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Abstract. Let G be a finite group which is not a cyclic p-group, p
a prime number. We define an undirected simple graph ∆(G) whose
vertices are the proper subgroups of G, which are not contained in
the Frattini subgroup of G and two vertices H and K are joined by
an edge if and only if G = ⟨H,K⟩. In this paper we classify finite
groups with planar graph. Our result shows that only few groups
have planar graphs.
Keywords: Graph on group, plannar graph, finite group.
MSC(2010): Primary: 20D60; Secondary: 05C25.

1. Introduction

The study of algebraic structures, using the properties of graphs, be-
comes an exciting research topic leading to many fascinating results and
questions. There are many papers on assigning a graph to subgroups of
a group or submodules of a module or ideals of a ring and investigation
of algebraic properties of groups or rings using the associated graph.

In 1964 Bosák [8] defined the intersection graph of semigroups. In
1969 Csákány and Pollák [9] studied the intersection graph of subgroups
of a finite group. Some other works on the graphs associated to sub-
groups of a group or submodules of a module or ideals of a ring can be
found in [2, 5, 10, 12].
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Planarity of a graph related to a finite group 1414

Some authors studied the planarity of subgroup lattices of a finite
group with two approaches: Platt and Schmidt [14, 17], visualized the
Hasse diagram of subgroups of a finite group as a graph. Platt [14]
showed that a finite lattice is planar if and only if the (undirected)
graph obtained from its (Hasse) diagram by adding an edge between its
least and greatest elements is a planar graph. Schmidt [17] classified all
finite groups with planar subgroup lattices.

A similar work on the lattice of a finite group G was done by Bohanon
and Reid [7]. They defined the subgroup graph of a group G, which is a
graph whose vertices are the subgroups of the group G and two vertices
H1 and H2 are joined by an edge if and only if H1 is a maximal subgroup
of H2. They called a finite group with planar subgroup graph, a planar
group and classified all finite planar groups.

For any finite group G different from a cyclic group of prime power
order, the authors [1] defined an undirected simple graph ∆(G) whose
vertices are the proper subgroups of G which are not contained in the
Frattini subgroup of G and two vertices H1 and H2 are joined by an
edge if ⟨H1,H2⟩ = G. In [1] the authors studied elementary properties
of ∆(G). They showed that ∆(G) is connected and determined its clique
and chromatic number and obtain bounds for its diameter and girth. In
this paper we continue this study and classify finite groups with planar
graphs.

Throughout this paper all groups are finite different from a cyclic
p−group, p a prime. For a group G, we denote by π(G) the set of all
prime divisors of |G|. For p ∈ π(G), the set of all Sylow p−subgroups
of G is denoted by Sylp(G). By M(G) and Φ(G) we mean the set of all
maximal subgroups of G and the Frattini subgroup of G, respectively.
Note that Φ(G) is the intersection of all maximal subgroups of G. Also
by rank(G) for an abelian group G, we mean the minimal number of
generators of G. Clearly an abelian group G of rank r is the direct
product of r cyclic subgroups.

A planar graph is a graph that can be embedded in the plane so that
no two edges intersect geometrically except at a vertex, which both are
incident. A subdivision of an edge e = uv of a graph ∆ is obtained by
introducing a new vertex w in ∆, that is, by replacing the edge e = uv of
∆ by the path uwv of length 2. So the new vertex w is of degree 2 in the
resulting graph. A subdivision of a graph ∆ is a graph obtained from ∆
by applying a finite number of subdivisions of edges in succession.
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In Section 2 we study the planarity of this graph and with contri-
bution of Kuratowski’s theorem, we classify groups with planar graphs
in four classes of cyclic, abelian non-cyclic, nilpotent non-abelian and
non-nilpotent groups.

2. Planarity of ∆(G)

First note that a group G has a unique maximal subgroup if and only
if G is a cyclic p−group, for some prime number p. In this work all
groups are finite with at least two maximal subgroups.

Definition 2.1. For a group G we associate a graph ∆(G) to G whose
vertex set is {H < G | H ≰ Φ(G)}, the set of proper subgroups H which
are not contained in Φ(G), with two vertices H1 and H2 are adjacent if
and only if G = ⟨H1,H2⟩.

