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Abstract. This paper is concerned with the existence of multiple
positive solutions for a quasilinear elliptic system involving concave-
convex nonlinearities and sign-changing weight functions. With the
help of the Nehari manifold and Palais-Smale condition, we prove
that the system has at least two nontrivial positive solutions, when
the pair of parameters (λ, µ) belongs to a certain subset of R2.
Keywords: Variational methods, Nehari manifold, Dirichlet bound-
ary condition, sign-changing weight functions.
MSC(2010): Primary: 35J50; Secondary: 35J62, 35J92.

1. Introduction and notation

There is a wide literature that deals with the existence of multiple
solutions to semilinear elliptic boundary value problems. Conditions
that guarantee the existence of multiple solutions to differential equa-
tions are of interest, because physical processes described by differential
equations can exhibit more than one solution. In recent years, many
works have been carried out to discuss the existence and multiplicity
of positive solutions for BVPs by variational methods, for example, see
[1, 2, 5, 7, 9, 10, 12, 13, 18, 19].
In this paper, we are interested in the existence of two nontrivial positive
solutions for the following nonlinear elliptic system:
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(1.1)
−∆pu+ a(x)|u|p−2u = λ f(x)|u|q−2u+

α

α+ β
b(x)|u|α−2u|v|β x ∈ Ω,

−∆pv + a(x)|v|p−2v = µ g(x)|v|q−2v +
β

α+ β
b(x)|v|β−2v|u|α x ∈ Ω,

u = v = 0 x ∈ ∂Ω,

where 0 ∈ Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary
and ∂Ω, λ, µ > 0, 1 ≤ q < p < N , ∆pu = div(|∇u|p−2∇u) is the
p-Laplacian. Also α > 1, β > 1 satisfy p < α + β ≤ p∗, and p∗ =
pN

N − p
is the so-called critical Sobolev exponent. We make the following

assumptions for the weight functions a, b, f, g :
(A) a ∈ C(Ω) , a(x) > 0;
(B) b ∈ C(Ω), b+ = max{b, 0} ̸≡ 0 and |b|∞ = 1
(C) f, g ∈ C(Ω), f+ = max{f, 0} ̸≡ 0, and g+ = max{g, 0} ̸≡ 0.
In many problems of mathematical physics and engineering it is not

sufficient to deal with the classical solutions of differential equations. It
is necessary to introduce variational methods involving Nehari manifold
and Palais-Smale condition.
Here we give a variational method to prove the existence of at least two
nontrivial nonnegative solutions of problem (1.1) in two cases.

Set f(x) = g(x) = b(x) = 1 and α + β = p∗ , 1 < q < p < N , then
(1.1) reduces to

(1.2)
−∆pu+ a(x)|u|p−2u = λ|u|q−2u+

α

α+ β
|u|α−2u|v|β x ∈ Ω,

−∆pv + a(x)|v|p−2v = µ|v|q−2v +
β

α+ β
|v|β−2v|u|α x ∈ Ω,

u = v = 0 x ∈ ∂Ω.

In our recent work ([15]), we proved that there exists Λ2 > 0 such that

if the parameters λ, µ > 0, satisfy 0 < λ
p

p−q + µ
p

p−q < Λ2 then problem
(1.2) has at least two nontrivial positive solutions.

Wu in [18] has investigated the following semilinear elliptic system
with subcritical nonlinearity:
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(1.3)


−∆u = λf(x)|u|q−2u+

α

α+ β
h(x)|u|α−2u|v|β x ∈ Ω,

−∆v = µg(x)|v|q−2v +
β

α+ β
h(x)|v|β−2v|u|α x ∈ Ω,

u = v = 0 x ∈ ∂Ω,

where 1 < q < 2 < α+β < 2∗ with α > 1, β > 1, and the weights f, g, h
satisfy some suitable conditions. He proved that problem (1.3) has at
least two nontrivial positive solutions when the pair of (λ, µ) belongs to
a certain subset of R2.

Hsu in [13] also considered problem (1.3) in the case of the p-Laplacian
operator. Motivated by the above paper, we consider the problem (1.1)
and extend the results of the literature [13].

In this paper we use of the following notations.

Ls(Ω) where 1 ≤ s < ∞ , denote Lebesgue spaces and the norm in
Ls is denoted by | · |s for 1 ≤ s ≤ ∞;

The dual space of a Banach space W will be denoted by W−1;
(u, v) is said to be nonnegative in Ω if u ≥ 0 and v ≥ 0 in Ω;
(u, v) is said to be positive in Ω if u > 0 and v > 0 in Ω;
|Ω| is the Lebesgue measure of Ω;

O(εt) denotes
|O(εt)|
εt

≤ C as ε→ 0 for t ≥ 0;

o(1) denotes o(1) → 0 as n→ ∞;
C,Ci denote various positive constants, the exact values of which are
not important;

p∗ =
pN

N − p
(1 < p < N) is the critical Sobolev exponent;

S is the best Sobolev embedding constant defined by

(1.4) S = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
(|∇u|p + a(x)|u|p)dx(∫

Ω
| u |α+βdx

) p
α+β

;
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By modifying the proof of Alves et al. [4, Theorem 5], we have

(1.5) Sα,β =

((
α

β

) β
α+β

+

(
β

α

) α
α+β

)
S,

where S is the best Sobolev constant defined in (1.4) and
(1.6)

Sα,β = inf
u,v∈W 1,p

0 (Ω)\{0}

∫
Ω
(|∇u|p + a(x)|u|p)dx+

∫
Ω
(|∇v|p + a(x)|v|p)dx(∫

Ω
|u|α|v|βdx

) p
α+β

,

when α+β = p∗. This is achieved if and only if Ω = RN by the function

Uε(x) = CN

(
ε

1
p

ε+ |x|
p

p−1

)(N−p)/p

, ε > 0.

We organize this paper into four sections. In section 2, we give prop-
erties of Nehari manifold and set up the variational method. In section
3, we consider Palais-Smale condition and in the last section we give our
main results.

2. The Nehari manifold

Problem (1.1) is posed in the framework of the Sobolev space W =

W 1,p
0 ×W 1,p

0 equipped with the norm

∥ z ∥=

(∫
Ω
(|∇u|p+a(x)|u|p)dx+

∫
Ω
(|∇v|p+a(x)|v|p)dx

)1/p

, z = (u, v)∈W.

