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Abstract. Let G be a finite group and ν(G) denote the number
of conjugacy classes of non-normal subgroups of G. In this paper,
all nilpotent groups G with ν(G) = 3 are classified.
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1. Introduction

A group G is called a Dedekind group (or Hamiltonian) if any sub-
group of G is normal. All such groups were determined by Dedekind in
1897; they are Abelian groups and direct products of a quaternion group
of order 8 with a periodic Abelian group having no element of order 4.

If G is not a Dedekind group we denote the intersection and the
number of conjugacy classes of all non-normal subgroups of G, by R(G)
and ν(G), respectively. Clearly ν(G) = 0 if and only if G is Dedekind.

Brandl [2] and the present author [6] classified all finite groups with
ν(G) = 1 and ν(G) = 2, respectively. Brandl conjectured that 1 +
ν(G) is an upper bound for c(G), the nilpotency class of a nilpotent
group G (with the exception of the Hamiltonian groups, of course). In
[9] Poland and Rhemtulla proved this conjecture and determined when
c(G) = 1+ν(G). Also the present author [7] gave a simple proof for this
conjecture and classified all finite non-Dedekind nilpotent groups with
c(G) = 1 + ν(G).
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For another application of ν(G), La Haye [4] showed that for a non-
Dedekind group G with a finite number of non-normal subgroups, |G′| ≤
ρ(G)ν(G)+ε and |G/Z(G)| ≤ ρ(G)ν(G)+ε+1 where ρ(G) denoted the largest
prime p for which G has element of order p, and ε = 1 if G has element
of order 2 and ε = 0 otherwise. This bound was improved by La Haye
and Rhemtulla [5]. This goes to say that ν(G) can play an important
role in the structures of finite groups.

The following theorem, which is the main result of this article, was
announced without proof in the author’s seminar article [8] at the 16th
Seminar of Algebra in IASBS, Zanjan, Iran, 2004. Later in 2009, Chen
[3] tries to characterize finite nilpotent groups with ν(G) = 3; unfor-
tunately the characterization is not complete, in the sense that one the
groups are missing and also some of the presented groups are isomorphic.

Theorem 1.1. Let G be a finite nilpotent group with ν(G) = 3. Then
G is isomorphic to one of the following groups.

(1) A×Zq2, where A is a p-group with ν(A) = 1 and q ̸= p is prime.
(2) Q8 × Z4;
(3) ⟨x, g |x8, g8, x4g4, gxg⟩.
(4) ⟨x, g |x8, g4, [x4, g2], [g, x]x4g2⟩.
(5) ⟨x, y, z |x2, y2, z2n , [x, y]z2n−1

, [x, z], [y, z]⟩, where n ≥ 2.

(6) ⟨x, g |x9, g3n , [x, g]g3n−1⟩, where n ≥ 2.
(7) ⟨x, g |x2, g4, [x, g2], [x, g]2g2⟩.

Our notation are standard and can be found in [10] or [11]. For
example, the split extension of A by B is written as A⋊B and Zn, D2n

and Q2n denote cyclic group of order n, the Dihedral group of order 2n
and Quaternion group of order 2n, respectively.

2. Preliminaries

In this section we let G be a finite non-Dedekind group. The following
results of N. Blackburn [1] (1964) play an important role in the theory
of finite non-Hamiltonian p-groups.

Theorem 2.1 (Blackburn). Let G be a finite p-group. Suppose that G is
non-Dedekind and that R(G) ̸= 1. Then p = 2 and one of the following
holds:

(1) G is the direct product of a quaternion group of order 8, a cyclic
group of order 4 and an elementary abelian group;
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(2) G is the direct product of two quaternion group of order 8 and
an elementary abelian group;

(3) G is a Q-group, that

G =< x,A|x4 = 1, x2 ∈ A, ax = a−1 ∀a ∈ A >,

where A is abelian with exp(A) ̸= 2.

