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CHARACTERIZING THE MULTIPLICATIVE GROUP
OF A REAL CLOSED FIELD IN TERMS OF ITS

DIVISIBLE MAXIMAL SUBGROUP

M. MAHDAVI-HEZAVEHI

Communicated by Jamshid Moori

Abstract. Let F be a field and M be a maximal subgroup of the
multiplicative group F ∗ = F \ {0} of index p. It is proved that
if M is divisible, then Br(F )p 6= 0 if and only if p = 2 and F is
Euclidean. Furthermore, it is shown that in this case F ∗ contains
a divisible maximal subgroup if and only if F ∗ is isomorphic to the
multiplicative group of a real closed field.

1. Introduction

Given the field of real numbers R, denote by R∗ and R+ the multi-
plicative group of real numbers and the multiplicative group of positive
real numbers, respectively. We recall that a nontrivial multiplicative
abelian group G is divisible if and only if G has no maximal subgroup
if and only if G = Gp for each prime p. It is easily seen that R+ is a
divisible maximal subgroup of index 2 in R∗ and R is Euclidean. The
object of this note is to show that this property on the multiplicative
group of a field F implies that Br(F )p 6= 0 if and only if p = 2 and F
is Euclidean, where Br(F )p is the p-primary component of the Brauer
group of F . Furthermore, if R is a real closed field, then it is easily seen
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that (cf. Theorem A below) R∗ contains a unique maximal subgroup
which is divisible. Here, we also characterize the multiplicative group
of a real closed field in terms of its divisible maximal subgroup. To be
more precise, it is proved that F ∗ contains a divisible maximal subgroup
if and only if F ∗ is isomorphic to the multiplicative group of a real closed
field.

2. Divisible maximal subgroups

We begin our investigation with the following easy lemma.

Lemma 2.1. Let G be a multiplicative abelian group and M be a max-
imal subgroup of G. If M is divisible, then M is the unique maximal
subgroup of G.

Proof. Assume that M1 6= M is another maximal subgroup of G. Then,
we have G = MM1 and hence G/M1

∼= M/M ∩ M1; i.e., M ∩ M1 is a
maximal subgroup of M . Since M is divisible, then we conclude that
M ∩ M1 = 1. Therefore, G/M1

∼= M ∼= Cq for some prime number
q, where Cq is the cyclic group of q elements. This last relation also
leads to a contradiction since a finite group cannot be divisible, and so
M = M1 as required.

We shall also need the following theorem to prove our main result.

Theorem A ([1], p. 107)If F is a real closed field, then F ∗ ∼= Z2 ×
Q|F |. Conversely, for any infinite cardinal λ, the group Z2 × Qλ is
isomorphic to the multiplicative group of a suitable real closed field.

Theorem 2.2. Let M be a maximal subgroup of F ∗ of index p. Then,
we have:
(1) If M is divisible, then Br(F )p 6= 0 if and only if p = 2 and F is
Euclidean.
(2) If F is Euclidean, then F ∗ contains a divisible maximal subgroup of
index 2 if and only if F ∗ is isomorphic to the multiplicative group of a
real closed field.