Moreover, z is said to be a weak solution of problem (1.1) if for all
(φ1, φ2) ∈W, there holds∫

Ω
(|∇u|p−2∇u∇φ1 + a(x)uφ1)dx+

∫
Ω
(|∇v|p−2∇v∇φ2 + a(x)vφ2)dx

−λ
∫
Ω
f(x)|u|q−2uφ1 − µ

∫
Ω
g(x)|v|q−2vφ2dx

− α

α+ β

∫
Ω
b(x)|u|α−2u|v|βφ1dx− β

α+ β

∫
Ω
b(x)|v|β−2v|u|αφ2dx = 0,
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It is clear that problem (1.1) has a variational structure. Let Jλ,µ :
W → R be the corresponding energy functional of problem (1.1), which
is defined by

Jλ,µ(z) =
1

p
∥ z ∥p −1

q
Kλ,µ(z)−

1

α+ β
L(z), ∀z ∈W

for which Kλ,µ, L :W → R are the functionals defined by

Kλ,µ(z) =

∫
Ω
(λf(x)|u|q + µg(x)|v|q)dx, L(z) =

∫
Ω
b(x)|u|α|v|βdx.

It is well known that the weak solution of problem (1.1) is the critical
point of the energy functional Jλ,µ. Thus, to prove the existence of weak
solutions for problem (1.1), it is sufficient to show that Jλ,µ admits a
critical points. As the energy functional Jλ,µ is not bounded below on
W , it is useful to consider the functional Jλ,µ on the Nehari manifold

Nλ,µ = {z ∈W \{0}|⟨J ′
λ,µ(z), z⟩ = 0}.

Obviously z ∈ Nλ,µ if and only if

(2.1) ⟨J ′
λ,µ(z), z⟩ =∥ z ∥p − Kλ,µ(z)− L(z) = 0.

Note that Nλ,µ contains every nontrivial weak solution of problem (1.1).
Define

ϕλ,µ(z) = ⟨J ′
λ,µ(z), z⟩.

Then, for any z ∈ Nλ,µ,

⟨ϕ′λ,µ(z), z⟩ = p ∥ z ∥p − qKλ,µ(z)− (α+ β)L(z)(2.2)

= (p− q) ∥ z ∥p −(α+ β − q)L(z)(2.3)

= (α+ β − q)Kλ,µ(z)− (α+ β − p) ∥ z ∥p .(2.4)

It is natural to split Nλ,µ into three disjoint parts:

N+
λ,µ = {z ∈ Nλ,µ : ⟨ϕ′λ,µ(z), z⟩ > 0},

N0
λ,µ = {z ∈ Nλ,µ : ⟨ϕ′λ,µ(z), z⟩ = 0},

N−
λ,µ = {z ∈ Nλ,µ : ⟨ϕ′λ,µ(z), z⟩ < 0},

similar to the method used in Tarantello ([16]). We now derive some
important properties of N+

λ,µ, N
0
λ,µ and N−

λ,µ.

Lemma 2.1. Jλ,µ is coercive and bounded from below on Nλ,µ.
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Proof. If z ∈ Nλ,µ, it follows from (2.1), (C), and the Hölder inequality
and the Sobolev embedding theorem, that

Jλ,µ(z) =
α+ β − p

p(α+ β)
∥ z ∥p − α+ β − q

q(α+ β)
Kλ,µ(z)

≥ α+ β − p

p(α+ β)
∥ z ∥p − α+ β − q

q(α+ β)
S
− q

p |Ω|
α+β−q
α+β ϱ

p−q
p

λ,µ ∥ z ∥q,

where S is the best Sobolev embedding constant defined in (1.4) and

(2.5) ϱλ,µ = (λ|f |∞)
p

p−q + (µ|g|∞)
p

p−q .

Since 1 ≤ q < p , we get that Jλ,µ is coercive and bounded below on
Nλ,µ. □

Lemma 2.2. Suppose that z0 is a local minimizer for Jλ,µ on Nλ,µ and
z0 ̸∈ N0

λ,µ. Then z0 is a critical point of Jλ,µ, that means, J ′
λ,µ(z0) = 0

in W−1.

Proof. If z0 is a local minimizer for Jλ,µ on Nλ,µ, then z0 is a solution of
optimization problem. Since ϕλ,µ(z) = ⟨J ′

λ,µ(z), z⟩, then by the theory
of Lagrange multipliers, there exists γ ∈ R such that

⟨J ′
λ,µ(z0), z0⟩ = γ⟨ϕ′λ,µ(z0), z0⟩.

Since z0 ∈ Nλ,µ and z0 ̸∈ N0
λ,µ we get ⟨ϕ′λ,µ(z0), z0⟩ ̸= 0 and so γ = 0.

This completes the proof. □

Lemma 2.3. (i) if z ∈ N+
λ,µ, then Kλ,µ(z) > 0;

(ii) if z ∈ N0
λ,µ, then Kλ,µ(z) > 0 and L(z) > 0;

(iii) if z ∈ N−
λ,µ, then L(z) > 0.

Proof. The proof is obtained from (2.2)-(2.4). □

Lemma 2.4. Set
(2.6)

Λ0 =

(
p− q

α+ β − q

) p
α+β−q

(
α+ β − q

α+ β − p
|Ω|

α+β−q
α+β

)− p
p−q

S
α+β

α+β−p
+ q

p−q > 0.

Then for (λ, µ) satisfying 0 < ϱλ,µ < Λ0, we have N0
λ,µ = ∅.
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Proof. Assume contrary, i.e., there exist λ, µ > 0 with 0 < ϱλ,µ < Λ0

such that N0
λ,µ ̸= ∅. Then for z ∈ N0

λ,µ, by (2.3), (2.4) we have that

∥ z ∥p = α+ β − q

p− q
L(z), ∥ z ∥p = α+ β − q

α+ β − p
Kλ,µ(z).

Then (B) implies

∥ z ∥ ≥

(
p− q

α+ β − q
S

α+β
p

) 1
α+β−p

.

It follows from (C), the Hölder inequality and the Sobolev embedding
theorem,

∥ z ∥≤

(
α+ β − q

α+ β − p
S
− q

p |Ω|
α+β−q
α+β

) 1
p−q

ϱλ,µ.