In 1995, Brandl [2] proved the following result:

Theorem 2.2 ([2]). Let G be a finite nilpotent group with ν(G) = 1.
Then

G ∼= ⟨a, b|apn = bp = 1, ab = a1+pn−1⟩,
where p is a prime and n ≥ 2 if p ≥ 3, and n ≥ 3 if p = 2.

In 1998 the present author [6] characterized finite groups G for which
ν(G) = 2, and proved the following theorem.

Theorem 2.3 ([6]). Let G be a finite nilpotent group with ν(G) = 2.
Then G is isomorphic to one of the following groups:

(1) P × Zq, where P is nilpotent with ν(P ) = 1 and q is prime;
(2) Z4 ⋊ Z4;
(3) Q16, the generalized quaternion group of order 16;

(4) ⟨x, y|x4 = y2
n
= 1, yx = y1+2n−1⟩, where n ≥ 3;

(5) D8, the dihedral group of order 8.

Remark 2.4. In the above theorem, groups Z4 ⋊ Z4 and Q16 have two
conjugacy classes of order 4 with non-trivial intersection and in groups
(4), (5) non-normal subgroups have order 4 and 2 respectively with trivial
intersection. All groups have cyclic non-normal subgroups which do not

contain each other. In the group (4), H = ⟨x⟩ and K = ⟨xy2n−4⟩ are the
non-normal and non-conjugate subgroups of G and also G contains two

normal subgroups ⟨y2n−4⟩ and L = ⟨x2y2n−4⟩ of order 4 too. Let Z =
⟨x2⟩, then two subgroup KZ/Z and LZ/Z have a trivial intersection.

La Haye and Rhemtulla in [5, Lemma 3] prove the following lemma
stating that for non-Dedekindian p-group G with ν(G) = 3, p ≤ 3.

Lemma 2.5. Let G be a finite p-group with ν(G) > 0. Then either
ν(G) = 1 or ν(G) ≥ p.

By above Lemma, for a p-group with ν(G) = 3, we have p ≤ 3. This
fact is useful but does not help us, so we prove our results without using
the above Lemma.
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Lemma 2.6. Let G be a finite p-group and H ⋬ G be of order p. If for
some central element z of order p, ⟨H, z⟩ ⊴ G then either Z(G) is cyclic
or for any central element y such that z ̸∈ ⟨y⟩, ⟨H, y⟩ ⋬ G.

Proof. Let Z(G) be non-cyclic and ⟨H, y⟩ ⊴ G. Since for some g ∈ G,
⟨H, z⟩ = ⟨H,Hg⟩ = Ω1(⟨H, y⟩), then z ∈ Ω1(⟨H, y⟩). Therefore H ⩽
Ω1(⟨H, y⟩) = ⟨z, y⟩ ⩽ Z(G), which is contradiction. □

For a finite group G we denote by k(G) the number of conjugacy
classes subgroups of G.

Lemma 2.7. [6, Lemma 4.1] If A and B are groups, then

ν(A×B) ≥ k(A)ν(B) + k(B)ν(A)− ν(A)ν(B).

The equality holds if (|A|, |B|) = 1.

Since for any group G, k(G) ≥ ν(G) + 2, then

ν(A×B) ≥ 2(ν(A) + ν(B)) + ν(A)ν(B).

3. The Structure Theorems

We first assume that G is not of prime power order or R(G) ̸= 1, next
in two subsections we consider the case G is of prime power order with
R(G) = 1.

Theorem 3.1. Let G be a finite nilpotent group which is not of prime
power order. If ν(G) = 3 then G is the group (1) presented in Theo-
rem 1.1.

