Title:
Fekete-Szegö coefficient functional for transforms of universally prestarlike functions

Author(s):
T. N. Shanmugam and J. Lourthu Mary
FEKETE-SZEGÖ COEFFICIENT FUNCTIONAL FOR TRANSFORMS OF UNIVERSALLY PRESTARLIKE FUNCTIONS

T. N. SHANMUGAM AND J. LOURTHU MARY*

(Communicated by Javad Mashreghi)

Abstract. Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda = \mathbb{C} \setminus [1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathbb{C}). In this paper, we obtain the Fekete-Szegö coefficient functional for transforms of such functions.

Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szegö functional.

MSC(2010): Primary: 30C45.

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω. For a domain Ω containing the origin, $H_0(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with $f(0) = 1$. We also use the notation $H_1(\Omega) = \{zf : f \in H_0(\Omega)\}$. In the special case when Ω is the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, we use the abbreviations H, H_0 and H_1 respectively for $H(\Omega), H_0(\Omega)$ and $H_1(\Omega)$. A function $f \in H_1$ is called starlike of order α with $(0 \leq \alpha < 1)$ if f satisfies the inequality

*Corresponding author.
Fekete-Szegő coefficient functional

\((1.1) \quad \Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in \Delta), \)

the set of all such functions is denoted by \(S_\alpha \). The convolution or Hadamard Product of two functions \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \) is defined as

\[(f \ast g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n. \]

A function \(f \in H_1 \) is called prestarlike of order \(\alpha \) if

\((1.2) \quad \frac{z}{(1-z)^2 - 2\alpha} \ast f(z) \in S_\alpha. \)

The set of all such functions is denoted by \(\mathcal{R}_\alpha \). The notion of prestarlike functions has been extended from the unit disk to other disks and half planes containing the origin by Ruscheweyh and Salinas [6]. Let \(\Omega \) be one such disk or half plane. Then there are two unique parameters \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\rho \in [0, 1] \) such that

\((1.3) \quad \Omega_{\gamma, \rho} = \{w_{\gamma, \rho}(z) : z \in \Delta\} \)

where, \(w_{\gamma, \rho}(z) = \frac{\gamma z}{1 - \rho z} \). Note that \(1 \notin \Omega_{\gamma, \rho} \) if and only if \(|\gamma + \rho| \leq 1 \).

Definition 1.1. [5, 6, 7] Let \(\alpha \leq 1 \), and \(\Omega = \Omega_{\gamma, \rho} \) for some admissible pair \((\gamma, \rho)\). A function \(f \in H_1(\Omega_{\gamma, \rho}) \) is called prestarlike of order \(\alpha \) in \(\Omega_{\gamma, \rho} \) if

\((1.4) \quad f_{\gamma, \rho}(z) = \frac{1}{\gamma} f(w_{\gamma, \rho}(z)) \in \mathcal{R}_\alpha. \)

The set of all such functions \(f \) is denoted by \(\mathcal{R}_\alpha(\Omega) \).

Let \(\Lambda \) be the slit domain \(\mathbb{C} \setminus [1, \infty) \) (the slit being along the positive real axis).

Definition 1.2. [5, 6, 7] Let \(\alpha \leq 1 \). A function \(f \in H_1(\Lambda) \) is called universally prestarlike of order \(\alpha \) if and only if \(f \) is prestarlike of order \(\alpha \) in all sets \(\Omega_{\gamma, \rho} \) with \(|\gamma + \rho| \leq 1 \). The set of all such functions is denoted by \(\mathcal{R}^u_\alpha \).
For a univalent function \(f(z) \) of the form
\[
(1.5) \quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]
the \(k^{th} \) root transform is defined as
\[
(1.6) \quad F(z) = \left[f(z^k) \right]^{\frac{1}{k}} := z + \sum_{n=1}^{\infty} d_{kn+1} z^{kn+1}
\]
k \(\in \mathbb{N} = \{1, 2, \ldots\} \).

Definition 1.3. \([7, 9]\) Let \(\phi(z) \) be an analytic function with positive real part on \(\Delta \), which satisfies \(\phi(0) = 1 \), \(\phi'(0) > 0 \) and which maps the unit disc \(\Delta \) onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class \(\mathcal{R}_u^u(\phi) \) consists of all analytic functions \(f \in H_1(\Lambda) \) satisfying
\[
(1.7) \quad \frac{D^{\beta} f(z)}{D^{2\alpha} f(z)} < \phi(z).
\]
where \(\prec \) denotes the subordination, and where \((D^\beta f)(z) = \frac{z}{(1-z)^\beta} \ast f \), for \(\beta \geq 0 \). In particular, for \(\beta = n \in \mathbb{N} \), we have \(D^{n+1} f = \frac{z}{n} (z^{n-1} f)' \).