This implies

ϱλ,µ ≥

(
p− q

α+ β − q

) p
α+β−p

(
α+ β − q

α+ β − p
|Ω|

α+β−q
α+β

)− p
p−q

S
α+β

α+β−p
+ q

p−q = Λ0,

which is a contradiction. This proves the Lemma. □

Let ΘΛ = {(λ, µ) ∈ R2\(0, 0) : 0 < ϱλ,µ < Λ} and Λ1 = (
q

p
)

p
p−qΛ0 <

Λ0. By lemma (2.4), for every (λ, µ) ∈ ΘΛ0 , we have Nλ,µ = N+
λ,µ∪N

−
λ,µ.

So we define

θλ,µ = inf
z∈Nλ,µ

Jλ,µ(z), θ
+
λ,µ = inf

z∈N+
λ,µ

Jλ,µ(z), θ
−
λ,µ = inf

z∈N−
λ,µ

Jλ,µ(z).

Then we have the following result.

Theorem 2.5. (i) If (λ, µ) ∈ ΘΛ0, then θλ,µ ≤ θ+λ,µ < 0;

(ii) If (λ, µ) ∈ ΘΛ1, then there exists d0 = d0(λ, µ, p, q,N, S, |Ω|, |f |∞,
|g|∞) > 0 such that θ−λ,µ > d0.

Proof. (i) For any z ∈ N+
λ,µ, it follows from (2.4), that

Kλ,µ(z) >
α+ β − p

α+ β − q
∥ z ∥p
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and

Jλ,µ(z) =

(
1

p
− 1

α+ β

)
∥ z ∥p −

(
1

q
− 1

α+ β

)
Kλ,µ(z)

<

(
1

p
− 1

α+ β

)
∥ z ∥p −

(
1

q
− 1

α+ β

)
α+ β − p

α+ β − q
∥ z ∥p

<
α+ β − p

α+ β

(
1

p
− 1

q

)
∥ z ∥p < 0.

This gives θλ,µ ≤ θ+λ,µ < 0.

(ii) For any z ∈ N−
λ,µ, we obtain from (2.3) that

(2.7)
p− q

α+ β − q
∥ z ∥p < L(z).

Moreover, using (1.4) and (1.5) , since Sα,β > S, we get

L(z) ≤ S
− (α+β)

p ∥ z ∥α+β.

This implies that

∥ z ∥≥

(
p− q

α+ β − q

) 1
α+β−p

S
α+β

p(α+β−p) .

Using the main formula in the proof of Lemma (2.1), we have

Jλ,µ(z) ≥ ∥ z ∥q
[
α+ β − p

p(α+ β)
∥ z ∥p−q − α+ β − q

q(α+ β)
S
− q

p |Ω|
α+β−q
α+β ϱ

p−q
p

λ,µ

]

>

(
p− q

α+ β − q

) q
α+β−p

S
q(α+β)

p(α+β−p)

×

[
α+ β − p

p(α+ β)
S

(p−q)(α+β)
p(α+β−p)

(
p− q

α+ β − q

) p−q
α+β−p

−α+ β − q

q(α+ β)
S
− q

p |Ω|
α+β−q
α+β ϱ

p−q
p

λ,µ

]
.

Thus, for any (λ, µ) ∈ ΘΛ1 and z ∈ N−
λ,µ, we have

Jλ,µ(z) > d0 = d0(λ, µ, p, q,N, S, |Ω|, |f |∞, |g|∞) > 0.

□
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For each z ∈W with L(z) > 0, we write

(2.8) tmax =

(
(p− q)∥ z ∥p

(α+ β − q)L(z)

) 1
α+β−p

> 0.

Then the following lemma holds.

Lemma 2.6. Assume that (λ, µ) ∈ ΘΛ0, then for each z ∈ W with
L(z) > 0, we have:

(i) if Kλ,µ(z) ≤ 0, then there is a unique t− = t−(z) > tmax such

that t−z ∈ N−
λ,µ and

(2.9) Jλ,µ(t
−z) = sup

t≥0
Jλ,µ(tz);

(ii) if Kλ,µ(z) > 0, then there are unique 0 < t+ = t+(z) < tmax < t− =

t−(z), such that t±z ∈ N±
λ,µ and

(2.10) Jλ,µ(t
+z) = inf

0≤t≤tmax

Jλ,µ(tz); Jλ,µ(t
−z) = sup

t≥0
Jλ,µ(tz).

Proof. Fix z ∈W with L(z) > 0, we define

m(t) = tp−q∥ z ∥p − tα+β−qL(z),

for t ≥ 0. Clearly m(0) = 0 and m(t) → −∞ as t→ ∞. Furthermore

m′(t) = (p− q)tp−q−1∥ z ∥p − (α+ β − q)tα+β−q−1L(z),

there is a unique tmax > 0 such that m(t) achieves its maximum at
tmax > 0, increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax,∞).
Clearly, tz ∈ N+

λ,µ(or N
−
λ,µ) if and only if m′(t) > 0( or < 0). Moreover,

m(tmax) =

(
(p− q)∥ z ∥p

(α+ β − q)L(z)

) p−q
α+β−p

∥ z ∥p −

(
(p− q)∥ z ∥p

(α+ β − q)L(z)

)α+β−q
α+β−p

L(z)

= ∥ z ∥q
[(

p− q

α+ β − q

) p−q
α+β−p

−

(
p− q

α+ β − q

)α+β−q
α+β−p

](
∥ z ∥α+β

L(z)

) p−q
α+β−p

(2.11) ≥ ∥ z ∥q
(

p− q

α+ β − q

) p−q
α+β−p

(
α+ β − q

α+ β − q

)(
S

α+β
p

) p−q
α+β−p
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(i) If Kλ,µ(z) ≤ 0, then there exists a unique t− > tmax such that
m(t−) = Kλ,µ(z) and m

′(t−) < 0. Now,

(p− q)(t−)p∥ z ∥p − (α+ β − q)(t−)α+βL(z) = (t−)q+1m(t−) < 0,

and
⟨J ′

λ,µ(t
−z), (t−z)⟩ = (t−)q[m(t−)−Kλ,µ(z)] = 0.

Thus, t−z ∈ N−
λ,µ. Subsequently, m

′(t) < 0 and m′′(t) < 0 for t > tmax.

Then
Jλ,µ(t

−z) = sup
t≥0

Jλ,µ(tz).