Proof. We can write G = A×B where (|A|, |B|) = 1. Hence, ν(A) and
ν(B) can not be both non-zero so we can assume that ν(B) = 0; now
ν(G) = k(B)ν(A) implies that k(B) = 3 and ν(A) = 1. Therefore, A is
the group presented in Theorem 2.2 and B is a cyclic group of order q2

for some prime q ̸= p. So G is group (1) presented in Theorem 1.1. □
Theorem 3.2. Let G be a finite p-group with ν(G) = 3. If R(G) ̸= 1
then G ∼= Q8 × Z4.

Proof. Obviously, ν(Q8 × Q8) = 15 and ν(Q8 × Z4) = 3. Hence, by
Lemma 2.7 and Theorem 2.1, we have either G ∼= Q8 × Z4 or G is a
Q-group.

Let G be a Q-group. If A is cyclic, then G is generalized Quaternion
and ν(G) is even by [5, Proposition 2.5]. So, A is not cyclic. Since
ν(G/R(G)) = 3, we can consider a ∈ A of order ℓ = exp(A) such that
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a2 ̸= x2, also ⟨a⟩ has a complement Aa in A. Assume that exp(Aa) > 2,
b ∈ Aa is of order exp(Aa) and Ab is a complement of ⟨b⟩ in Aa. Hence,
G/⟨Ab, x

2⟩ has a quotient isomorphic to Z2 ×D2ℓ, where ℓ ≥ 4. Other-
wise exp(Aa) = 2 and Aa ⩽ Z(G). Now as G/⟨x2⟩ ∼= Aa⟨x2⟩/⟨x2⟩ ×D2ℓ

and ν(G) = ν(G/⟨x2⟩), either ℓ > 4 or Aa⟨x2⟩/⟨x2⟩ ̸= 1. So in each
case either G has a quotient isomorphic to Z2×D8 or D16, so ν(G) ≥ 4.
which is impossible. □

Hence, in continuation we assume that G is a p-group with ν(G) = 3
and R(G) = 1. Also we assume that H, K and L are representative of
three non-normal non-conjugate subgroups of G.

3.1. Non-normal subgroups do not contain each other. In this
subsection we see that any subgroup of every non-normal subgroups of
G, is normal. So every non-normal subgroups must be cyclic.

Lemma 3.3. Let a finite p-group G with ν(G) ≥ 3 have a non-normal
subgroup of order p. If any two non-normal and non-conjugate subgroups
of G have a trivial intersection, then all the non-normal subgroups of G
have the same order p.

Proof. By Lemma 2.6, Z(G) must be cyclic. Since any non-normal sub-
group of G is cyclic so Z, the central subgroup of order p, must be
contained in any non-normal subgroup of order greater than p. There-
fore, G has at most one conjugacy class of non-normal subgroups of order
greater than p, say L. Suppose that H and K are non-normal and non-
conjugate subgroups of order p; since ν(G/Z) = 1, then HZ/Z = KZ/Z
is the central subgroup of order p of G/Z. Hence, KZ = HZ is elemen-
tary abelian of order p2 which contains both H and K. Therefore, H
and K must be conjugate, which is a contradiction. □
Theorem 3.4. Let G be a finite p-group with ν(G) = 3 and R(G) = 1
such that at least two subgroups of L, H and K have non-trivial inter-
section. Then G is isomorphic to one of the group (3) or (4), presented
in Theorem 1.1.

Proof. Without lose of generality, we can assume that H ∩K ̸= 1. We
set Ḡ = G/(H ∩K). Since all the non-normal subgroups of G are cyclic,
H ∩ L = K ∩ L = 1, hence, ν(Ḡ) = 2 and R(Ḡ) = 1. Furthermore,
|H̄| = |K̄| ≤ 4 (by Theorem 2.3). If |H̄| = 4, then for a maximal
subgroup M of H, we have ν(G/M) = 1, hence, the center of G/M is
cyclic but KM/M and LM/M are cyclic normal subgroup with trivial
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intersection (Remark 2.4), which is a contradiction. Therefore, Ḡ ∼= D8