Remark 2.2. It is well-known that Φ(G) is the set of non-generator
elements of G and if H ≤ G, then we have H ≤ Φ(G) if and only if
⟨H,K⟩ ⪇ G, for each 1 ̸= K ⪇ G. Thus to avoid isolated vertices we
define the vertex set of ∆(G) to be the set of proper subgroups, which
are not contained in Φ(G).

In this section with contribution of the following well-known theorem,
due to Kuratowski (see [4, Theorem 8.6.5]), we classify groups with
planar graphs in Theorem 2.4.

Theorem 2.3. A graph is planar if and only if it has no subdivisions
of K5 or K3,3.

Our main result is the following:

Theorem 2.4. The graph ∆(G) is planar if and only if G is one of the
following types:

(1) Zp1pm2
, Zp21p

m
2
, Zp1p2p3 ,Zp21p2p3

or Zp21p
2
2p3

, where p1, p2, p3 are dis-

tinct prime numbers and m ≥ 1.
(2) Z2 × Z2n−1, Z3 × Z3 or Z2 × Z2 × Zp, where p is an odd prime

number and n ≥ 2.
(3) Q8, Q8 × Zp or ⟨a, b | a2s = b2 = 1, [a, b] = a2

s−1⟩, where Q8 is
the quaternion group of order 8, p is an odd prime number and
s ≥ 3.

(4) S3, the symmetric group on three symbols or Z3 ⋊ Z4.

We need the following straightforward lemmas:
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Lemma 2.5. ∆(G) is non-planar if one of the following holds:
(1) G has a normal subgroup N such that ∆(GN ) is non-planar.
(2) G has at least 5 maximal subgroups.
(3) G has at least 5 subgroups with mutually coprime index.
(4) G has distinct subgroups Hi and Ki, where 1 ≤ i ≤ 3; such that

G = ⟨Hi,Kj⟩; 1 ≤ i ≤ j ≤ 3.

Proof. (1) If Γ is a subgraph of ∆(GN ), then there exists a subgraph

Γ of ∆(G) such that Γ ∼= Γ. To see this, let V (Γ) = {H
N | H ⪇ G}

be the vertex set of Γ. Since H
N ̸≤ Φ(GN ) and Φ(G)N

N ≤ Φ(GN ), then

H ̸≤ Φ(G). Now define V (Γ) = {H ⪇ G | H
N ∈ V (Γ)} and consider the

natural bijection θ : V (Γ) → V (Γ) with θ(HN ) = H. Also θ is a graph

isomorphism, as ⟨H1
N , H2

N ⟩ = ⟨H1,H2⟩
N , for all H1,H2 ∈ V (Γ). Therefore if

∆(GN ) is non-planar, then ∆(G) is also non-planar.
(2) Let M1 and M2 be distinct maximal subgroups of G. Then Mi ⪇

⟨M1,M2⟩ ≤ G and by the maximality of Mi we have ⟨M1,M2⟩ = G.
This shows that maximal subgroups of G are mutually adjacent, and
the set of maximal subgroups of G, M(G), form a complete subgraph
of ∆(G). Thus if |M(G)| ≥ 5, then K5 is a subgraph of ∆(G) so it is
non-planar.

(3) If H and K are subgroups of coprime indices of G, then G = HK
and so H and K are joined by an edge in ∆(G). Therefore the set of
such subgroups form a complete subgraph of ∆(G).

Finally if (4) holds, then K3,3 is a subgraph of ∆(G) and it is non-
planar. □

Lemma 2.6. If G has one of the types D2s (s ≥ 3), D18 or Z3 ⋊ Z8,
then ∆(G) is non-planar, where D2n denotes the dihedral group of order
2n.

Proof. Let D8 = ⟨a, b | a4 = b2 = (ab)2 = 1⟩. Then ∆(D8) contains a
subdivision of K5 as shown in Figure 1. So it is non-planar.
The non-planarity of ∆(D2s), s ≥ 3, can be seen by using induction on
s and the fact D2s/Z(D2s) ∼= D2s−1 .

Now let D18 = ⟨a, b | a9 = b2 = (ab)2 = 1⟩. Then ∆(D18) contains a
subdivision of K5 as shown in Figure 2. So it is non-planar.

