ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 6, pp. 1403-1411

Title:

Fekete-Szegö coefficient functional for transforms of universally prestarlike functions

Author(s):

T. N. Shanmugam and J. Lourthu Mary

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 40 (2014), No. 6, pp. 1403–1411 Online ISSN: 1735-8515

FEKETE-SZEGÖ COEFFICIENT FUNCTIONAL FOR TRANSFORMS OF UNIVERSALLY PRESTARLIKE FUNCTIONS

T. N. SHANMUGAM AND J. LOURTHU MARY*

(Communicated by Javad Mashreghi)

ABSTRACT. Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda = \mathbb{C} \setminus [1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathbb{C}). In this paper, we obtain the Fekete-Szegö coefficient functional for transforms of such functions.

Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szegö functional.

MSC(2010): Primary: 30C45.

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω . For a domain Ω containing the origin, $H_0(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with f(0) = 1. We also use the notation $H_1(\Omega) = \{zf : f \in H_0(\Omega)\}$. In the special case when Ω is the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, we use the abbreviations H, H_0 and H_1 respectively for $H(\Omega), H_0(\Omega)$ and $H_1(\Omega)$. A function $f \in H_1$ is called starlike of order α with $(0 \le \alpha < 1)$ if f satisfies the inequality

O2014 Iranian Mathematical Society

Article electronically published on December 11, 2014.

Received: 28 May 2012, Accepted: 14 October 2013.

^{*}Corresponding author.

¹⁴⁰³

(1.1)
$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \Delta),$$

the set of all such functions is denoted by S_{α} . The convolution or Hadamard Product of two functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined as

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

A function $f \in H_1$ is called prestarlike of order α if

(1.2)
$$\frac{z}{(1-z)^{2-2\alpha}} * f(z) \in S_{\alpha}.$$

The set of all such functions is denoted by \mathcal{R}_{α} . The notion of prestarlike functions has been extended from the unit disk to other disks and half planes containing the origin by Ruscheweyh and Salinas [6]. Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathbb{C} \setminus \{0\}$ and $\rho \in [0, 1]$ such that

(1.3)
$$\Omega_{\gamma,\rho} = \{ w_{\gamma,\rho}(z) : z \in \Delta \}$$

where,
$$w_{\gamma,\rho}(z) = \frac{\gamma z}{1 - \rho z}$$
. Note that $1 \notin \Omega_{\gamma,\rho}$ if and only if $|\gamma + \rho| \le 1$.

Definition 1.1. [5, 6, 7] Let $\alpha \leq 1$, and $\Omega = \Omega_{\gamma,\rho}$ for some admissible pair (γ, ρ) . A function $f \in H_1(\Omega_{\gamma,\rho})$ is called prestarlike of order α in $\Omega_{\gamma,\rho}$ if

(1.4)
$$f_{\gamma,\rho}(z) = \frac{1}{\gamma} f(w_{\gamma,\rho}(z)) \in \mathcal{R}_{\alpha}$$

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.

Let Λ be the slit domain $\mathbb{C} \setminus [1, \infty)$ (the slit being along the positive real axis).

Definition 1.2. [5, 6, 7] Let $\alpha \leq 1$. A function $f \in H_1(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma,\rho}$ with $|\gamma + \rho| \leq 1$. The set of all such functions is denoted by $\mathcal{R}^{\alpha}_{\alpha}$. For a univalent function f(z) of the form

(1.5)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

the k^{th} root transform is defined as

(1.6)
$$F(z) = [f(z^k)]^{\frac{1}{k}} := z + \sum_{n=1}^{\infty} d_{kn+1} z^{kn+1}$$

 $k \in N = \{1, 2, \ldots\}.$

Definition 1.3. [7, 9] Let $\phi(z)$ be an analytic function with positive real part on Δ , which satisfies $\phi(0) = 1$, $\phi'(0) > 0$ and which maps the unit disc Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $\mathcal{R}^{u}_{\alpha}(\phi)$ consists of all analytic functions $f \in H_1(\Lambda)$ satisfying

(1.7)
$$\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} \prec \phi(z).$$

where \prec denotes the subordination, and where $(D^{\beta}f)(z) = \frac{z}{(1-z)^{\beta}} \star f$, for $\beta \geq 0$. In particular, for $\beta = n \in \mathbb{N}$, we have $D^{n+1}f = \frac{z}{n!}(z^{n-1}f)^{(n)}$.

