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Since uN (t) = u(t)− eN (t), we can rewrite the above equation as

∥RN∥ρ,σ ≤
(
∥Dαu∥ρ,σ + ∥DαeN∥ρ,σ

)
+

(
∥u∥ρ,σ + ∥eN∥ρ,σ

)
+ ∥A(t)

(
u− eN

)2
∥ρ,σ + ∥B(t)∥ρ,σ.(3.17)

Using the relation

∥
(
u− eN

)2
∥ρ,σ ≤ ∥

(
u− eN

)2
∥∞ ≤

(
∥u∥∞ + ∥eN∥∞

)2
,

in (3.17) we get

∥RN∥ρ,σ ≤
(
∥Dαu∥ρ,σ + ∥DαeN∥ρ,σ

)
+

(
∥u∥ρ,σ + ∥eN∥ρ,σ

)
+ ∥A(t)∥∞

(
∥u∥∞ + ∥eN∥∞

)2
+ ∥B(t)∥ρ,σ.(3.18)

Finally, by applying (3.15) in ∥DαeN∥ρ,σ and using (3.1) in ∥eN∥ρ,σ
with l = 0 and adopting (3.2) in ∥eN∥∞ with k = 0, we rewrite (3.18)
as

(3.19) ∥RN∥ρ,σ ≤ F2(u),

where

F2(u) = C5

((
∥Dαu∥ρ,σ + F1(u)

)
+

(
∥u∥ρ,σ +N−s∥u(s)∥ρ+s,σ+s

)
+ ∥A∥∞

(
(1 + ΛN )∥u∥∞

)2
+ ∥B∥ρ,σ

)
.

The desired result can be achieved by inserting (3.19) into (3.16). □

Remark 3.3. It can be easily seen that if u(t) ∈ Cs
−1(I), s ≥ m, there

exist parameters ρ, σ ∈ (−1, 1), such that u(t) ∈ Bs
ρ,σ(I). As a sequence,

the convergence of (1.1) with exact solutions u(t) ∈ Cs
−1(I), s ≥ m can

be concluded from Theorem 3.2. It is trivial that for larger values of s
we can expect the higher rate of convergence.

4. Numerical results

In this section, we report numerical results of two examples, selected
through (1.1), solved by the proposed method using Chebyshev(ρ, σ =
−1

2) and Legendre (ρ, σ = 0) polynomials. the numerical results ob-
tained, confirm the theoretical prediction of Theorem 3.2. All calcula-
tions were performed on a PC running Mathematica software. In tables
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”Numerical Error” always refers to the weighted L2-norm of the ob-
tained error function. In all cases, any non-polynomial coefficient was
replaced by its orthogonal expansion.

Example 4.1. Consider fractional Riccati differential equation

D
3
2u(t) = cot (t)u2(t) +B(t), u(0) = 0, u′(0) = 1

in which B(t) = −
4t

3
2 F1,2

(
1;{ 5

4
, 7
4
};− t2

4

)
3
√
π

− 1
2 sin (2t). Fp,q({a1, ..., ap}; {b1,

..., bq}; z) is the generalized Hypergeometric function. The exact solution
is u(t) = sin t.

The numerical results obtained are given in Table 1 and Figure 1.
The results confirm the exponential rate of convergence, as it has been
proved in Theorem 3.2.

Table 1: The Tau approximation errors of example 4.1.

Numerical Error

N Chebyshev bases Legendre bases

5 1.76× 10−6 2.24× 10−6

7 1.37× 10−9 2.49× 10−9

9 9.48× 10−13 1.47× 10−12

11 2.44× 10−15 3.77× 10−15

13 1.33× 10−15 2.33× 10−15

15 2.99× 10−16 3.22× 10−16

Example 4.2. Consider fractional Riccati differential equation

D
1
2u(t) = u(t) +

√
tu2(t) +B(t), u(0) = 0,

in which B(t) = −tq(1 + tq+
1
2 ) + qtq−

1
2 Γ(q)

Γ(q+ 1
2
)
. The exact solution is u(t) =

tq, q > 0.

Numerical results obtained for example 4.2 with the Chebyshev and
the Legendre polynomials are presented in Table 2 and Figure 2. Figure
2, shows the rate of convergence for various values of q. Each part of the
figure contains numerical errors for several values of N , which are plot-
ted for a special value of q = 1.2, 1.4, 1.6, 1.8 in the weighted L2 norm.
Similar prediction in Theorem 3.2, numerical results obtained by apply-
ing the proposed method show that when q tends to the q = 2 (smooth
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Figure 1. We display the errors of the example 4.1 for
various values of N . The left and right hand side figures
show numerical errors concerning the shifted Chebyshev
and Legendre Tau method on I respectively.

solution) the rate of convergence increases. For q = 2, numerical results
have not been presented, since the exact solution is obtained. As we see
from Table 2, we have accurate numerical solutions, when q tends to 2.

Table 2: The Tau approximation errors for example 4.2 using two classical bases
and different values of q and N .

Chebyshev bases
N q = 1.2 q = 1.4 q = 1.6 q = 1.8

5 5.28× 10−2 3.53× 10−2 1.57× 10−2 4.68× 10−3

8 8.06× 10−3 4.46× 10−3 1.66× 10−3 4.07× 10−4

11 2.68× 10−3 1.29× 10−3 4.21× 10−4 9.01× 10−5

14 1.17× 10−3 5.11× 10−4 1.49× 10−4 2.91× 10−5

17 6.01× 10−4 2.43× 10−4 6.57× 10−5 1.17× 10−5

20 3.44× 10−4 1.31× 10−4 3.29× 10−5 5.51× 10−6

Legendre bases
N q = 1.2 q = 1.4 q = 1.6 q = 1.8

5 7.05× 10−2 4.19× 10−2 2.81× 10−2 1.59× 10−2

8 1.53× 10−2 9.32× 10−3 3.81× 10−3 1.03× 10−3

11 5.52× 10−3 2.96× 10−3 1.06× 10−3 2.55× 10−4

14 2.51× 10−3 1.22× 10−3 3.98× 10−4 8.65× 10−5

17 1.32× 10−3 5.94× 10−4 1.79× 10−4 3.62× 10−5

20 7.68× 10−4 3.25× 10−4 9.23× 10−5 1.74× 10−5
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Figure 2. An illustration of the rate of convergence for
the Tau method with various q. We display the errors of
example 4.2 using Chebyshev (left) and Legendre bases
(right).

5. Conclusion

The spectral Tau approximation was introduced to discuss the nu-
merical solution of the fractional Riccati differential equation (1.1). We
proved the convergence of the proposed method and obtained the error
estimates in the weighted L2-norm. These results were confirmed by two
numerical examples. Results show that, this methodology is powerful
in finding the numerical solutions of the fractional Riccati differential
equations (1.1).
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