We let \(\mathcal{R}_u^u(A, B) \) denote the class \(\mathcal{R}_u^u(\phi) \) where \(\phi(z) = \frac{1 + Az}{1 + Bz} \) \((-1 \leq B < A \leq 1) \). For suitable choices of \(A, B, \alpha \) the class \(\mathcal{R}_u^u(A, B) \) reduces to several well known classes of functions. For instance, \(\mathcal{R}_u^u(1, -1) \) is the class \(S^* = S_0 \) of starlike univalent functions.

In this section, sharp bounds for the Fekete-Szegö coefficient functional \(|d_{2k+1} - \mu d_{k+1}^2| \) associated with the \(k^{th} \) root transform of the functions belonging to the class \(\mathcal{R}_u^u(\phi) \) are found. In particular cases, these bounds reduce to results of \([1, 8]\).

Remark 1.4. \([7]\) Let \(F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1-tz} \) where \(a_k = \int_0^1 t^k d\mu(t) \), and \(\mu(t) \) is a probability measure on \([0, 1]\). Let \(T \) denote the set of all such functions \(F \). They are analytic in the slit domain \(\Lambda \).

To prove our result we need the following theorems.
Theorem 1.5. [7] Let $0 \leq \alpha \leq 1$ and $f \in H_1(\Lambda)$. Then $f \in \mathcal{R}_\alpha^u$ if and only if

\[
D^{3-2\alpha} f
\]

satisfies

\[
D^{2-2\alpha} f \in T.
\]

This admits an explicit representation of the functions in \mathcal{R}_α^u. If $f \in H_0$ has all its Taylor coefficients at the origin different from zero we write $f^{(-1)}$ for the (possibly formal but) unique solution of $f \ast f^{(-1)} = \frac{1}{1-z}$.

Theorem 1.6. [8] Let f be a universally prestarlike function of order $\alpha \leq 1$, then the function $f(z)$ has a representation of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

for $n = 2, 3, \ldots$ where,

\[
a_n = \left\{ \sum_{k=1}^{n-1} \frac{C(\alpha, k) a_k b_{n-k}}{C'(\alpha, n) - C(\alpha, n)} \right\}
\]

\[
C(\alpha, n) = \frac{\prod_{k=2}^{n} (k-2\alpha)}{(n-1)!}, \quad C(\alpha, k) = \frac{\prod_{m=2}^{k} (m-2\alpha)}{(k-1)!}, \quad C(\alpha, 1)a_1 = 1
\]

\[
C'(\alpha, n) = \frac{\prod_{k=2}^{n} (k+1-2\alpha)}{(n-1)!}, \quad b_n = \int_0^1 t^n d\mu(t)
\]

and $\mu(t)$ is a probability measure on $[0, 1]$.

Let Ω_1 be the class of analytic functions ω, normalized by $\omega_1(0) = 0$, satisfying the condition $|\omega_1(z)| < 1$. The following two lemmas regarding the coefficients of functions in Ω_1 are needed to prove our main results. The following lemma is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda [4].

Lemma 1.7. [2] If $\omega \in \Omega_1$ and

\[
\omega(z) = \omega_1 z + \omega_2 z^2 + \cdots, (z \in \Delta)
\]
then,

$$|\omega_2 - t\omega_1^2| \leq \begin{cases} -t, & t \leq -1 \\ 1, & -1 \leq t \leq 1 \\ t, & t \geq 1. \end{cases}$$

For $t < -1$, or $t > 1$, the equality holds if and only if $\omega(z) = z$ or one of its rotations. For $-1 < t < 1$, the equality holds if and only if $\omega(z) = z^2$ or one of its rotations. Equality holds for $t = -1$ if and only if $\omega(z) = z\frac{\lambda + z}{1 + \lambda z}$ ($0 \leq \lambda \leq 1$) or one of its rotations, while for $t = 1$, equality holds if and only if $\omega(z) = -z\frac{\lambda + z}{1 + \lambda z}$ ($0 \leq \lambda \leq 1$) or one of its rotations.

Lemma 1.8. [3] If $\omega \in \Omega_1$, then $|\omega_2 - t\omega_1^2| \leq \max\{1, |t|\}$, for any complex number t. The result is sharp for the function $\omega(z) = z^2$ or z.

We now estimate the sharp bound for the coefficient functional $|d_{2k+1} - \mu d_{k+1}^2|$ corresponding to the k^{th} root transformation of universally prestarlike functions of order α with respect to ϕ.

