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Abstract. In this paper, we study translation invariant surfaces
in the 3-dimensional Heisenberg group Nil3. In particular, we com-
pletely classify translation invariant surfaces in Nil3 whose position
vector x satisfies the equation ∆x = Ax, where ∆ is the Laplacian
operator of the surface and A is a 3× 3-real matrix.
Keywords: Heisenberg group, finite type surface, invariant sur-
face.
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1. Introduction

In late 1970’s Chen [4] introduced the notion of finite type immersion
in the m-dimensional Euclidean space Rm. A submanifold M of the m-
dimensional Euclidean space Rm is said to be of finite type if its position
vector field x can be expressed as a finite sum of the eigenvectors of the

Laplacian operator ∆ of M , that is, x = x0 +
∑k

i=1 xi, where x0 is a
constant map, x1, · · · , xk non-constant maps such that ∆xi = λixi, λi ∈
R, i = 1, 2, · · · , k. If λ1, λ2, · · · , λk are different, then M is said to be
of k-type. The classification of 1-type submanifolds of Euclidean space
was done by T. Takahashi [14]. He proved that the submanifolds in Rm

satisfy the differential equation

(1.1) ∆x = λx,
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Translation invariant surfaces 1374

for some real number λ, if and only if either the submanifold is a min-
imal submanifold of Rm (λ = 0) or it is a minimal submanifold of a
hypersphere of Rm centered at the origin (λ ̸= 0).

As a generalization of Takahashi’s condition (1.1), Garay [7] studied
hypersurfaces in Rm whose coordinate functions are eigenfunctions of the
Laplacian operator of the hypersurface, but not necessarily associated
to the same eigenvalue. Specifically, he considered hypersurfaces in Rm

satisfying the differential equation

(1.2) ∆x = Ax,

where A ∈ Diag(m,R) is an m ×m- diagonal matrix, and proved that
such hypersurfaces are minimal in Rm and open pieces of either round
hyperspheres or generalized right spherical cylinders. Garay called such
submanifolds coordinate finite type. Related to this, Dillen, Pas and
Verstraelen [5] observed that Garay’s condition (1.2) is not coordinate
invariant and they proposed the study of submanifolds of Rm satisfying
the following equation:

(1.3) ∆x = Ax+B,

where A ∈ Mat(m,R) is a m × m matrix and B ∈ Rm. On the other
hand, the class of submanifolds satisfying (1.2) and the class of sub-
manifolds satisfying (1.3) are the same if the submanifolds are hyper-
surfaces of Euclidean space [9]. Also, the above mentioned study can
be extendeded the notion of an immersion of submanifolds into pseudo-
Euclidean space (see [1, 2]). Recently, many geometers are studying an
extension of Takahashi theorem for the linearized operators of the higher
order mean curvatures of hypersurfaces (see [3, 11–13]).

A homogenous space is a Riemannian manifold M such that for every
two points p and q in M , there exists an isometry of M mapping p into
q. This means that the space looks the same at every point. Remark
that M is homogeneous if the action of the isometry of M is transitive.
Homogenous geometries have main roles in the modern theory of man-
ifolds. Homogenous spaces are, in a sense, the magnificent examples of
Riemannian manifolds and have applications in physics [8]. To under-
line their importance from the mathematical point of view we roughly
cite the famous Thurston conjecture. This conjecture asserts that every
compact orientable 3-dimensional manifold has a canonical decomposi-
tion into pieces, each of which admits a canonical geometric structure
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from among the eight maximal simple connected homogenous Riemann-
ian 3-dimensional geometries [15]. One of the eight model spaces is the
3-dimensional Heisenberg group Nil3.

In this paper, we shall classify translation invariant surfaces in the
3-dimensional Heisenberg group Nil3 satisfying the equation (1.2)

2. Preliminaries

Let Nil3 denote the 3-dimensional Heisenberg group. This is a two-
step nilpotent Lie group which can be seen as the subgroup of 3 × 3-
matrices given by

Nil3 =

{(
1 a c
0 1 b
0 0 1

)∣∣∣ a, b, c ∈ R

}
⊂ GL(3,R).

We denote the corresponding Lie algebra by

L(Nil3) =

{(
0 x z
0 0 y
0 0 0

)∣∣∣ x, y, z ∈ R

}
.

Using the exponential map exp : L(Nil3) → Nil3,

exp(A) = I +A+
A2

2
=

1 x z + 1
2xy

0 1 y
0 0 1

 ,

we can view Nil3 as R3 equipped with the group structure ∗ given by

(2.1) (x, y, z) ∗ (x̄, ȳ, z̄) =
(
x+ x̄, y + ȳ, z + z̄ +

1

2
xȳ − 1

2
yx̄

)
.