We let $\mathcal{R}^{u}_{\alpha}(A, B)$ denote the class $\mathcal{R}^{u}_{\alpha}(\phi)$ where $\phi(z) = \frac{1+Az}{1+Bz}$ $(-1 \leq B < A \leq 1)$. For suitable choices of A,B, α the class $\mathcal{R}^{u}_{\alpha}(A, B)$ reduces to several well known classes of functions. For instance, $\mathcal{R}^{u}_{\frac{1}{2}}(1, -1)$ is the class $S^{*} = S_{0}$ of starlike univalent functions.

In this section, sharp bounds for the Fekete-Szegö coefficient functional $|d_{2k+1} - \mu d_{k+1}^2|$ associated with the k^{th} root transform of the functions belonging to the class $\mathcal{R}^u_{\alpha}(\phi)$ are found. In particular cases, these bounds reduce to results of [1, 8].

Remark 1.4. [7] Let
$$F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1-tz}$$
 where $a_k = \int_0^1 t^k d\mu(t)$

and $\mu(t)$ is a probability measure on [0,1]. Let T denote the set of all such functions F. They are analytic in the slit domain Λ .

To prove our result we need the following theorems.

Theorem 1.5. [7] Let $0 \le \alpha \le 1$ and $f \in H_1(\Lambda)$. Then $f \in \mathcal{R}^u_{\alpha}$ if and only if

(1.8)
$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} \in T.$$

This admits an explicit representation of the functions in \mathcal{R}^{u}_{α} . If $f \in H_{0}$ has all its Taylor coefficients at the origin different from zero we write $f^{(-1)}$ for the (possibly formal but) unique solution of $f * f^{(-1)} = \frac{1}{1-z}$.

Theorem 1.6. [8] Let f be a universally prestarlike function of order $\alpha \leq 1$, then the function f(z) has a representation of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

for n = 2, 3, ... where,

(1.9)
$$a_n = \left\{ \frac{\sum_{k=1}^{n-1} \mathbb{C}(\alpha, k) a_k b_{n-k}}{\mathbb{C}'(\alpha, n) - \mathbb{C}(\alpha, n)} \right\}$$

$$\begin{split} \mathbb{C}(\alpha,n) &= \frac{\prod\limits_{k=2}^{n} (k-2\alpha)}{(n-1)!}, \ \mathbb{C}(\alpha,k) = \frac{\prod\limits_{m=2}^{k} (m-2\alpha)}{(k-1)!}, \ \mathbb{C}(\alpha,1)a_1 = 1\\ &\prod\limits_{m=2}^{n} (k+1-2\alpha)\\ \mathbb{C}'(\alpha,n) &= \frac{\prod\limits_{k=2}^{n} (k+1-2\alpha)}{(n-1)!}, \ b_n = \int_0^1 t^n d\mu(t)\\ &\text{and } \mu(t) \ is \ a \ probability \ measure \ on \ [0,1]. \end{split}$$

Let Ω_1 be the class of analytic functions ω , normalized by $\omega_1(0) = 0$, satisfying the condition $|\omega_1(z)| < 1$. The following two lemmas regarding the coefficients of functions in Ω_1 are needed to prove our main results. The following lemma is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda [4].

Lemma 1.7. [2] If $\omega \in \Omega_1$ and

(1.10)
$$\omega(z) = \omega_1 z + \omega_2 z^2 + \cdots, (z \in \Delta)$$

then,

$$|\omega_2 - t\omega_1^2| \le \begin{cases} -t, & t \le -1\\ 1, & -1 \le t \le 1\\ t, & t \ge 1. \end{cases}$$

For t < -1, or t > 1, the equality holds if and only if $\omega(z) = z$ or one of its rotations. For -1 < t < 1, the equality holds if and only if $\omega(z) = z^2$ or one of its rotations. Equality holds for t = -1 if and only if $\omega(z) = z \frac{\lambda + z}{1 + \lambda z} (0 \le \lambda \le 1)$ or one of its rotations, while for t = 1, equality holds if and only if $\omega(z) = -z \frac{\lambda + z}{1 + \lambda z} (0 \le \lambda \le 1)$ or one of its rotations.

Lemma 1.8. [3] If $\omega \in \Omega_1$, then $|\omega_2 - t\omega_1^2| \leq max\{1, |t|\}$, for any complex number t. The result is sharp for the function $\omega(z) = z^2$ or z.

We now estimate the sharp bound for the coefficient functional $|d_{2k+1} - \mu d_{k+1}^2|$ corresponding to the k^{th} root transformation of universally prestarlike functions of order α with respect to ϕ .