2. Coefficient bounds for the k^{th} root transformation

Theorem 2.1. Let $\phi(z) = 1 + B_1z + B_2z^2 + \cdots$, and

$$\sigma_1 = \frac{-k}{(3 - 2\alpha)B_1} + \frac{kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - \frac{k}{2} + \frac{1}{2},$$

$$\sigma_2 = \frac{k}{(3 - 2\alpha)B_1} + \frac{kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - \frac{k}{2} + \frac{1}{2},$$

$$t = \frac{-B_2}{B_1} - (2 - 2\alpha)B_1 + (3 - 2\alpha)B_1 \left[\frac{1}{2} - \frac{1}{2k} + \frac{\mu}{k}\right].$$

If $f \in \mathcal{R}_\alpha^u(\phi)$ and F is the k^{th} root transformation of f given by (1.5), then,

$$|d_{2k+1} - \mu d_{k+1}^2| \leq \begin{cases} -\frac{B_1}{(3 - 2\alpha)k}t, & \mu \leq \sigma_1 \\ \frac{B_1}{(3 - 2\alpha)k}, & \sigma_1 \leq \mu \leq \sigma_2 \\ \frac{B_1}{(3 - 2\alpha)k}, & \mu \geq \sigma_2, \end{cases}$$
and when μ is a complex number
\[|d_{2k+1} - \mu d_{k+1}^2| \leq \frac{B_1}{(3-2\alpha)^k} \max \{1, |t|\}. \]

Proof. If $f \in \mathcal{R}_n^\omega(\phi)$, then there is an analytic function $\omega \in \Omega_1$ of the required form such that
\[\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = \phi(\omega(z)). \]

We know that, \[\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n \] where \(b_n = \int_0^1 t^n d\mu(t) \) and $\mu(t)$ is a probability measure on $[0,1]$, and
\[\phi(\omega(z)) = 1 + B_1 \omega_1 z + (B_1 \omega_2 + B_2 \omega_1^2) z^2 + \cdots. \]

Therefore,
\[1 + b_1 z + b_2 z^2 + \cdots = 1 + B_1 \omega_1 z + (B_1 \omega_2 + B_2 \omega_1^2) z^2 + \cdots. \]

Now, equating the coefficients of z and z^2 we get
\[b_1 = B_1 \omega_1, \quad b_2 = B_1 \omega_2 + B_2 \omega_1^2 \]

Now,
\[\frac{D^{3-2\alpha}f(z)}{D^{2-2\alpha}f(z)} = 1 + \left[\mathcal{C}'(\alpha, 2)a_2 - \mathcal{C}(\alpha, 2)a_2 \right] z + \]
\[\left[\mathcal{C}'(\alpha, 3)a_3 - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_2^2 - \mathcal{C}(\alpha, 3)a_3 + (\mathcal{C}(\alpha, 2)a_2)^2 \right] z^2 + \cdots \]
\[= 1 + b_1 z + b_2 z^2 + \cdots \]

where, \(\mathcal{C}(\alpha, n) = \frac{\prod_{k=2}^{n} (k-2\alpha)}{(n-1)!}, \quad \mathcal{C}'(\alpha, n) = \frac{\prod_{k=2}^{n} (k+1-2\alpha)}{(n-1)!}, \)

\[b_n = \int_0^1 t^n d\mu(t) \] for $n = 2, 3, \ldots$ and $\mu(t)$ is a probability measure on $[0,1]$.

Equating the coefficients of z and z^2 respectively and simplifying we get,
\[a_2 = b_1; \quad a_3 = \frac{b_2 + (2 - 2\alpha)b_1^2}{(3 - 2\alpha)} \]

Now, using (2.2) in (2.3) we get,
\[a_2 = B_1 \omega_1; \quad a_3 = \frac{B_1 \omega_2 + (B_2 + (2 - 2\alpha)B_1^2) \omega_1^2}{(3 - 2\alpha)} \]
Now, for a function f, a computation shows that

$$ (2.5) \quad [f(z^k)]^k = z + \frac{a_2}{k} z^{k+1} + \left(\frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2} \right) z^{2k+1} + \ldots $$

Now, by using (2.5) in (1.6) and equating the coefficients of z and z^2 we get,

$$ (2.6) \quad d_{k+1} = \frac{a_2}{k} \quad ; \quad d_{2k+1} = \frac{a_3}{k} - \frac{(k-1)a_2^2}{2k^2} $$

Now, using (2.4) in (2.6) we get,

$$ d_{k+1} = \frac{B_1 \omega_1}{k} $$

and

$$ d_{2k+1} = \frac{1}{k} \left[\frac{B_1 \omega_2 + (B_2 + (2 - 2\alpha)B_1^2) \omega_1^2}{(3 - 2\alpha)} - \frac{B_1^2 \omega_1^2}{2} + \frac{B_1^2 \omega_1^2}{2k} \right] $$