The identity of the group is 0 = (0, 0, 0) and the inverse of p = (a, b, c)
is p̂ = (−a,−b,−c). The left-multiplication by p in Nil3, Lp : q 7→ p ∗ q,
has tangent map

(2.2) TqLp =

 1 0 0
0 1 0

−1
2b

1
2a 1


in the canonical coordinates (x, y, z) of R3 (they are often referred to as
exponential coordinates).

Let { ∂
∂x ,

∂
∂y ,

∂
∂z} denote the canonical vector fields in R3. Then from

(2.2) we have that an orthonormal basis of the left-invariant vector fields
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in Nil3 is given in exponential coordinates by

(2.3)

e1 = T0L(x,y,z)(
∂

∂x
) =

∂

∂x
− y

2

∂

∂z
,

e2 = T0L(x,y,z)(
∂

∂y
) =

∂

∂y
+

x

2

∂

∂z
,

e3 = T0L(x,y,z)(
∂

∂z
) =

∂

∂z
,

and the left-invariant metric g̃ in Nil3 is given by

(2.4) g̃ = dx2 + dy2 +

(
dz +

1

2
(ydx− xdy)

)2

.

On the other hand, the Lie brackets is given by

[e1, e2] = e3, [e2, e3] = 0, [e3, e1] = 0

and the Levi-Civita connection ▽̃ of Nil3 is expressed as

(2.5)

▽̃e1e1 = 0, ▽̃e1e2 =
1

2
e3, ▽̃e1e3 = −1

2
e2,

▽̃e2e1 = −1

2
e3, ▽̃e2e2 = 0, ▽̃e2e3 =

1

2
e1,

▽̃e3e1 = −1

2
e2, ▽̃e3e2 =

1

2
e1, ▽̃e3e3 = 0.

The following properties are well-known and can be found for exam-
ple in [6]. Equipped with the left-invariant metric g̃, the Heisenberg
group Nil3 is a homogenous Riemannian manifold whose group of iso-
metrics I(Nil3) has dimension 4. Also, the identity component I0(Nil3)
of I(Nil3) is isometric to the semi-direct product of Nil3 and SO(2). In
particular, a basis of Killing vector fields is given by

E1 =
∂

∂x
+

y

2

∂

∂z
, E2 =

∂

∂y
− x

2

∂

∂z
,

E3 =
∂

∂z
, E4 = −y

∂

∂x
+ x

∂

∂y
.

One can check that E1, E2, E3 are infinitesimal translations of the 1-
parameter groups of isometries defined by

G1 := {(s, 0, 0) | s ∈ R}, G2 := {(0, s, 0) | s ∈ R}, G3 := {(0, 0, s) | s ∈ R},
respectively. Here these groups act on Nil3 by left translation. The
vector field E4 generates the group of rotations around the z-axis. Thus,
G4 is defined with SO(2).
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Theorem 2.1. ([6]). The 1-dimensional subgroups of I0(Nil3) are:
(1) the 1-parameter subgroups generated by the linear combinations

(2.6) X = a1E1 + a2E2 + a3E3 + bE4

with b ̸= 0. In particular, the group generated by X = bE4 is the group
of rotations around the z-axis.

(2) the 1-parameter subgroups generated by the linear combinations

(2.7) X = a1E1 + a2E2 + a3E3

with a21 + a22 + a23 ̸= 0.

A surface in Nil3 is said to be translation invariant if it is invariant
under the action of 1-parameter subgroup generated by the Killing vector
field given by (2.7).

Lemma 2.2. ( [6]). Let Σ be a surface in Nil3 invariant under the
1-parameter subgroup generated by a Killing vector fields of the form:

a1E1 + a2E2 + a3E3, a21 + a22 ̸= 0.

Then, Σ is isometric to a surface invariant under the 1-parameter sub-
group G1 = {(s, 0, 0) ∈ Nil3 | s ∈ R}.

Thus, for the study of translation type surfaces, we may restrict our
attention to

(1) surfaces invariant under G1 = {(s, 0, 0) | s ∈ R} or
(2) surfaces invariant under G3 = {(0, 0, s) | s ∈ R}.
First, let Σ1 be a surface invariant under the 1-parameter subgroup

G1. Then the parametrization of Σ1 is given by

(2.8)

x(s, t) = (s, 0, 0) ∗ (0, t, v(t))

=

(
s, t, v(t) +

st

2

)
.