(ii) Suppose that Kλ,µ(z) > 0. Then for (λ, µ) ∈ ΘΛ1 , we have

m(0) = 0 < Kλ,µ(z)

≤ S
− q

p |Ω|
α+β−q
α+β ϱ

p−q
p

λ,µ ∥ z ∥q

≤ ∥ z ∥q
(

p− q

α+ β − q

) p−q
α+β−p

(
α+ β − q

α+ β − q

)(
S

α+β
p

) p−q
α+β−p

,

by (2.11), there are unique t+ and t− such that 0 < t+ = t+(z) < tmax <
t− = t−(z),

m(t+) = Kλ,µ(z) = m(t−), m′(t+) > 0 > m′(t−).

Moreover, we have t±z ∈ N±
λ,µ, and

Jλ,µ(t
−z) ≥ Jλ,µ(tz) ≥ Jλ,µ(t

+z), ∀t ∈ [t+, t−],

Jλ,µ(t
+z) ≤ Jλ,µ(tz), ∀t ∈ [0, tmax].

Thus

Jλ,µ (t+z) = inf
0≤t≤tmax

Jλ,µ(tz); Jλ,µ (t−z) = sup
t≥0

Jλ,µ(tz)

□
For each z ∈W with L(z) > 0, we write

(2.12) t̄max =

(
(α+ β − q)Kλ,µ(z)

(α+ β − q))∥ z ∥p

) 1
p−q

> 0.

Then we have the following lemma.
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Lemma 2.7. Assume that (λ, µ) ∈ ΘΛ0, then for each z ∈ W with
Kλ,µ(z) > 0, we have:

(i) if L(z) ≤ 0, then there exists 0 < t+ = t+(z) < t̄max such that
t+z ∈ N+

λ,µ and

(2.13) Jλ,µ(t
+z) = inf

t≥0
Jλ,µ(tz);

(ii) if L(z) > 0, then there exist 0 < t+ = t+(z) < t̄max < t− = t−(z),
such that t±z ∈ N±

λ,µ and

(2.14) Jλ,µ(t
+z) = inf

0≤t≤tmax

Jλ,µ(tz); Jλ,µ(t
−z) = sup

t≥0
Jλ,µ(tz).

Proof. Fix z ∈W with Kλ,µ(z) > 0. Let

m̄(t) = tp−α−β∥ z ∥p − tq−α−βKλ,µ(z),

for t ≥ 0. Clearly m̄(t) → −∞ as t→ 0+ and m̄(t) → 0 as t→ ∞. Since

m̄′(t) = (p− α− β)tp−α−β−1∥ z ∥p − (q − α− β)tq−α−β−1Kλ,µ(z),

there is a unique t̄max > 0 such that m(t) achieves its maximum at t̄max,
increasing for t ∈ [0, t̄max) and decreasing for t ∈ (t̄max,∞). Similar to
the argument in the proof of Lemma (2.6), we can derive the result of
Lemma. □

3. Palais-Smale condition

At first, we give the following definitions about (PS)c -sequence and
introduce the Brézis-Lieb lemma (see [8]) as a remark.

Definition 3.1. Let c ∈ R, W be a Banach space and J ∈ C1(W,R).
(i) {zn} is a (PS)c- sequence in W for J if J(zn) = c + o(1) and
J ′(zn) = o(1) strongly in W−1 as n→ ∞.

(ii) J satisfies the (PS)c condition if any (PS)c-sequence {zn} in W
for J has a convergent subsequence.
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Remark 3.2. Let zn ∈W such that
(i) ∥ zn ∥ ≤ a constant;
(ii) zn → z0 almost every where in Ω, then

(3.1) ∥ z̄n ∥p=∥ zn ∥p − ∥ z0 ∥p +o(1),
as n→ ∞ where z̄n = zn − z0.

Next, we will find the range of c where (PS)c condition holds for Jλ,µ.

Lemma 3.3. Assume that {zn} ⊂ W is a (PS)c- sequence for Jλ,µ
and zn ⇀ z in W, then z is critical point of Jλ,µ, and there exists a
C0 = C0(p, q,N, S, |Ω|) > 0 such that Jλ,µ ≥ −C0ϱλ,µ.

Proof. Let zn = (un, vn) and assume that {zn} is a (PS)c-sequence for
Jλ,µ with zn ⇀ z in W, it is easy to see that J ′

λ,µ(z) = 0, so ⟨J ′
λ,µ(z), z⟩ =

0. It follows from (2.1) that

L(z) = ∥ z ∥p −Kλ,µ(z).

Consequently,

Jλ,µ(z) =
α+ β − p

p(α+ β)
∥ z ∥p − α+ β − q

q(α+ β)
Kλ,µ(z).

By (C), the Hölder inequality and the Sobolev embedding theorem, we
obtain

Jλ,µ(z) ≥
α+ β − p

p(α+ β)
∥ z ∥p −α+ β − q

q(α+ β)
S
− q

p |Ω|
p∗−q
p∗

×

[
λ

(∫
Ω
(|∇u|p + a(x)|u|p)dx

)
+ µ

(∫
Ω
(|∇v|p + a(x)|v|p)dx

)] q
p

.

It follows from the Young inequality, that

Jλ,µ(z) ≥
α+ β − p

p(α+ β)
∥ z ∥p −α+ β − p

p(α+ β)
∥ z ∥p −C0ϱλ,µ = −C0ϱλ,µ,

in which C0 = C0(p, q,N, S, |Ω|) > 0 . □
Lemma 3.4. Assume that {zn} ⊂W is a (PS)c-sequence for Jλ,µ, then
{zn} is bounded in W .

Proof. Assume contrary, that ∥ zn ∥ → ∞. Let

(3.2) z∗n = (u∗n, v
∗
n) =

zn
∥ zn ∥

=

(
un

∥ zn ∥
,

vn
∥ zn ∥

)
,
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z∗n ⇀ z∗ = (u∗, v∗) in W . This implies that u∗n → u∗, v∗n → v∗ strongly
in Ls(Ω) for all 1 ≤ s < p∗ and

(3.3) Kλ,µ(z
∗
n) = Kλ,µ(z

∗) + o(1).

Now, since {zn} ⊂ W is a (PS)c-sequence for Jλ,µ and ∥ zn ∥→ ∞, we
have

(3.4)
∥ z∗n ∥p

p
− ∥ zn ∥q−p

q
Kλ,µ(z

∗
n)−

∥ zn ∥α+β−p

α+ β
L(z∗n) = o(1)

and

(3.5) ∥ z∗n ∥p− ∥ zn ∥q−p Kλ,µ(z
∗
n)− ∥ zn ∥α+β−p L(z∗n) = o(1).