2. Coefficient bounds for the k^{th} root transformation

Theorem 2.1. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + \cdots$, and

$$\sigma_1 = \frac{-k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2}$$
$$\sigma_2 = \frac{k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2}.$$
$$t = \frac{-B_2}{B_1} - (2-2\alpha)B_1 + (3-2\alpha)B_1 \left[\frac{1}{2} - \frac{1}{2k} + \frac{\mu}{k}\right]$$

If $f \in \mathcal{R}^{u}_{\alpha}(\phi)$ and F is the k^{th} root transformation of f given by (1.5), then,

$$|d_{2k+1} - \mu d_{k+1}^2| \le \begin{cases} -\frac{B_1}{(3-2\alpha)k}t, & \mu \le \sigma_1\\ \frac{B_1}{(3-2\alpha)k}, & \sigma_1 \le \mu \le \sigma_2\\ \frac{B_1}{(3-2\alpha)k}t, & \mu \ge \sigma_2, \end{cases}$$

and when μ is a complex number

$$\left| d_{2k+1} - \mu d_{k+1}^2 \right| \le \frac{B_1}{(3-2\alpha)k} \max\left\{ 1, |t| \right\}$$

Proof. If $f \in \mathcal{R}^{u}_{\alpha}(\phi)$, then there is an analytic function $\omega \in \Omega_{1}$ of the required form such that

(2.1)
$$\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = \phi(\omega(z)).$$

We know that, $\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n$ where $b_n = \int_0^1 t^n d\mu(t)$ and $\mu(t)$ is a probability measure on [0, 1], and

$$\phi(\omega(z)) = 1 + B_1\omega_1 z + (B_1\omega_2 + B_2\omega_1^2)z^2 + \cdots$$

Therefore,

$$1 + b_1 z + b_2 z^2 + \dots = 1 + B_1 \omega_1 z + (B_1 \omega_2 + B_2 \omega_1^2) z^2 + \dots$$

Now, equating the coefficients of z and z^2 we get

(2.2)
$$b_1 = B_1 \omega_1, \ b_2 = B_1 \omega_2 + B_2 \omega_1^2$$

Now,
$$\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = 1 + [\mathbb{C}'(\alpha, 2)a_2 - \mathbb{C}(\alpha, 2)a_2]z + [\mathbb{C}'(\alpha, 3)a_3 - \mathbb{C}(\alpha, 2)\mathbb{C}'(\alpha, 2)a_2^2 - \mathbb{C}(\alpha, 3)a_3 + (\mathbb{C}(\alpha, 2)a_2)^2]z^2 + \cdots$$

= $1 + b_1z + b_2z^2 + \cdots$

where, $\mathbb{C}(\alpha, n) = \frac{\prod_{k=2}^{n} (k-2\alpha)}{(n-1)!}$, $\mathbb{C}'(\alpha, n) = \frac{\prod_{k=2}^{n} (k+1-2\alpha)}{(n-1)!}$, $b_n = \int_0^1 t^n d\mu(t)$ for $n = 2, 3, \dots$ and $\mu(t)$ is a probability measure on [0, 1].

Equating the coefficients of z and z^2 respectively and simplifying we get,

(2.3)
$$a_2 = b_1$$
; $a_3 = \frac{b_2 + (2 - 2\alpha)b_1^2}{(3 - 2\alpha)}$

Now, using (2.2) in (2.3) we get,

(2.4)
$$a_2 = B_1 \omega_1$$
; $a_3 = \frac{B_1 \omega_2 + (B_2 + (2 - 2\alpha)B_1^2)\omega_1^2}{(3 - 2\alpha)}$

Now, for a function f, a computation shows that

(2.5)
$$[f(z^k)]^{\frac{1}{k}} = z + \frac{a_2}{k} z^{k+1} + \left(\frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2}\right) z^{2k+1} + \cdots$$

Now , by using (2.5) in (1.6) and equating the coefficients of z and z^2 we get,

(2.6)
$$d_{k+1} = \frac{a_2}{k}$$
; $d_{2k+1} = \frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2}$

Now, using (2.4) in (2.6) we get,

$$d_{k+1} = \frac{B_1\omega_1}{k}$$

and

$$d_{2k+1} = \frac{1}{k} \left[\frac{B_1 \omega_2 + (B_2 + (2 - 2\alpha)B_1^2)\omega_1^2}{(3 - 2\alpha)} - \frac{B_1^2 \omega_1^2}{2} + \frac{B_1^2 \omega_1^2}{2k} \right]$$

Now,

$$d_{2k+1} - \mu d_{k+1}^2 = \frac{1}{k} \left[\frac{B_1 \omega_2 + (B_2 + (2 - 2\alpha)B_1^2)\omega_1^2}{(3 - 2\alpha)} - \frac{B_1^2 \omega_1^2}{2} + \frac{B_1^2 \omega_1^2}{2k} \right] -\mu \frac{B_1^2 \omega_1^2}{k^2}$$

and hence

$$d_{2k+1} - \mu d_{k+1}^2 = \frac{B_1}{(3-2\alpha)k} [\omega_2 - \omega_1^2 t]$$