It is called G1-translation invariant surface.

Next, let Σ3 be a surface invariant under the 1-parameter subgroup
G3. Then, Σ3 is locally expressed as

(2.9)
x(s, t) = (0, 0, s) ∗ (t, v(t), 0)

= (t, v(t), s)

which is called G3-translation invariant surface.
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It is well known that in terms of local coordinates {xi} of a surface Σ
the Laplacian operator ∆ on Σ is given by

(2.10) ∆ = − 1√
|G|

∑
i,j

∂

∂xi
(
√

|G|gij ∂

∂xj
),

where G = det(gij), (g
ij) = (gij)

−1 and (gij) are the components of the
induced metric of Σ with respect to {xi}.

3. G1-translation invariant surfaces satisfying ∆x = Ax

Let Σ1 be a G1-translation invariant surface in the 3-dimensional
Heisenberg group Nil3. Then, Σ1 is parametrized by

(3.1) x(s, t) =

(
s, t, v(t) +

st

2

)
.

In this case, the natural frame {xs, xt} is given by

∂x

∂s
:= xs = e1 + te3,

∂x

∂t
:= xt = e2 + v′(t)e3,

from these the components of the induced metric of the surface are

g11 = 1 + t2, g12 = tv′, g22 = 1 + v′
2
.

Let U be a unit normal vector of Σ1. Then it is defined by xs×xt
||xs×xt|| =

1

w
1
2
(xs × xt) and hence we get

U =
1

w
1
2

(−te1 − v′e2 + e3).

On the other hand,

(3.2)

xss = ▽̃xsxs = −te2,

xst = ▽̃xsxt =
t

2
e1 −

v′

2
e2 +

1

2
e3,

xtt = ▽̃xtxt = v′e1 + v′′e3.
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By (2.10), the Laplacian operator ∆ of Σ1 can be expressed as

(3.3)

∆ =
1

w2
[v′w + tv′′w − tv′(t+ v′v′′)]

∂

∂s

+
1

w2
[(1 + t2)(t+ v′v′′)− 2tw]

∂

∂t

+
1

w
(2tv′)

∂2

∂s∂t
− 1

w
(1 + v′

2
)
∂2

∂s2
− 1

w
(1 + t2)

∂2

∂t2
.

By a straightforward computation, the Laplacian operator ∆x of x with
the help of (3.2) and (3.3) turns out to be

(3.4)
∆x = − t

w2
(−v′′ − t2v′′ + tv′)e1 +

1

w2
(v′v′′ + v′v′′t2 − tv′

2
)e2

+
1

w2
(tv′ − v′′ − t2v′′)e3.

Suppose Σ1 satisfies the condition (1.2), that is, ∆x = Ax for some
matrix A = (aij), where i, j = 1, 2, 3. Then, from (3.1) and (3.4), using
the fact that w does not depend on s we obtain the following equations:

(3.5) − t

w2
(−v′′ − t2v′′ + tv′) = a11s+ a12t+ a13(v +

st

2
),

(3.6)
1

w2
(v′v′′ + v′v′′t2 − tv′

2
) = a21s+ a22t+ a23(v +

st

2
),

(3.7)

1

w2
(tv′ − v′′ − t2v′′) =

t

2

(
a11s+ a12t+ a13(v +

st

2
)

)
− s

2

(
a21s+ a22t+ a23(v +

st

2
)

)
+ a31s+ a32t+ a33(v +

st

2
).

Differentiating (3.5) and (3.6) with respect to s, we have a11+
t
2a13 = 0

and a21 + t
2a23 = 0, respectively. From these, a11 = a13 = a21 =

a23 = 0. In this case, differentiating (3.7) with respect to s, we have
(a33 − a22)t + 2a31 = 0. It follows that a31 = 0 and a22 = a33. We put
a22 = a33 = λ. Then, (3.5), (3.6) and (3.7) can be written as the forms:

(3.8) v′′ + t2v′′ − tv′ = a12w
2,

(3.9) v′v′′ + v′v′′t2 − tv′
2
= λtw2,
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(3.10) tv′ − v′′ − t2v′′ =
1

2
a12t

2w2 + a32tw
2 + λvw2.

Combining (3.8) and (3.9), we find

(3.11) a12v
′ − λt = 0.

Again, combining (3.9) and (3.10), we get

(3.12)
1

2
a12v

′t2 + λt+ a32v
′t+ λvv′ = 0.

From (3.11) and (3.12), we have the following equation:

(3.13) v′
(
1

2
a12t

2 + a32t+ a12 + λv

)
= 0.

