Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 6, pp. 1403-1411

Title:
Fekete-Szegö coefficient functional for transforms of universally prestarlike functions

Author(s):

T. N. Shanmugam and J. Lourthu Mary

FEKETE-SZEGÖ COEFFICIENT FUNCTIONAL FOR TRANSFORMS OF UNIVERSALLY PRESTARLIKE FUNCTIONS

T. N. SHANMUGAM AND J. LOURTHU MARY*
(Communicated by Javad Mashreghi)

Abstract

Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda=\mathbb{C} \backslash[1, \infty)$ have been recently introduced by S . Ruscheweyh.This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathbb{C}). In this paper, we obtain the Fekete-Szegö coefficient functional for transforms of such functions.

Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szegö finctional.
MSC(2010): Primary: 30C45.

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω. For a domain Ω containing the origin, $H_{0}(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with $f(0)=1$. We also use the notation $H_{1}(\Omega)=$ $\left\{z f: f \in H_{0}(\Omega)\right\}$. In the special case when Ω is the open unit disk $\Delta=$ $\{z \in \mathbb{C}:|z|<1\}$, we use the abbreviations H, H_{0} and H_{1} respectively for $H(\Omega), H_{0}(\Omega)$ and $H_{1}(\Omega)$. A function $f \in H_{1}$ is called starlike of order α with $(0 \leq \alpha<1)$ if f satisfies the inequality

[^0]\[

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

\]

the set of all such functions is denoted by S_{α}. The convolution or Hadamard Product of two functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ is defined as

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

A function $f \in H_{1}$ is called prestarlike of order α if

$$
\begin{equation*}
\frac{z}{(1-z)^{2-2 \alpha}} * f(z) \in S_{\alpha} . \tag{1.2}
\end{equation*}
$$

The set of all such functions is denoted by \mathcal{R}_{α}. The notion of prestarlike functions has been extended from the unit disk to other disks and half planes containing the origin by Ruscheweyh and Salinas [6]. Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathbb{C} \backslash\{0\}$ and $\rho \in[0,1]$ such that

$$
\begin{equation*}
\Omega_{\gamma, \rho}=\left\{w_{\gamma, \rho}(z): z \in \Delta\right\} \tag{1.3}
\end{equation*}
$$

where, $w_{\gamma, \rho}(z)=\frac{\gamma z}{1-\rho z}$. Note that $1 \notin \Omega_{\gamma, \rho}$ if and only if $|\gamma+\rho| \leq 1$.
Definition 1.1. [5, 6, 7] Let $\alpha \leq 1$, and $\Omega=\Omega_{\gamma, \rho}$ for some admissible pair (γ, ρ). A function $f \in H_{1}\left(\Omega_{\gamma, \rho}\right)$ is called prestarlike of order α in $\Omega_{\gamma, \rho}$ if

$$
\begin{equation*}
f_{\gamma, \rho}(z)=\frac{1}{\gamma} f\left(w_{\gamma, \rho}(z)\right) \in \mathcal{R}_{\alpha} . \tag{1.4}
\end{equation*}
$$

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.
Let Λ be the slit domain $\mathbb{C} \backslash[1, \infty)$ (the slit being along the positive real axis).

Definition 1.2. [5, 6, 7] Let $\alpha \leq 1$. A function $f \in H_{1}(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma, \rho}$ with $|\gamma+\rho| \leq 1$. The set of all such functions is denoted by \mathcal{R}_{α}^{u}.

For a univalent function $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.5}
\end{equation*}
$$

the $k^{t h}$ root transform is defined as

$$
\begin{equation*}
F(z)=\left[f\left(z^{k}\right)\right]^{\frac{1}{k}}:=z+\sum_{n=1}^{\infty} d_{k n+1} z^{k n+1} \tag{1.6}
\end{equation*}
$$

$k \in N=\{1,2, \ldots\}$.
Definition 1.3. [7, 9] Let $\phi(z)$ be an analytic function with positive real part on Δ, which satisfies $\phi(0)=1, \phi^{\prime}(0)>0$ and which maps the unit disc Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $\mathcal{R}_{\alpha}^{u}(\phi)$ consists of all analytic functions $f \in H_{1}(\Lambda)$ satisfying