Proof. (1) Assume that M is a maximal subgroup of F ∗ with F ∗/M ∼=
Cp for some prime p. We first claim that if p is odd, then there exists
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a unique cyclic field extension K/F of degree p such that N(K∗) = F ∗,
where N is the norm of K to F . To see this, we know, by Lemma 2.1
that M is the unique maximal subgroup of F ∗ such that F ∗/M ∼= Cp.
Since M is divisible and maximal in F ∗, then by (4.1.4) of [3], we have
F ∗ ∼= M × Cp. This means that F contains a primitive p-th root of
unity. Now, it is easily seen that there is an element a ∈ F such that
the equation xp − a = 0 has no solutions in F . Since F has a primitive
p-th root of unity, then we obtain a cyclic extension K = F (b) of degree
p over F with bp − a = 0. By Kummer theory and the Prũfer-Baer
Theorem (cf. [3], p. 105), the Galois group Gal(K/F ) is isomorphic
with a subgroup of F ∗/F ∗p ∼= Cp. Therefore, K/F is the only cyclic
extension of degree p over F ; i.e., we may take a = ω a primitive p-th
root of unity. Since p is odd, then we have N(b) = (−1)p+1ω = ω.
Furthermore, because M is divisible, then we obtain M = Mp ⊂ N(K∗)
and hence N(K∗) = F ∗, as claimed. Now, assume that Gal(K/F )
is generated by the automorphism σ of order p = [K : F ]. Fix an
element λ ∈ F ∗ and a symbol y. We set D = K1 ⊕Ky ⊕ · · · ⊕Kyp−1,
and multiply elements of D by using distributive law, and the rules
yp = λ, yk = σ(k)y for all k ∈ K. This way, we obtain the cyclic
algebra (K/F, σ, λ). Now, since F ∗ = N(K∗), then we conclude that
λ ∈ N(K∗). Thus, by Corollary 4 of [2], p. 82, [D] is trivial in Br(F ).
If Br(F )p 6= 0, then there is an F -central simple algebra, say A, such
that [A] 6= 0 with p[A] = 0. By Theorem 1 of [2], p. 119, [A] = ⊕[Ci],
where Ci is a cyclic algebra of index p. From the above argument, we
know that [Ci] = 0 for each i. Thus, [A] = 0 which is a contradiction.
Thus, we must have p = 2. Now, we have F ∗ ∼= M × C2, which shows
that −1 /∈ M . The equation x2 + 1 = 0 over F has no root in F , since
a2 = −1 with a ∈ F implies that −1 ∈ M , which is false. Now, consider
the extension L = F (i) with i2 = −1. The above proof shows that
NL/F (L∗) = M . We claim that M defines a positive cone for F . It is
clear that M ∩ −M = ∅, MM ⊆ M , and M ∪ −M ∪ {0} = F . To
show that M + M ⊆ M , take α, β ∈ M . Since M = F ∗2, then there
exist λ, µ ∈ F ∗ such that α = λ2, β = µ2. Now, consider the element
x = λ + µi ∈ L. We have NL/F (x) = λ2 + µ2 = α + β ∈ M , since
N(L∗) = M . Therefore, F is formally real and since M = F ∗2, then we
conclude that F is Euclidean. On the other hand, since F is Euclidean,
then take the quaternion algebra Q over F . Because −1 is not a sum
of squares, then we conclude that Q is a division algebra and hence
Br(F )2 6= 0.
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(2) One way is clear from Theorem A. If M is the divisible maximal
subgroup of F ∗, then from the proof of (1) we have F ∗ ∼= M ×C2. Since
M is divisible from the theory of divisible abelian groups we know that
M is a direct product of quasi-cyclic and full rational groups (cf. [1], p.
96). We claim that M contains no primitive p-th root of unity. Since
−1 is not in M , then it suffices to consider p > 2. If ω is a primitive
p-th root of unity, then for p 6= 2 we have 12 + ω2 + · · · + ω2(p−1) =
(ω2p − 1)/(ω2 − 1) = 0, which is not possible in a formally real field
(by (1)). Thus, we cannot have any copy of a quasi-cyclic group in our
decomposition of M and hence M ∼= Qλ for some cardinal λ. Since Q
is of torsion-free rank 1, λ is the torsion-free rank of F ∗. Now, because
CharF = 0, then we have Q∗ ⊂ F ∗, and hence λ is infinite by Lemma
4.1.16 of [1], which asserts that Q∗ ∼= Z2 × Zℵ0 . Therefore, we have
M ∼= Qλ for some infinite cardinal λ. Now, by Theorem A, we obtain
the result. �

We observe that in the conclusion of the theorem, F need not neces-
sarily be real closed. In fact, if F is obtained from the rationals Q by
iteratively adjoining roots of positive real algebraic numbers, then the
positive cone of the resulting field F is such a maximal subgroup. But
F is not real closed.
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