First of all, if v′ = 0, then from (3.8), (3.9)) and (3.10) we can obtain
a12 = a32 = λ = 0. Thus, A = 0. In this case, Σ1 is parametrized by

(3.14) x(s, t) = (s, t,
st

2
+ c1),

where c1 is a constant.

Next, we suppose v′ ̸= 0. Then from (3.13) we have

(3.15) λv = −1

2
a12t

2 − a32t− a12.

(i) If λ = 0, then from (3.15) we have a12 = a32 = 0, that is, A = 0.
In this case, (3.10) becomes

(t2 + 1)v′′ = tv′

and its general solution is given by

(3.16) v =
c1
2

(
t
√

t2 + 1 + ln(t+
√

t2 + 1) + c2

)
where 0 ̸= c1, c2 are constants of integration.

(ii) If λ ̸= 0, then from (3.15) we have

(3.17) v = −a12
2λ

t2 − a32
λ

t− a12
λ

.

Substituting it in (3.5), we get a12 = a32 = 0. It is a contradiction.
Thus, we have the following:

Theorem 3.1. Let Σ1 be a G1-translation invariant surface in the 3-
dimensional Heisenberg group Nil3. Then, Σ1 satisfies the equation
∆x = Ax,A ∈ Mat(3,R) if and only if the surface can be parametrized
as

x(s, t) =

(
s, t, v(t) +

st

2

)
,
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where
(1) either v(t) = c1 with c1 ∈ R,
(2) or v = c1

2

(
t
√
t2 + 1 + ln(t+

√
t2 + 1) + c2

)
with 0 ̸= c1, c2 ∈ R.

Remark 3.2. The surfaces given in Theorem 3.1 are minimal and those
surfaces was studied by C. Figueroa, F. Mercuri and R. Pedrosa ( [6]).

4. G3-translation invariant surfaces satisfying ∆x = Ax

Let Σ3 be a G3-translation invariant surface in the 3-dimensional
Heisenberg group Nil3. Then, the parametrization of Σ3 is given by

(4.1) x(s, t) = (t, v(t), s).

From which, we have

(4.2) xs = e3, xt = e1 + v′e2 +
1

2
(v − tv′)e3.

Therefore, the components of the induced metric of Σ3 are

g11 = 1, g12 =
1

2
(v − tv′), g22 = 1 + v′

2
+

1

4
(v − tv′)2.

On the other hand, the values of ▽̃xixj are

(4.3) ‘

▽̃xsxs = 0,

▽̃xsxt =
1

2
v′e1 −

1

2
e2,

▽̃xtxt =
1

2
v′(v − tv′)e1 +

(
v′′ − 1

2
(v − tv′)

)
e2 −

1

2
tv′′e3.

It is easy to show that the Laplacian operator ∆ of Σ3 can be expressed
as

(4.4)

∆ = − 1

2(1 + v′2)2
[v′v′′(v − tv′) + tv′′(1 + v′

2
)]

∂

∂s

+
1

(1 + v′2)2
(v′v′′)

∂

∂t
+

1

1 + v′2
(v − tv′)

∂2

∂s∂t

− 1

1 + v′2
[1 + v′

2
+

1

4
(v − tv′)2]

∂2

∂s2
− 1

1 + v′2
∂2

∂t2
.

From (4.1)-(4.4), we can obtain by a direct computation

(4.5) ∆x =
v′′

(1 + v′2)2
(v′e1 − e2).
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Suppose Σ3 satisfies the equation ∆x = Ax for some matrix A = (aij),
where i, j = 1, 2, 3. The case v′′ = 0 will be treated separately. First of
all, let us suppose that v′′ ̸= 0 on an open interval. Then, from (4.1)
and (4.5) we have the following equations:

(4.6)
1

(1 + v′2)2
v′v′′ = a11t+ a12v + a13s,

(4.7) − 1

(1 + v′2)2
v′′ = a21t+ a22v + a23s,

(4.8) 0 =
v

2
(a11t+a12v+a13s)−

t

2
(a21t+a22v+a23s)+a31t+a32v+a33s,

which imply that a13 = a23 = a33 = 0. In this case, substituting (4.6)
and (4.7) into (4.8), we get

(4.9) v′′(vv′ + t) + 2(a31t+ a32v)(1 + v′
2
)2 = 0

and combining (4.6) and (4.7) we have

(4.10) (a21t+ a22v)v
′ + (a11t+ a12v) = 0.