Now,

$$ d_{2k+1} - \mu d_{k+1}^2 = \frac{1}{k} \left[\frac{B_1 \omega_2 + (B_2 + (2 - 2\alpha)B_1^2) \omega_1^2}{(3 - 2\alpha)} - \frac{B_1^2 \omega_1^2}{2} + \frac{B_1^2 \omega_1^2}{2k} \right] $$

and hence

$$ d_{2k+1} - \mu d_{k+1}^2 = \frac{B_1}{(3 - 2\alpha)k} [\omega_2 - \omega_1^2 t] $$

The first result is established by an application of Lemma (1.7)

If $t \leq -1$, then,

$$ \mu \leq \frac{-k}{(3 - 2\alpha)B_1} + \frac{kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - \frac{k}{2} + \frac{1}{2} \quad (\mu \leq \sigma_1), $$

and Lemma (1.7) gives:

$$ |d_{2k+1} - \mu d_{k+1}^2| \leq -\frac{B_1}{(3 - 2\alpha)k} t. $$

For $-1 \leq t \leq 1$, we have $\sigma_1 \leq \mu \leq \sigma_2$, where

$$ \sigma_1 = \frac{-k}{(3 - 2\alpha)B_1} + \frac{kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - \frac{k}{2} + \frac{1}{2}, $$

$$ \sigma_2 = \frac{k}{(3 - 2\alpha)B_1} + \frac{kB_2}{(3 - 2\alpha)B_1^2} + \frac{k(2 - 2\alpha)}{(3 - 2\alpha)} - \frac{k}{2} + \frac{1}{2}. $$
and Lemma (1.7) yields:

$$|d_{2k+1} - \mu d_{k+1}^2| \leq \frac{B_1}{(3-2\alpha)^{2k}}.$$

For $t \geq 1$, we have,

$$\mu \geq \frac{k}{(3-2\alpha)B_1} + \frac{kB_2}{(3-2\alpha)B_1^2} + \frac{k(2-2\alpha)}{(3-2\alpha)} - \frac{k}{2} + \frac{1}{2} \quad (\mu \geq \sigma_2),$$

and it follows from Lemma (1.7) that

$$|d_{2k+1} - \mu d_{k+1}^2| \leq \frac{B_1}{(3-2\alpha)^{2k}}t.$$

For the sharpness of the results in the above theorem we have the following:

1. If $\mu = \sigma_1$, then the equality holds in the Lemma (1.7) if and only if
 $$\omega(z) = z\frac{\lambda + z}{1 + \lambda z} \quad (0 \leq \lambda \leq 1) \text{ or one of its rotations.}$$

2. If $\mu = \sigma_2$, then
 $$\omega(z) = -z\frac{\lambda + z}{1 + \lambda z} \quad (0 \leq \lambda \leq 1) \text{ or one of its rotations.}$$

3. If $\sigma_1 < \mu < \sigma_2$, then
 $$\omega(z) = z^2.$$

The second result follows by an application of an estimate of Lemma (1.8) \hfill \square

Remark 2.2. For $k = 1$, the k^{th} root transformation of f reduces to the given function f itself. Thus the estimate given in the above theorem is an extension of the corresponding result for the Fekete-Szegö functional corresponding to universally prestarlike functions of order α with respect to ϕ which was already proved in [8].

Remark 2.3. Taking $\alpha = \frac{1}{2}$ the class $R_{\alpha}^u(\phi)$ becomes the class of starlike univalent functions with respect to ϕ and Theorem (2.1) reduces to Theorem (2.1) of Ali, Lee, V. Ravichandran, S. Supramaniam [1].

Remark 2.4. In view of the Alexander result that f is a convex function with respect to ϕ if and only if zf' is a starlike function with respect to ϕ, the estimate for $|d_{2k+1} - \mu d_{k+1}^2|$ for a convex function with respect to ϕ can be obtained from the corresponding estimate for starlike function with respect to ϕ.
Remark 2.5. If $\alpha = \frac{1}{2}$ and $k = 1$ in Theorem (2.1) we get the Fekete-Szegő coefficient functional corresponding to starlike function with respect to [1].

References

(T. N. Shanmugam) DEPARTMENT OF MATHEMATICS, ANNA UNIVERSITY, CHENNAI, INDIA
E-mail address: shan@annauniv.edu

(J. Lourthu Mary) DEPARTMENT OF MATHEMATICS, ANNA UNIVERSITY, CHENNAI, INDIA
E-mail address: lourthu_mary@yahoo.com