and G = ⟨H,K⟩ so H ∩ K ⩽ Z(G). Furthermore for L̄ ⊴ Ḡ we have
|L| = |L̄| ≤ 4.
Now, setH = ⟨x⟩ andK = ⟨y⟩ so we have G = ⟨x, y⟩ and (xy)4 ∈ H∩K,
also L̄ ⩽ ⟨x̄ȳ⟩, then L ⩽ ⟨xy⟩(H ∩ K). As x2, y2 ∈ Z(G) we have
(xy)2 = x2y2[x, y] and (xy−1)2 = x2y−2[x, y], so either x2 = y2 and
(xy−1)2 = [x, y] or x2 = y−2 and (xy)2 = [x, y]. Therefore, in either case
⟨[x, y]⟩ ⊴ G and G′ = ⟨[x, y]⟩.
Let z be an involution of H ∩K, since ν(G/⟨z⟩) = 2 and (H ∩K)/⟨z⟩ =
R(G/⟨z⟩) then |H ∩K| ≤ 4. If |H ∩K| = 2, then x2 = y2 and (xy)2 =
[x, y] thus ⟨xy⟩ ⊴ G. Assume that L = ⟨t⟩, since t ∈ ⟨xy⟩(H ∩ K) we
can write t = (xy)ix2. Now, we have

tx = (xyx)ix2 = (xy[y, x])ix2 = (xy)−ix2 = t−1,

similarly ty = (xy)3ix2 = t3. So L ⊴ G, which is impossible. Hence,
|H ∩K| = 4, and |G| = 32 also o(x) = o(y) = 8 and x4 = y4.

Now we distinguish two cases.

Case |L| = 2. By Lemma 2.6, the center of G is cyclic so |G′| = 4
and xy has order 8. If Z(G) ̸= H ∩ K then G/Z(G) ∼= Z2 × Z2 and
|G′| = 2. Therefore, Z(G) = H ∩ K. We set g = xy, since x2 ∈
Z(G) and ⟨g⟩ ⊴ G, (otherwise (xy)2 ∈ H ∩ K and Ḡ ∼= Z2 × Z2) thus
[g, x] ∈ ⟨g⟩, since [g, x] = [y, x] has order 4, [g, x] = g−1 or g3. Suppose
that gx = g−1, set g1 = x2g, then G = ⟨x, g1⟩ and g81 = 1, g41 = x4

also gx1 = x2gx = g41x
−2g−1 = g31. Hence, we can consider gx = g−1.

Therefore, G presented the group (3) of Theorem 1.1.

Case |L| = 4. Since L ∩ Z(G) ̸= 1, then |Z(G)| = 8 and so G′ ⩽ Z(G)

hence, |G′| = 2 and o(xy) = 4. If ⟨xy⟩ ⊴ G, then G̃ = G/⟨xy⟩ must be
cyclic, thus, G′ ⩽ ⟨xy⟩, which implies that ⟨xy⟩ ∩ L = ⟨xy⟩ ∩ K = 1.

Thus, L̃ ⩽ K̃ and we must have t = y2(xy)2 where t is a generator of
L. Hence, t2 = y4(xy)4 = 1 which not happen. Therefore ⟨xy⟩ ⋬ G
and we can assume that L = ⟨xy⟩. Now we set g = xy, so G′ ⩽
⟨g2, x4⟩ hence, [g, x] = g2x4. Therefore, G is the group (4) presented in
Theorem 1.1. □

The hypothesis of the next theorem implies that, all the non-normal
subgroups of G have the same order. These groups are known, but the
search for the target group of these groups do not appropriately, so we
create these groups.
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Theorem 3.5. Let G be a finite p-group with ν(G) = 3 and R(G) = 1
such that any two non-normal and non-conjugate subgroups of G have
trivial intersection. Then G is isomorphic to one of the group (5) or
(6), presented in Theorem 1.1.