From (3.3)-(3.5), one can get

(3.6) ∥ z∗n ∥p = p(α+ β − q)

q(α+ β − p)
∥ zn ∥q−p Kλ,µ(z

∗
n) + o(1).

Since 1 ≤ q < p and ∥ zn ∥ → ∞, (3.6) implies that ∥ z∗n ∥p → 0, as
n→ ∞, which contradicts ∥ z∗n ∥p = 1. □

Now, we need the following proposition.

Proposition 3.5. [16] Suppose that ψ(z) = b(x)|u|α|v|β is positively
homogeneous of degree p∗. Then there exists M > 0 such that |ψ(z)| ≤
M(|u|p∗ + |v|p∗), where

M = max{ψ(z) | |u|p∗ + |v|p∗ = 1}.

Lemma 3.6. Assume that ψ(z) is positively homogeneous of degree p∗,
then ψu, ψv are positively homogeneous of degree p∗−1. Moreover, there
exist M1,M2 > 0 such that

|ψu| ≤M1(|u|p
∗−1 + |v|p∗−1), |ψv| ≤M2(|u|p

∗−1 + |v|p∗−1).

Proof. The proof is an immediate consequence of Proposition (3.5). □

Next, we need the following version of Brézis-Lieb lemma.

Lemma 3.7. Suppose that {zn} is a bounded sequence inW , and zn ⇀ z
weakly in W . Let ũn = un − u, ṽn = vn − v, and z̃n = (ũn, ṽn). Then
one can get

L(z̃n) = L(zn)− L(z) + o(1).
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Proof. Let ũn = un − u, ṽn = vn − v, and z̃n = (ũn, ṽn), then by the
mean value theorem, for given 0 < |θ| < 1, it follows that

|ψ(zn)− ψ(z̃n)|= |∇ψ(z̃n + θz).z|
≤M1(|ũn + θu|p∗−1 + |ṽn + θv|p∗−1)|u|

+M2(|ũn + θu|p∗−1 + |ṽn + θv|p∗−1)|v|

≤M0

[
(|ũn|p

∗−1|u|+ |u|p∗ + |ṽn|p
∗−1|u|+ |v|p∗−1|u|)

+(|ũn|p
∗−1|v|+ |u|p∗−1|v|+ |ṽn|p

∗−1|v|+ |v|p∗)
]

≤M0

[
|ũn|p

∗−1|u|+ |ṽn|p
∗−1|v|+ |ũn|p

∗−1|v|+ |ṽn|p
∗−1|u|

+|u|p∗ + |v|p∗ + |u|p∗−1|v|+ |v|p∗−1|u|
]
,

where M0 = max{M1,M2}. Hence, for any ε > 0, applying the Young
inequality to (3.7), there exists Mε > 0 such that

|ψ(zn)− ψ(z̃n)| ≤ ε(|ũn|p
∗
+ |ṽn|p

∗
) +Mε(|u|p

∗
+ |v|p∗).

Now, we define the functions

(3.7) fn = |ψ(zn)− ψ(z̃n)− ψ(z)|, gn = fn − ε(|ũn|p
∗
+ |ṽn|p

∗
).

Then

fn ≤ ε(|ũn|p
∗
+ |ṽn|p

∗
) +Mε(|u|p

∗
+ |v|p∗) + ψ(z),

gn ≤ Mε(|u|p
∗
+ |v|p∗) + ψ(z)

≤ Mε(|u|p
∗
+ |v|p∗) +M(|u|p∗ + |v|p∗)

= (Mε +M)(|u|p∗ + |v|p∗) ∈ L1(Ω).

Since zn ⇀ z weakly in W , we can assume that un → u, vn → v a.e. in
Ω. Thus we get gn → 0 a.e. in Ω as n → ∞. The Lebesgue dominated
convergence theorem implies that

lim
n→∞

∫
Ω
gn(x)dx = 0.

Therefore

lim sup
n→∞

∫
Ω
fn(x)dx ≤ lim sup

n→∞

∫
Ω
(gn(x) + ε(|ũn|p

∗
+ |ṽn|p

∗
))dx



1315 Khademloo and Khanjany Ghazi

≤ lim sup
n→∞

∫
Ω
gn(x)d(x) + ε lim sup

n→∞

∫
Ω
(|ũn|p

∗
+ |ṽn|p

∗
))d(x)

≤ Mε.

By the arbitrariness of ε > 0, one can get

lim
n→∞

∫
Ω
fn(x)d(x) = 0.

Thus,
L(z̃n) = L(zn)− L(z) + o(1).

□

Lemma 3.8. Let Cλ,µ =
1

N
S

N
p

α,β − C0ϱλ,µ, where C0 is the positive

constant given in Lemma (3.3), then Jλ,µ satisfies the (PS)c condition
with c ∈ (−∞, Cλ,µ).

Proof. Let {zn} ⊂W be a (PS)c-sequence for Jλ,µ with c ∈ (−∞, Cλ,µ).
By lemma (3.4) we have that {zn} is bounded in W . This implies
that zn ⇀ z up to a subsequence, when z is a critical point of Jλ,µ.
Furthermore we may assume

(3.8)

 un ⇀ u , vn ⇀ v in W 1,p
0 (Ω),

un → u , vn → v a.e on Ω,
un → u , vn → v in Ls(Ω) (1 ≤ s < p∗).

This implies that J ′
λ,µ(z) = 0 and

(3.9) Kλ,µ(zn) = Kλ,µ(z) + o(1).

Let ũn = un−u, ṽn = vn− v, and z̃n = (ũn, ṽn). Then by Remark (3.2),
we obtain

(3.10) ∥ z̃n ∥p = ∥ zn ∥p − ∥ z ∥p + o(1),

and from Lemma (3.7), deduce that

(3.11) L(z̃n) = L(zn)− L(z) + o(1).

Since Jλ,µ(zn) = c+ o(1), J ′
λ,µ(zn) = o(1), by (3.9)-(3.11), we get

(3.12)
1

p
∥ z̃n ∥p − 1

α+ β
L(z̃n) = c− Jλ,µ(z) + o(1).

and
∥ z̃n ∥p − L(z̃n) = o(1).

Thus, we may assume that

(3.13) ∥ z̃n ∥p → h, L(z̃n) → h.