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f(z)}{D^{2-2 \alpha} f(z)} \prec \phi(z) \tag{1.7}
\end{equation*}
$$

where \prec denotes the subordination, and where $\left(D^{\beta} f\right)(z)=\frac{z}{(1-z)^{\beta}} \star f$, for $\beta \geq 0$. In particular, for $\beta=n \in \mathrm{~N}$, we have $D^{n+1} f=\frac{z}{n!}\left(z^{n-1} f\right)^{(n)}$.
We let $\mathcal{R}_{\alpha}^{u}(A, B)$ denote the class $\mathcal{R}_{\alpha}^{u}(\phi)$ where $\phi(z)=\frac{1+A z}{1+B z}(-1 \leq$ $B<A \leq 1)$. For suitable choices of $\mathrm{A}, \mathrm{B}, \alpha$ the class $\mathcal{R}_{\alpha}^{u}(A, B)$ reduces to several well known classes of functions. For instance, $\mathcal{R}_{\frac{1}{2}}^{u}(1,-1)$ is the class $S^{*}=S_{0}$ of starlike univalent functions.
In this section, sharp bounds for the Fekete-Szegö coefficient functional $\left|d_{2 k+1}-\mu d_{k+1}^{2}\right|$ associated with the $k^{t h}$ root transform of the functions belonging to the class $\mathcal{R}_{\alpha}^{u}(\phi)$ are found. In particular cases, these bounds reduce to results of $[1,8]$.
Remark 1.4. [7] Let $F(z)=\sum_{k=0}^{\infty} a_{k} z^{k}=\int_{0}^{1} \frac{d \mu(t)}{1-t z}$ where $a_{k}=\int_{0}^{1} t^{k} d \mu(t)$, and $\mu(t)$ is a probability measure on $[0,1]$. Let T denote the set of all such functions F. They are analytic in the slit domain Λ.
To prove our result we need the following theorems.

Theorem 1.5. [7] Let $0 \leq \alpha \leq 1$ and $f \in H_{1}(\Lambda)$. Then $f \in \mathcal{R}_{\alpha}^{u}$ if and only if

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \in T \tag{1.8}
\end{equation*}
$$

This admits an explicit representation of the functions in \mathcal{R}_{α}^{u}. If $f \in H_{0}$ has all its Taylor coefficients at the origin different from zero we write $f^{(-1)}$ for the (possibly formal but) unique solution of $f * f^{(-1)}=\frac{1}{1-z}$.

Theorem 1.6. [8] Let f be a universally prestarlike function of order $\alpha \leq 1$, then the function $f(z)$ has a representation of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

for $n=2,3, \ldots$ where,

$$
\mathbb{C}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!}, \mathbb{C}(\alpha, k)=\frac{\prod_{m=2}^{k}(m-2 \alpha)}{(k-1)!}, \mathbb{C}(\alpha, 1) a_{1}=1
$$

$\mathbb{C}^{\prime}(\alpha, n)=\frac{\prod_{k=2}^{n}(k+1-2 \alpha)}{(n-1)!}, b_{n}=\int_{0}^{1} t^{n} d \mu(t)$
and $\mu(t)$ is a probability measure on $[0,1]$.
Let Ω_{1} be the class of analytic functions ω, normalized by $\omega_{1}(0)=0$, satisfying the condition $\left|\omega_{1}(z)\right|<1$. The following two lemmas regarding the coefficients of functions in Ω_{1} are needed to prove our main results. The following lemma is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda [4].

Lemma 1.7. [2] If $\omega \in \Omega_{1}$ and

$$
\begin{equation*}
\omega(z)=\omega_{1} z+\omega_{2} z^{2}+\cdots,(z \in \Delta) \tag{1.10}
\end{equation*}
$$

then,

$$
\left|\omega_{2}-t \omega_{1}^{2}\right| \leq\left\{\begin{aligned}
-t, & t \leq-1 \\
1, & -1 \leq t \leq 1 \\
t, & t \geq 1
\end{aligned}\right.
$$

For $t<-1$, or $t>1$, the equality holds if and only if $\omega(z)=z$ or one of its rotations. For $-1<t<1$, the equality holds if and only if $\omega(z)=z^{2}$ or one of its rotations. Equality holds for $t=-1$ if and only if $\omega(z)=z \frac{\lambda+z}{1+\lambda z}(0 \leq \lambda \leq 1)$ or one of its rotations, while for $t=1$, equality holds if and only if $\omega(z)=-z \frac{\lambda+z}{1+\lambda z}(0 \leq \lambda \leq 1)$ or one of its rotations.