Proof. Let H = ⟨x⟩ and K = ⟨y⟩. First we let |H| = p; then all the
non-normal subgroups of G have the same order p, by Lemma 3.1. Now
by Lemma 2.6, the center of G is cyclic. Assume that Z is the central
subgroup of order p. Since ν(G/Z) = 0, we have [x, y] ∈ Z. If p is odd
then for all 1 ≤ i ≤ p − 1, (xyi)p = 1 and ⟨xyi⟩ ⋬ G, because xyi is
not central. Since ⟨H,Z⟩ ⊴ G and contains all the conjugates of H,
the subgroups ⟨x⟩, ⟨y⟩ and ⟨xyi⟩, (1 ≤ i ≤ p − 1) are non-normal and
non-conjugate, so we have a contradiction ν(G) ≥ 4. Therefore, p = 2.

Now, set Cx = CG(x), Cy = CG(y) and Cxy = CG(xy). Since xy ̸∈
Z(G), Cxy ≨ G. If g ∈ G and g ̸∈ Cx∪Cy, then [xy, g] = 1 which implies
that g ∈ Cxy so G = Cx∪Cy ∪Cxy and hence, G/Z(G) is the four group
and G = ⟨x, y, z⟩ where Z(G) = ⟨z⟩. By Theorem 2.3, |Z(G)| ≥ 4 and
G is the group (5) of Theorem 1.1.

Next, we assume that |H| ≥ p2. We set Ḡ = G/⟨z⟩, where z ∈ H is
of prime order p; since ν(Ḡ) = 1 then |H| = p2 by Theorem 2.2, so all
the non-normal subgroups of G have same order p2, also G = ⟨x, g⟩ for
some g ∈ G. In the proof of [6, Theorem 4.4], step 1 and 2, ⟨x⟩∩⟨g⟩ = 1,
|G′| = p and ⟨g⟩ ⊴ G (otherwise we have a contradiction |G| = p4 and

|Z(G)| ≥ p3), therefore, G ∼= ⟨g⟩ ⋊ ⟨x⟩. If we consider G′ = ⟨gpn−1⟩ for
some n, then the subgroups ⟨xℓgpn−2⟩ for 1 ≤ ℓ ≤ p− 1 are non-normal
and non-conjugate. Since ν(G) = 3, we have p = 3 and G is the group
(6) presented in Theorem 1.1. □

3.2. At least one non-normal subgroup contains the other. In
this subsection, without lose of generality, we can assume that H ⩽ K.

Theorem 3.6. Let G be a finite p-group with ν(G) = 3 and R(G) = 1
such that H ⩽ K. Then G is isomorphic to the group (7) presented in
Theorem 1.1.

Proof. Let z be a central element of order p. We prove the theorem in
several steps.

Step 1: H does not contains any conjugate of L and also K does not
contained in any conjugate of L.
LetH contains a conjugate of L, without loss of generality we can assume
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that L ⩽ H then |L| = p, because R(G) = 1. If ⟨L, z⟩ ⊴ G, then H must
be cyclic (otherwise L has p conjugates that are contained in H, hence,
H ⊴ G which is a contradiction) also ⟨H, z⟩ ⋬ G because L = Φ(⟨H, z⟩),
thus, K = ⟨H, z⟩. Now ν(G/⟨z⟩) = 1 but |K/⟨z⟩| = |H| = p2, which is
a contradiction. So H = ⟨L, z⟩. In this case ν(G/⟨z⟩) = 2 but H/⟨z⟩ ⩽
K/⟨z⟩; again we have a contradiction by Remark 2.4. Therefore, L ⩽̸ H
and similarly K ⩽̸ L.