Existence and multiplicity of nontrivial solutions 1316

Assume that h > 0; by the definition of Sα,β and (B), (3.14), one can get

Sα,βh
p

α+β = Sα,β lim
n→∞

L(z̃n)
p

α+β

≤ |b|
p

α+β
∞ ∥ z̃n ∥p= h,

which implies that h ≥ S
N
p

α,β. By (3.13) and (3.14), we have

c =

(
1

p
− 1

α+ β

)
h+ Jλ,µ(z),

then by Lemma (3.3), we get

c ≥ 1

N
S

N
p

α,β − C0ϱλ,µ = Cλ,µ.

which is a contradiction. Hence h = 0; that is zn → z strongly inW . □

4. Existence of solutions

First, we state our main results.

Theorem 4.1. Assume that conditions (A)-(C) hold. If α+β ≤ p∗, and
λ, µ satisfy 0 < ϱλ,µ < Λ0, then (1.1) has at least one positive solution.

Theorem 4.2. Assume that conditions (A)-(C) hold. If α+β < p∗, and
λ, µ satisfy 0 < ϱλ,µ < Λ1, then (1.1) has at least two positive solutions.

Theorem 4.3. Assume that conditions (A)-(C) hold. If α+β = p∗,then
there exists Λ2 > 0 such that for λ, µ satisfying 0 < ϱλ,µ < Λ2, problem
(1.1) has at least two positive solutions.

Note that, in Theorem 4.1 we claim the existence of one positive so-
lution and in Theorem 4.2 and 4.3 we claim that the second positive
solution exists in subcritical and critical case, respectively.

Proposition 4.4. [19] (i) If (λ, µ) ∈ ΘΛ0, then there exists a (PS)θλ,µ-
sequence {zn} ⊂ Nλ,µ in W for Jλ,µ;

(ii) If (λ, µ) ∈ ΘΛ1, then there exists a (PS)θ−λ,µ
-sequence {zn} ⊂ N−

λ,µ

in W for Jλ,µ,
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where Λ1 is a positive constant given in (2.6).

Now, we prove the existence of a local minimum for Jλ,µ on N+
λ,µ.

Theorem 4.5. If (λ, µ) ∈ ΘΛ0, then Jλ,µ has a minimizer z+0 in N+
λ,µ

and it satisfies the following:

(i) Jλ,µ(z
+
0 ) = θ+λ,µ = θλ,µ < 0;

(ii) z+0 is a positive solution of (1.1).

Proof. By proposition 4.4 (i), there exists a minimizing sequence {zn}
for Jλ,µ on Nλ,µ such that

(4.1) Jλ,µ(zn) = θλ,µ + o(1) and J ′
λ,µ(zn) = o(1).

Since Jλ,µ is coercive on Nλ,µ (see Lemma (2.1)), there exists a subse-

quence {zn} = {(un, vn)} and z+0 = (u+0 , v
+
0 ) ∈W such that

(4.2)

 un ⇀ u+0 , vn ⇀ v+0 weakly in W 1,p
0 (Ω),

un → u+0 , vn → v+0 almost everywhere in Ω,
un → u+0 , vn → v+0 strongly in Ls(Ω) (1 ≤ s < p∗),

as n→ ∞. This implies

(4.3) Kλ,µ(zn) = Kλ,µ(z
+
0 ) + o(1) as n→ ∞.

First, we claim that z+0 is a nontrivial solution of (1.1). By (4.1) and
(4.2), we can deduce that z+0 is a weak solution of (1.1). By (2.4) we have

Jλ,µ(zn) =
α+ β − p

p(α+ β)
∥ zn ∥p − α+ β − q

q(α+ β)
Kλ,µ(zn)

≥ − α+ β − q

q(α+ β)
Kλ,µ(zn).

Let n→ ∞, we get

(4.4) Kλ,µ(z
+
0 ) ≥ − q(α+ β)

α+ β − q
θλ,µ > 0.



Existence and multiplicity of nontrivial solutions 1318

Thus, z+0 ∈ Nλ,µ is a nontrivial solution of (1.1). Now, we prove that

zn → z+0 strongly inW and Jλ,µ(z
+
0 ) = θλ,µ. By applying Fatou’s lemma

and z+0 ∈ Nλ,µ, we have

θλ,µ ≤ Jλ,µ(z
+
0 ) =

α+ β − p

p(α+ β)
∥ z+0 ∥p − α+ β − q

q(α+ β)
Kλ,µ(z

+
0 )

≤ lim inf
n→∞

(
α+ β − p

p(α+ β)
∥ zn ∥p − α+ β − q

q(α+ β)
Kλ,µ(zn)

)
≤ lim inf

n→∞
Jλ,µ(zn) = θλ,µ.

This implies that Jλ,µ(z
+
0 ) = θλ,µ and lim

n→∞
∥ zn ∥p=∥ z+0 ∥p. Let

z̄n = zn − z+0 ,
then by Remark (3.2), we get

∥ z̄n ∥p=∥ zn ∥p − ∥ z+0 ∥p .

Therefore, zn → z+0 strongly in W. Next, we show that z+0 ∈ N+
λ,µ.

Suppose that z+0 ∈ N−
λ,µ, , then by (4.4) we have Kλ,µ(z

+
0 ) > 0 . Thus

by Lemma (2.6), there are unique t+0 and t−0 such that t±0 z
±
0 ∈ N±

λ,µ. In

particular t+0 < t−0 = 1. Since

d

dt
Jλ,µ(t

+
0 z

+
0 ) = 0 and

d2

dt2
Jλ(t

+
0 z

+
0 ) > 0,

there exists t+0 < t̄ ≤ t−0 such that Jλ,µ(t
+
0 z

+
0 ) < Jλ,µ(t̄z

+
0 ). By Lemma

(2.6), we have

Jλ,µ(t
+
0 z

+
0 ) < Jλ,µ(t̄z

+
0 ) ≤ Jλ,µ(t

−
0 z

+
0 ) = Jλ,µ(z

+
0 ),

which contradicts Jλ,µ(z
+
0 ) = θ+λ,µ. Thus z+0 ∈ N+

λ,µ. Since Jλ,µ(z
+
0 ) =

Jλ,µ(|z+0 |) and |z+0 | ∈ N+
λ,µ, by Lemma (2.2) we may assume that z+0 is

a nontrivial nonnegative solution of (1.1). Moreover u+0 > 0, v+0 > 0 in
Ω by the maximum principle.

Next, we prove the existence of a local minimizer for Jλ,µ on N−
λ,µ in

the case α + β < p∗. This implies that there exists the second positive
solution in the subcritical case. □
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Theorem 4.6. If p < α + β < p∗ and (λ, µ) ∈ ΘΛ1, then Jλ,µ has a

minimizer z−0 in N−
λ,µ and it satisfies the following:

(i) Jλ,µ(z
−
0 ) = θ−λ,µ;

(ii) z−0 is a positive solution of (1.1).