Lemma 1.8. [3] If $\omega \in \Omega_{1}$, then $\left|\omega_{2}-t \omega_{1}^{2}\right| \leq \max \{1,|t|\}$, for any complex number t. The result is sharp for the function $\omega(z)=z^{2}$ or z.

We now estimate the sharp bound for the coefficient functional $\mid d_{2 k+1}-$ $\mu d_{k+1}^{2} \mid$ corresponding to the $k^{t h}$ root transformation of universally prestarlike functions of order α with respect to ϕ.

2. Coefficient bounds for the $k^{t h}$ root transformation

Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$, and

$$
\begin{aligned}
\sigma_{1} & =\frac{-k}{(3-2 \alpha) B_{1}}+\frac{k B_{2}}{(3-2 \alpha) B_{1}^{2}}+\frac{k(2-2 \alpha)}{(3-2 \alpha)}-\frac{k}{2}+\frac{1}{2} \\
\sigma_{2} & =\frac{k}{(3-2 \alpha) B_{1}}+\frac{k B_{2}}{(3-2 \alpha) B_{1}^{2}}+\frac{k(2-2 \alpha)}{(3-2 \alpha)}-\frac{k}{2}+\frac{1}{2} \\
t & =\frac{-B_{2}}{B_{1}}-(2-2 \alpha) B_{1}+(3-2 \alpha) B_{1}\left[\frac{1}{2}-\frac{1}{2 k}+\frac{\mu}{k}\right]
\end{aligned}
$$

If $f \in \mathcal{R}_{\alpha}^{u}(\phi)$ and F is the $k^{\text {th }}$ root transformation of f given by (1.5), then,

$$
\left|d_{2 k+1}-\mu d_{k+1}^{2}\right| \leq \begin{cases}-\frac{B_{1}}{(3-2 \alpha) k} t, & \mu \leq \sigma_{1} \\ \frac{B_{1}}{(3-2 \alpha) k}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{B_{1}}{(3-2 \alpha) k} t, & \mu \geq \sigma_{2}\end{cases}
$$

and when μ is a complex number
$\left|d_{2 k+1}-\mu d_{k+1}^{2}\right| \leq \frac{B_{1}}{(3-2 \alpha) k} \max \{1,|t|\}$.
Proof. If $f \in \mathcal{R}_{\alpha}^{u}(\phi)$, then there is an analytic function $\omega \in \Omega_{1}$ of the required form such that

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f(z)}{D^{2-2 \alpha} f(z)}=\phi(\omega(z)) \tag{2.1}
\end{equation*}
$$

We know that, $\frac{D^{3-2 \alpha} f(z)}{D^{2-2 \alpha} f(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n}$ where $b_{n}=\int_{0}^{1} t^{n} d \mu(t)$ and $\mu(t)$ is a probability measure on $[0,1]$, and

$$
\phi(\omega(z))=1+B_{1} \omega_{1} z+\left(B_{1} \omega_{2}+B_{2} \omega_{1}^{2}\right) z^{2}+\cdots
$$

Therefore,

$$
1+b_{1} z+b_{2} z^{2}+\cdots=1+B_{1} \omega_{1} z+\left(B_{1} \omega_{2}+B_{2} \omega_{1}^{2}\right) z^{2}+\cdots
$$

Now, equating the coefficients of z and z^{2} we get

$$
\begin{equation*}
b_{1}=B_{1} \omega_{1}, b_{2}=B_{1} \omega_{2}+B_{2} \omega_{1}^{2} \tag{2.2}
\end{equation*}
$$

Now, $\frac{D^{3-2 \alpha} f(z)}{D^{2-2 \alpha} f(z)}=1+\left[\mathbb{C}^{\prime}(\alpha, 2) a_{2}-\mathbb{C}(\alpha, 2) a_{2}\right] z+$

$$
\begin{gathered}
{\left[\mathbb{C}^{\prime}(\alpha, 3) a_{3}-\mathbb{C}(\alpha, 2) \mathbb{C}^{\prime}(\alpha, 2) a_{2}^{2}-\mathbb{C}(\alpha, 3) a_{3}+\left(\mathbb{C}(\alpha, 2) a_{2}\right)^{2}\right] z^{2}+\cdots} \\
=1+b_{1} z+b_{2} z^{2}+\cdots
\end{gathered}
$$

where, $\mathbb{C}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!}, \mathbb{C}^{\prime}(\alpha, n)=\frac{\prod_{k=2}^{n}(k+1-2 \alpha)}{(n-1)!}$,
$b_{n}=\int_{0}^{1} t^{n} d \mu(t)$ for $n=2,3, \ldots$ and $\mu(t)$ is a probability measure on $[0,1]$.
Equating the coefficients of z and z^{2} respectively and simplifying we get,

$$
\begin{equation*}
a_{2}=b_{1} \quad ; \quad a_{3}=\frac{b_{2}+(2-2 \alpha) b_{1}^{2}}{(3-2 \alpha)} \tag{2.3}
\end{equation*}
$$