The first result is established by an application of Lemma (1.7) If $t \leq -1$, then,

$$\mu \leq \frac{-k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2} \qquad (\mu \leq \sigma_1),$$

and Lemma (1.7) gives:

$$|d_{2k+1} - \mu d_{k+1}^2| \le -\frac{B_1}{(3-2\alpha)k}t$$

For $-1 \le t \le 1$, we have $\sigma_1 \le \mu \le \sigma_2$, where

$$\sigma_1 = \frac{-k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2},$$

$$\sigma_2 = \frac{k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2}.$$

and Lemma (1.7) yields:

$$|d_{2k+1} - \mu d_{k+1}^2| \le \frac{B_1}{(3-2\alpha)k}.$$

For $t \geq 1$, we have,

$$\mu \ge \frac{k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2} \qquad (\mu \ge \sigma_2),$$

and it follows from Lemma (1.7) that

$$|d_{2k+1} - \mu d_{k+1}^2| \le \frac{B_1}{(3-2\alpha)k}t$$

For the sharpness of the results in the above theorem we have the following:

- (1) If $\mu = \sigma_1$, then the equality holds in the Lemma (1.7) if and only if
 - $\omega(z) = z \frac{\lambda + z}{1 + \lambda z} (0 \le \lambda \le 1)$ or one of its rotations.
- (2) If $\mu = \sigma_2$, then $\omega(z) = -z \frac{\lambda + z}{1 + \lambda z} (0 \le \lambda \le 1)$ or one of its rotations.
- (3) If $\sigma_1 < \mu < \sigma_2$, then $\omega(z) = z^2$.

The second result follows by an application of Lemma (1.8)

Remark 2.2. For k = 1, the k^{th} root transformation of f reduces to the given function f itself. Thus the estimate given in the above theorem is an extension of the corresponding result for the Fekete-Szegö functional corresponding to universally prestarlike functions of order α with respect to ϕ which was already proved in [8].

Remark 2.3. Taking $\alpha = \frac{1}{2}$ the class $\mathcal{R}^{u}_{\alpha}(\phi)$ becomes the class of starlike univalent functions with respect to ϕ and Theorem (2.1) reduces to Theorem (2.1) of Ali, Lee, V. Ravichandran, S. Supramaniam [1].

Remark 2.4. In view of the Alexander result that f is a convex functions with respect to ϕ if and only if zf' is a starlike function with respect to ϕ , the estimate for $|d_{2k+1} - \mu d_{k+1}^2|$ for a convex function with respect to ϕ can be obtained from the corresponding estimate for starlike function with respect to ϕ .

Remark 2.5. If $\alpha = \frac{1}{2}$ and k = 1 in Theorem (2.1) we get the Fekete-Szegö coefficient functional corresponding to starlike function with respect to [1].

References

- R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegö coefficient functional for transforms of analytic function, *Bull. Iranian Math. Soc.* 35 (2009), no. 2, 119–142.
- [2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent function, Appl. Math. Comput. 187 (2007), no. 1, 35–46.
- [3] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain class of analytic function, *Proc. Amer. Math. Soc.* 20 (1969) 8–12.
- [4] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, 1994.
- [5] S. Ruscheweyh, Some properties of prestarlike and universally prestarlike functions, J. Anal. 15 (2007) 247–254.
- [6] S. Ruscheweyh and L. Salinas, Universally prestarlike functions as convolution multipliers, *Math. Z.* 263 (2009), no. 3, 607–617.
- [7] S. Ruscheweyh, L. Salinas and T. Sugawa, Completely monotone sequences and universally prestarlike functions, *Israel J. Math.* **171** (2009) 285–304.
- [8] T. N. Shanmugam and J. Lourthu Mary, Fekete-Szego inequality for universally prestarlike functions, *Fract. Calc. Appl. Anal.* 13 (2010), no. 4, 385–394.
- [9] T. N. Shanmugam and J. Lourthu Mary, A note on universally prestarlike functions, Stud. Univ. Babe-Bolyai Math. 57 (2012), no. 1, 53–60.

(T. N. Shanmugam) DEPARTMENT OF MATHEMATICS, ANNA UNIVERSITY, CHENNAI, INDIA

E-mail address: shan@annauniv.edu

(J. Lourthu Mary) DEPARTMENT OF MATHEMATICS, ANNA UNIVERSITY, CHENNAI, INDIA

E-mail address: lourthu_mary@yahoo.com