Proof. Let {zn} be a minimizing sequence for Jλ,µ on N−
λ,µ, i.e.,

lim
n→∞

Jλ,µ(zn) = inf
z∈N−

λ,µ

Jλ,µ(z).

Then by coercivity of Jλ,µ on Nλ,µ and the compact imbedding theorem,

there exists a subsequence {zn} and (z−0 ) = (u−0 , v
−
0 ) ∈W such that

(4.5)

{
un ⇀ u−0 , vn ⇀ v−0 weakly in W 1,p

0 (Ω),
un → u−0 , vn → v−0 strongly in Lq(Ω), Lα+β(Ω).

This implies

(4.6) Kλ,µ(zn) = Kλ,µ(z
−
0 ) + o(1), L(zn) = L(z−0 ) + o(1),

as n → ∞. By Lemmas (2.3) and (2.7) we obtain that there exists
C2 > 0 such that L(zn) > C2. This implies

(4.7) L(z−0 ) ≥ C2.

Now, we prove that zn → z−0 strongly in W . Assume contrary, then
∥ z−0 ∥ < lim inf

n→∞
∥ zn ∥. By Lemma (2.6), there exists a unique t−0 such

that t−0 z
−
0 ∈ N−

λ,µ. Since zn ∈ N−
λ,µ, Jλ,µ(zn) ≥ Jλ,µ(tzn) for all t ≥ 0, we

have

θ−λ,µ ≤ Jλ,µ(t
−
0 z

−
0 ) < lim

n→∞
Jλ,µ(t

−
0 zn) ≤ lim

n→∞
Jλ,µ(zn) = θ−λ,µ,

and this is a contradiction. Hence zn → z−0 strongly in W . This implies
that

Jλ,µ(z
−
0 ) = lim

n→∞
Jλ,µ(zn) = θ−λ,µ.

Since Jλ,µ(z
−
0 ) = Jλ,µ(|z−0 |) and |z−0 | ∈ N−

λ,µ, by Lemma (2.2) and (4.7)

we deduce that z−0 is a nontrivial nonnegative solution of (1.1). By the
maximum principle, it follows that u−0 > 0, v−0 > 0 in Ω .
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Now, we complete the proof of Theorem (4.1) and (4.2):

Proof of Theorem 4.1. By Theorem (4.5), we get that for all λ, µ > 0
and 0 < ϱλ,µ < Λ0 ( or (λ, µ) ∈ ΘΛ0), (1.1) has a positive solution

z+0 ∈ N+
λ,µ.

Proof of Theorem 4.2. By Theorems (4.5) and (4.6), we obtain
that for all λ, µ > 0, α + β < p∗, and 0 < ϱλ,µ < Λ1 < Λ0 ( or

(λ, µ) ∈ ΘΛ1), (1.1) has two positive solutions z+0 , z
−
0 with z±0 ∈ N±

λ,µ.

Since N+
λ,µ ∩ N−

λ,µ = ∅, this implies that z+0 and z−0 are distinct. This

completes the proof of Theorem (4.2).

Now, we prove the existence of a local minimizer for Jλ,µ on N−
λ,µ in

the case α + β = p∗. This implies that there exists the second positive
solution in the critical case. First, We point the following fact as a re-
mark which will be used in the next lemma.

Remark 4.7. Let A,B > 0, then using the auxiliary function f(t) =
tp

p
A− tα+β

α+ β
B, we have

sup
t≥0

(
tp

p
A− tα+β

α+ β
B

)
=

1

N
A

(
A

B

)N−p
p

=
1

N
A

(
A

B
p
p∗

)N
p

.

Lemma 4.8. There exists a nonnegative function z ∈W \ {(0, 0)} and
Λ∗ > 0 such that for (λ, µ) ∈ ΘΛ∗, we have

(4.8) sup
t≥0

Jλ,µ(tz) < Cλ,µ,

where Cλ,µ is the constant given in Lemma (3.8). In particular, θ−λ,µ <

cλ,µ, for all (λ, µ) ∈ ΘΛ∗.

Proof. Since Df+ ∩Dg+ ̸= ∅, there exists x0 ∈ Ω, ρ0, a0, b0 > 0 such that
B(x0, 2ρ0) ⊂ Ω and f(x) ≥ a0 and g(x) ≥ b0 for all x ∈ B(x0, 2ρ0). In
fact a0 = min f(x) and b0 = min g(x) on B(x0, 2ρ0). Without loss of gen-
erality, we assume that x0 = 0. Let b(x) > 0 for all x0 ∈ Ω, |b|∞ = b(0)
and there exists δ0 >

N
p−1 such that b(x) = b(0) + o(|x|δ0) as x → 0.
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Now, we consider the functional I :W −→ R defined by

I(z) =
1

p
∥ z ∥p − 1

α+ β
L(z),

for all z ∈W , and define a cut-off function η(x) ∈ C∞
0 (Ω) such that

η(x) =

{
1 |x| < ρ0,
0 |x| > 2ρ0,

where 0 ≤ η ≤ 1 and |∇η| ≤ C. For ε > 0, let

(4.9) uε(x) =
η(x)

(ε+ |x|
p

p−1 )
N−p

p

.

Step 1. We show that sup
t≥0

Iλ,µ(tz0) ≤
1

N
S

N
p

α,β +O(ε
N−p

p ).

From Hsu [14](Lemma 4.3), we have

(∫
Ω
|uε|p

∗
dx

) p
p∗

= ε
−N−p

p |U |p
Lp∗ (RN )

+O(ε),

∫
Ω
|∇uε|pdx = ε

−N−p
p |∇U |p

Lp(RN )
+O(1),

(4.10)

∫
Ω
|∇uε|

pdx(∫
Ω
|uε|p

∗
dx

) p
p∗

= S +O

(
ε

N−p
p

)
,

where U(x) = (1 + |x|
p

p−1 )
−N−p

p ∈W 1,p(RN ).