Now, using (2.2) in (2.3) we get,

$$
\begin{equation*}
a_{2}=B_{1} \omega_{1} \quad ; \quad a_{3}=\frac{B_{1} \omega_{2}+\left(B_{2}+(2-2 \alpha) B_{1}^{2}\right) \omega_{1}^{2}}{(3-2 \alpha)} \tag{2.4}
\end{equation*}
$$

Now, for a function f, a computation shows that

$$
\begin{equation*}
\left[f\left(z^{k}\right)\right] \frac{1}{k}=z+\frac{a_{2}}{k} z^{k+1}+\left(\frac{a_{3}}{k}-\frac{(k-1) a_{2}^{2}}{2 k^{2}}\right) z^{2 k+1}+\cdots \tag{2.5}
\end{equation*}
$$

Now, by using (2.5) in (1.6) and equating the coefficients of z and z^{2} we get,

$$
\begin{equation*}
d_{k+1}=\frac{a_{2}}{k} \quad ; \quad d_{2 k+1}=\frac{a_{3}}{k}-\frac{(k-1) a_{2}^{2}}{2 k^{2}} \tag{2.6}
\end{equation*}
$$

Now, using (2.4) in (2.6) we get,

$$
d_{k+1}=\frac{B_{1} \omega_{1}}{k}
$$

and

$$
d_{2 k+1}=\frac{1}{k}\left[\frac{B_{1} \omega_{2}+\left(B_{2}+(2-2 \alpha) B_{1}^{2}\right) \omega_{1}^{2}}{(3-2 \alpha)}-\frac{B_{1}^{2} \omega_{1}^{2}}{2}+\frac{B_{1}^{2} \omega_{1}^{2}}{2 k}\right]
$$

Now,

$$
\begin{gathered}
d_{2 k+1}-\mu d_{k+1}^{2}=\frac{1}{k}\left[\frac{B_{1} \omega_{2}+\left(B_{2}+(2-2 \alpha) B_{1}^{2}\right) \omega_{1}^{2}}{(3-2 \alpha)}-\frac{B_{1}^{2} \omega_{1}^{2}}{2}+\frac{B_{1}^{2} \omega_{1}^{2}}{2 k}\right] \\
-\mu \frac{B_{1}^{2} \omega_{1}^{2}}{k^{2}}
\end{gathered}
$$

and hence

$$
d_{2 k+1}-\mu d_{k+1}^{2}=\frac{B_{1}}{(3-2 \alpha) k}\left[\omega_{2}-\omega_{1}^{2} t\right]
$$

The first result is established by an application of Lemma (1.7) If $t \leq-1$, then,

$$
\mu \leq \frac{-k}{(3-2 \alpha) B_{1}}+\frac{k B_{2}}{(3-2 \alpha) B_{1}^{2}}+\frac{k(2-2 \alpha)}{(3-2 \alpha)}-\frac{k}{2}+\frac{1}{2} \quad\left(\mu \leq \sigma_{1}\right)
$$

and Lemma (1.7) gives:

$$
\left|d_{2 k+1}-\mu d_{k+1}^{2}\right| \leq-\frac{B_{1}}{(3-2 \alpha) k} t .
$$