Step 2: H does not contained in any conjugate of L so H ∩ L =
R(G) = 1 and |H| = p.
Without loss of generality, we assume that H ⩽ L, then L and also any
conjugate of L can not be contained in K (similar to the previous step)
hence, H must be maximal in K and L so H = K ∩ L and |H| = p,
because R(G) = 1. Now if one of K or L is cyclic, say K, then ⟨K, z⟩ ⊴
G; thus H must be normal, a contradiction. So K and L are non-cyclic,
hence, there exists central elements z1 and z2 of prime order p such that
K = ⟨H, z1⟩ and L = ⟨H, z2⟩. Since ⟨H, z1z2⟩ ⊴ G, H has p conjugates
which are contained in both K and L, therefore K = L, a contradiction.
Hence H ⩽̸ L and H ∩ L = R(G) = 1. Now we must have |H| = p by
Remark 2.4.

Step 3: K does not contain any conjugate of L so K = ⟨H, z⟩ is of
order p2 and Z(G) is cyclic.
Again we can assume that L ⩽ K; then both H and L must be maximal
in K also we have |H| = |L| = p, thus, |K| = p2 and H is conjugate to
L, which is impossible. Therefore, H is maximal in K and so |K| = p2.
Since K can not be cyclic, K = ⟨H, z⟩ for some central element z of
order p, which implies that Z(G) is cyclic.

Step 4: K ∩ L = ⟨z⟩, p = 2 and L is cyclic of order 4.
We show that K ∩ L ̸= 1. If not then |L| = p and ⟨H,L⟩ ⊴ G hence,
z ∈ ⟨H,L⟩. So K ⊴ ⟨H,L⟩, thus, ν(⟨H,L⟩) = 2 and we must have
⟨H,L⟩ ∼= D8. Therefore, H has only two conjugates in G, which implies
that K ⊴ G, a contradiction. So K ∩ L = ⟨z⟩ and L is cyclic. Since
ν(G/⟨z⟩) = 2 we conclude that G/⟨z⟩ ∼= D8, thus, |L| = 4.

Now set H = ⟨x⟩ and L = ⟨y⟩; then G = ⟨x, y⟩. Since [x, y] ̸= z, G′ is
cyclic of order 4. Also y2 = z and [x, y2] = 1 as desired. □

Now we show the converse.

Theorem 3.7. If G is one of the groups presented in Theorem 1.1, then
ν(G) = 3.
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Proof. By Lemma 2.7 we see that the group (1) has three conjugacy
classes of non-normal subgroups. Also other groups except groups (5)
and (6) have small order, so we can easily check by GAP [12] software
that this groups, have three conjugacy classes of non-normal subgroups
too.

In groups (5) and (6), Z(G) = Φ(G) and G′ is central of prime order.
In group (5), Z(G) is cyclic so all the subgroups of order greater than
2 contain G′; so is normal. Therefore, non-normal subgroups have just

prime order 2. Hence, if H ⋬ G then H = ⟨x⟩, ⟨y⟩ or ⟨xyz2n−2⟩ which
are non-normal and non-conjugate. In the group (6), Ω1(G) ⩽ Z(G)
and any cyclic subgroup of order greater than 9 contains G′, so all the
non-normal subgroups are of order 9, and must be cyclic. Let t be an

element of order 9; then t ̸∈ Z(G), ⟨g⟩, also we have ⟨t⟩g = ⟨tg3n−1⟩,
so t = xigj3

n−2
where 3 ∤ i, i < 9 and 0 ≤ j ≤ 2. We set t1 = xg3

n−2

and t2 = xg2·3
n−2

; then subgroups ⟨x⟩, ⟨t1⟩ and ⟨t2⟩ are non-normal and
non-conjugate. We show that for all i and j, ⟨t⟩ is conjugate to one of
these three subgroups. For j = 0 obviously t ∈ ⟨x⟩; for j ̸= 0 we show
that in the following table, t is equal to the entry (i, j) for all i and j,
as desired. □

j\i 1 2 4 5 7 8

1 t1 (tg2)
2 (tg

2

1 )4 t52 (tg1)
7 (tg

2

2 )8

2 t2 t21 (tg2)
4 (tg1)

5 (tg
2

2 )7 (tg
2

1 )8
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