Set u0 = p
√
αuε, v0 = p

√
βuε and z0 ∈ W . Then from Remark (4.7),

(1.4) and (4.10), we conclude that
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sup
t≥0

Iλ,µ(tz0) ≤ 1

N

(
(α+ β)

∫
Ω |∇uε|pdx(

α
α
p β

β
p
∫
Ω |uε|p

∗
dx

) p
p∗

)N
p

≤ 1

N

((
α

β

) β
α+β

+

(
β

α

) α
α+β

)N
p (

S +O(ε
N−p

p )

)N
p

=
1

N

((
α

β

) β
α+β

+

(
β

α

) α
α+β

)N
p (

S
N
p +O(ε

N−p
p )

)
=

1

N
S

N
p

α,β +O(ε
N−p

p ).

Step 2. We claim that if we set ε = ϱ
p

N−p

λ,µ , then there exists Λ∗ > 0,

such that for (λ, µ) ∈ ΘΛ∗we have supt≥0 Jλ,µ(tz) < Cλ,µ.

Let C0 be the positive constant given in Lemma (3.3). We can choose
δ1 > 0 such that for all (λ, µ) ∈ Θδ1 , we have

Cλ,µ =
1

N
S

N
p

α,β − C0ϱλ,µ > 0.

Using the definition of Jλ,µ and z0, we get

Jλ,µ(tz0) ≤
tp

p
∥ z0 ∥p =

α+ β

p
tp|∇uε|pLp(RN )

∀t ≥ 0, λ, µ > 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
0≤t≤t0

Jλ,µ(tz0) < Cλ,µ, ∀(λ, µ) ∈ Θδ1 .

Using the definition of Jλ,µ and z0 and by α, β > 1, (4.11), we have
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sup
t≥t0

Jλ,µ(tz0) = sup
t≥t0

(
I(tz0)−

tq

q
Kλ,µ(z0)

)
≤ 1

N
S

N
p

α,β +O(ε
N−p

p )− t0
q

q

(
a0α

q
pλ+ b0β

q
pµ

)∫
B(0,ρ0)

|uε|qdx

≤ 1

N
S

N
p

α,β +O(ε
N−p

p )− t0
q

q
(λ+ µ)

∫
B(0,ρ0)

|uε|qdx.

Let 0 < ε ≤ ρ0
p

p−1 , we have∫
B(0,ρ0)

|uε|qdx =

∫
B(0,ρ0)

1

(ε+ |x|
p

p−1 )
qN−p

p

dx

≥
∫
B(0,ρ0)

1

(2ρ0
p

p−1 )
qN−p

p

dx

= C1 = C1(N, p, q, ρ0).

Then by (4.12) and (4.13), for all ε ∈ (0, ρ0
p

p−1 ), one can get

sup
t≥t0

Jλ,µ(tz0) ≤
1

N
S

N
p

α,β +O

(
(λ|f |∞)

p
p−q + (µ|g|∞)

p
p−q

)
− t0

q

q
C1(λ+ µ).

Hence, we can choose δ2 > 0 such that for all (λ, µ) ∈ Θδ2 , we have

O(ϱλ,µ)−
t0

q

q
C1(λ+ µ) < C0ϱλ,µ.

If we set Λ∗ = min{δ1, ρ0
N−p
p−1 , δ2}, then for (λ, µ) ∈ ΘΛ∗ , we have

(4.11) sup
t≥0

Jλ,µ(tz0) < Cλ,µ.

Step 3. We prove that θ−λ,µ < Cλ,µ for all (λ, µ) ∈ ΘΛ∗ .

By the definition of z0 and uε, we have

L(z0) > 0, Kλ,µ(z0) > 0.

Using this fact, Lemma (2.6)(ii), definition of θ−λ,µ and (4.11) indicate
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that there exists t0 > 0 such that t0z0 ∈ N−
λ,µ and

θ−λ,µ ≤ Jλ,µ(tz0) ≤ sup
t≥0

Jλ,µ(tz0) < Cλ,µ

for all (λ, µ) ∈ ΘΛ∗ . □

Theorem 4.9. If (λ, µ) ∈ ΘΛ2, then Jλ,µ has a minimizer z0
− in N−

λ,µ

and satisfies the following

(i) Jλ,µ(z
−
0 ) = θ−λ,µ;

(ii) z−0 is a positive solution of (1.1),

where Λ2 = min{Λ∗,Λ1}, Λ∗ is the same as in Lemma (4.8).

Proof. If (λ, µ) ∈ ΘΛ1 , then by Proposition (4.4), there exists a (PS)θ−λ,µ
-

sequence {zn} ⊂ N−
λ,µ in W for Jλ,µ. From Lemmas (3.8) and (4.8) and

Theorem (2.5)(ii), for (λ, µ) ∈ ΘΛ∗ , Jλ,µ satisfies (PS)θ−λ,µ
condition and

θ−λ,µ ∈ (0, Cλ,µ). By Lemma (2.1) and from coercivity of Jλ,µ on Nλ,µ, we

get that {zn} is bounded in W . Therefore, there exists a subsequence
still denoted by {zn} and a nontrivial solution z−0 ∈ N−

λ,µ such that

zn ⇀ z−0 weakly in W . Finally by the same arguments as in the proof
of Theorem (4.5), for all (λ, µ) ∈ ΘΛ2 , we have that z−0 is a positive
solution of (1.1). □

Proof of Theorem 4.3. By Theorems (4.5) and (4.9), we obtain that
for all λ, µ > 0 and 0 < ϱλ,µ < Λ2 < Λ0 ( or (λ, µ) ∈ ΘΛ2), (1.1) has

two positive solutions z+0 , z
−
0 with z±0 ∈ N±

λ,µ. Since N+
λ,µ ∩ N−

λ,µ = ∅,
this implies that z+0 and z−0 are distinct. This completes the proof of
Theorem (4.3). □

Conclusion. In this paper we investigate the existence and multi-
plicity of positive solutions for problem (1.1) in both cases, critical and
subcritical growth terms. In the proof, we apply variational methods,
via the extraction of Palais-Smale sequences in the Nehari manifold for
subcritical Sobolev exponent. It consists of making precise comparisons
between the critical and subcritical cases. In order to overcome the lack
of compactness due to the critical growth, we use the ideas of Brezis
and Nirenberg ([7]), besides the paper of Hsu ([13]), where it is proved
that the existence of a certain range in R2, which plays an important
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role when dealing with critical systems like (1.1). Actually, we use this
certain range and adapt some calculations to localize the energy levels
where Palais-Smale condition fails.
Finally, we would like to mention that, as a byproduct of our arguments,
we can extend the existence results in Theorems (4.1), (4.2) and (4.3) for
both critical and subcritical degrees of homogeneity of any perturbation
term.
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