Now, we have to solve the ordinary differential equation (4.9) But, it
is not easy. So, we give examples of translation invariant surfaces by
distinguishing some special cases:

1. If a12 = a21 = a31 = a32 = 0, then from (4.9) we get vv′+t = 0 and

its general solution is v(t) =
√
c− t2, c ∈ R+. In this case, the matrix

A becomes
( 1/c 0 0

0 1/c 0
0 0 0

)
.

2. Assume a12 = 0. Then, from (4.8) we obtain

(4.11) v(t) =
a21t

2 − 2a31t

(a11 − a22)t+ 2a32
,

if a11 − a22 ̸= 0 and a32 ̸= 0. Differentiating (4.11) with respect to t
and combining (4.10), it is transformed into a polynomial equation in t.
Therefore, all coefficients of the polynomial equation must be zero. So
we obtain the following equations:

(4.12) a11
(
a11 − a22)((a11 − a22)

2 + a221
)
= 0,

(4.13)
a11a21a22a31 − a21a

2
22a31 − 3a11a

2
21a32 − 3a311a32

− 3a11a
2
22a32 + 6a211a22a32 + a221a22a32 = 0,
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(4.14) 2a221a32 + 3a211a32 − 3a11a22a32 − a11a21a31 − 2a21a22a31 = 0,

(4.15) a11a
2
32 − a21a31a32 + a22a

2
31 = 0.

From (4.12), we have a11 = 0. In such case, equations (4.13), (4.14) and
(4.15) are rewritten as

(4.16)

a21a22(a21a32 − a22a31) = 0,

a21(a21a32 − a22a31) = 0,

a31(a21a32 − a22a31) = 0,

which imply that a21a32 − a22a31 = 0. Thus we have

v(t) =
a22a31t

2 − 2a31a32t

a32(2a32 − a22t)
.

3. Assume now that a22 ̸= 0. In such case we can make the change of
variable u = a22v + a21t and equation (4.10) is reduced to an equation
of the type

(4.17) u′ = P +Q
t

u
,

where P = a21 − a12 and Q = a12a21 − a11a22. If P = 0, the general
solution of (4.17) is given by

u = ±
√

Qt2 + c1,

where c1 is a constant of integration. From this, we have

(4.18) v(t) = ± 1

a22

√
Qt2 + c1 −

a12
a22

t.

If c1 = 0, then the function v(t) is linear, which is a contradiction. So,
c1 is a non-zero constant. In such case, (4.8) becomes

(4.19)

(
(a22(a11 − a22) + 2a212)t+ 2a22a32

)√
Qt2 + c1

= 2a12(a
2
22 − a212)t

2 − 2a22(a22a31 + a12a32)t− c1a12.

(i) If a12 = a22 ̸= 0, then from the coefficients of the polynomial
equation (4.19) we have

a322(a11 − a22)(a11 + a22)
2 = 0,

4a322a32(a11 − a22)(a11 + a22) = 0,

a222(c1a
2
22 − 4a222a

2
31 − 8a222a31a32 + 2c1a11a22 − 4a11a22a

2
32 + c1a

2
11 = 0,

4c1a
2
22(a11a32 − a22a31) = 0,
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c1a
2
22(c1 − 4a232) = 0.

If a11 = a22, thenQ = 0, it is a contradiction. Thus, we have a11 = −a22,
c1 = 4a232 and the function v(t) is given by

v(t) = ± 1

a22

√
2a222t

2 + 4a232 − t,

where a22, a32 ∈ R− {0}.
(ii) We consider the case a12 = −a22 ̸= 0. Then by applying the same

algebraic method as above, we also obtain

v(t) = ± 1

a22

√
2a222t

2 + 4a232 + t,

Return to the remained case v′′ = 0, that is, v(t) = at + b, a, b ∈ R.
Then from (4.5) ∆x = 0, it follows that A = 0.

Thus, we have the following:

Theorem 4.1. Let Σ3 be a G3-translation invariant surface in the 3-
dimensional Heisenberg group Nil3. Then, Σ3 is a coordinate finite
surface if and only if the surface can be parametrized as

x(s, t) = (t, v(t), s),

where
(1) either v(t) = at+ b with a, b ∈ R,
(2) or v(t) =

√
c− t2 with c ∈ R+.

Proposition 4.2. The following surface

x(s, t) =

(
t,
ct2 − 2dt

a− bt
, s

)
or

x(s, t) =

(
t,±1

a

√
2a2t2 + 4b2 ± t, s

)
, a, b, c, d ∈ R− {0}

is one of G3-translation invariant surfaces in the 3-dimensional Heisen-
berg group Nil3 satisfying ∆x = Ax,A ∈ Mat(3,R).
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