For $-1 \leq t \leq 1$, we have $\sigma_{1} \leq \mu \leq \sigma_{2}$, where

$$
\begin{aligned}
& \sigma_{1}=\frac{-k}{(3-2 \alpha) B_{1}}+\frac{k B_{2}}{(3-2 \alpha) B_{1}^{2}}+\frac{k(2-2 \alpha)}{(3-2 \alpha)}-\frac{k}{2}+\frac{1}{2} \\
& \sigma_{2}=\frac{k}{(3-2 \alpha) B_{1}}+\frac{k B_{2}}{(3-2 \alpha) B_{1}^{2}}+\frac{k(2-2 \alpha)}{(3-2 \alpha)}-\frac{k}{2}+\frac{1}{2}
\end{aligned}
$$

and Lemma (1.7) yields:

$$
\left|d_{2 k+1}-\mu d_{k+1}^{2}\right| \leq \frac{B_{1}}{(3-2 \alpha) k} .
$$

For $t \geq 1$, we have,

$$
\mu \geq \frac{k}{(3-2 \alpha) B_{1}}+\frac{k B_{2}}{(3-2 \alpha) B_{1}^{2}}+\frac{k(2-2 \alpha)}{(3-2 \alpha)}-\frac{k}{2}+\frac{1}{2} \quad\left(\mu \geq \sigma_{2}\right),
$$

and it follows from Lemma (1.7) that

$$
\left|d_{2 k+1}-\mu d_{k+1}^{2}\right| \leq \frac{B_{1}}{(3-2 \alpha) k} t .
$$

For the sharpness of the results in the above theorem we have the following:
(1) If $\mu=\sigma_{1}$, then the equality holds in the Lemma (1.7) if and only if $\omega(z)=z \frac{\lambda+z}{1+\lambda z}(0 \leq \lambda \leq 1)$ or one of its rotations.
(2) If $\mu=\sigma_{2}$, then $\omega(z)=-z \frac{\lambda+z}{1+\lambda z}(0 \leq \lambda \leq 1)$ or one of its rotations.
(3) If $\sigma_{1}<\mu<\sigma_{2}$, then $\omega(z)=z^{2}$.

The second result follows by an application of Lemma (1.8)
Remark 2.2. For $k=1$, the $k^{\text {th }}$ root transformation of f reduces to the given function f itself. Thus the estimate given in the above theorem is an extension of the corresponding result for the Fekete-Szegö functional corresponding to universally prestarlike functions of order α with respect to ϕ which was already proved in [8].

Remark 2.3. Taking $\alpha=\frac{1}{2}$ the class $\mathcal{R}_{\alpha}^{u}(\phi)$ becomes the class of starlike univalent functions with respect to ϕ and Theorem (2.1) reduces to Theorem (2.1) of Ali, Lee, V. Ravichandran, S. Supramaniam [1].

Remark 2.4. In view of the Alexander result that f is a convex functions with respect to ϕ if and only if $z f^{\prime}$ is a starlike function with respect to ϕ, the estimate for $\left|d_{2 k+1}-\mu d_{k+1}^{2}\right|$ for a convex function with respect to ϕ can be obtained from the corresponding estimate for starlike function with respect to ϕ.

Remark 2.5. If $\alpha=\frac{1}{2}$ and $k=1$ in Theorem (2.1) we get the FeketeSzegö coefficient functional corresponding to starlike function with respect to [1].

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegö coefficient functional for transforms of analytic function, Bull. Iranian Math. Soc. 35 (2009), no. 2, 119-142.
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent function, Appl. Math. Comput. 187 (2007), no. 1, 35-46.
[3] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain class of analytic function, Proc. Amer. Math. Soc. 20 (1969) 8-12.
[4] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, 1994.
[5] S. Ruscheweyh, Some properties of prestarlike and universally prestarlike functions, J. Anal. 15 (2007) 247-254.
[6] S. Ruscheweyh and L. Salinas, Universally prestarlike functions as convolution multipliers, Math. Z. 263 (2009), no. 3, 607-617.
[7] S. Ruscheweyh, L. Salinas and T. Sugawa, Completely monotone sequences and universally prestarlike functions, Israel J. Math. 171 (2009) 285-304.
[8] T. N. Shanmugam and J. Lourthu Mary, Fekete-Szego inequality for universally prestarlike functions, Fract. Calc. Appl. Anal. 13 (2010), no. 4, 385-394.
[9] T. N. Shanmugam and J. Lourthu Mary, A note on universally prestarlike functions, Stud. Univ. Babe-Bolyai Math. 57 (2012), no. 1, 53-60.
(T. N. Shanmugam) Department of Mathematics, Anna University, Chennai, India

E-mail address: shan@annauniv.edu
(J. Lourthu Mary) Department of Mathematics, Anna University, Chennai, India

E-mail address: lourthu_mary@yahoo.com

[^0]: Article electronically published on December 11, 2014.
 Received: 28 May 2012, Accepted: 14 October 2013.

 * Corresponding author.