Finally let Z3 ⋊ Z8 = ⟨a, b | a3 = b8 = 1, ab = a−1⟩. According to the
Figure 3, ∆(Z3 ⋊Z8) contains a subdivision of K5 and it is non-planar.

□
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〈a3b〉

〈b〉 〈a2, b〉

〈a2, ab〉〈a〉

〈ab〉

〈a2b〉

Figure 1. A subdivision of K5 in ∆(D8)

〈ab〉

〈a3, b〉 〈a3, ba2〉

〈a〉〈a3, a2b〉

〈b〉

Figure 2. A subdivision of K5 in ∆(D18)

〈a〉〈ab〉
〈a, b−2〉 〈a2b〉

〈ba2〉〈b〉

Figure 3. A subdivision of K5 in ∆(Z3 ⋊ Z8)

We divide the proof of Theorem 2.4, into several steps. First we
consider abelian groups. We divide this case to cyclic and non-cyclic
cases.

Proposition 2.7. Let G be a cyclic group. Then ∆(G) is planar if and
only if G is one of the types Zp1pn2

, Zp21p
n
2
, Zp1p2p3, Zp21p2p3

or Zp21p
2
2p3

,

where p1, p2, p3 are distinct prime numbers and n ≥ 1.

Proof. First we prove that if G is one types mentioned above, then ∆(G)
is planar. If G ∼= Zp1p

n2
2
, then ∆(G) = K1,n2 and it is planar. If
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G = ⟨a⟩ × ⟨b⟩ ∼= Zp21p
n2
2
, where |a| = p21, |b| = pn2

2 , then ∆(G) is the

graph shown in Figure 4, which is planar.

〈b〉

〈a〉 〈a, b
p

n2−1
2 〉 〈a, bp2〉〈a, b

p2
2 〉

〈ap1 , b〉

· · ·

Figure 4. ∆(Zp21p
n2
2
) is planar

If G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= Zp1p2p3 , where |a| = p1, |b| = p2, |c| = p3,
then one can see that ∆(G) is the planar graph in Figure 5.

〈a〉

〈b, c〉

〈a, c〉〈b〉 〈a, b〉 〈c〉

Figure 5. ∆(Zp1p2p3) is planar

If G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= Zp21p2p3
, where |a| = p21, |b| = p2, |c| = p3,

again it is easy to see that ∆(G) is the planar graph in Figure 6.

〈b〉 〈ap1 , b〉

〈a, c〉

〈ap1 , b, c〉 〈a, b〉
〈ap1 , c〉
〈c〉〈a〉

Figure 6. ∆(Zp21p2p3
) is planar
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If G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= Zp21p
2
2p3

, where |a| = p21, |b| = p22, |c| = p3,

then ∆(G) is the planar graph in Figure 7.

〈ap1, b, c〉

〈a〉〈a, bp2〉

〈b, c〉

〈a, bp2, c〉

〈a, c〉

〈ap1, b〉
〈b〉

〈a, b〉

〈c〉
〈ap1, c〉

〈ap1, bp2, c〉

〈bp2, c〉

Figure 7. ∆(Zp21p
2
2p3

) is planar

To prove the converse suppose that ∆(G) is planar and |G| = pn1
1 · · · pnk

k ,
where pis are distinct primes and ni ≥ 1, 1 ≤ i ≤ k. If |π(G)| ≥ 5, then
by Lemma 2.5-(3), ∆(G) is non-planar. So 2 ≤ |π(G)| ≤ 4.

If |π(G)| = 4, then there exists a normal subgroup N of G such that
G := G

N = ⟨ā⟩ × ⟨b̄⟩ × ⟨c̄⟩ × ⟨d̄⟩ ∼= Zp1p2p3p4 , where ā, b̄, c̄, d̄ are distinct

elements of G of orders p1, p2, p3, p4 respectively. Now ∆(G) contains a
subdivision of K3,3 as shown in Figure 8. Hence ∆(G) is non-planar and
so is ∆(G). Therefore the case |π(G)| = 4 cannot happen.

〈ā, b̄, c̄〉 〈b̄, c̄〉 〈ā, b̄〉

〈ā, d̄〉 〈c̄, d̄〉 〈ā, c̄, d̄〉

〈b̄, c̄, d̄〉

〈ā, b̄, d̄〉

Figure 8. A subdivision of K3,3 in ∆(Zp1p2p3p4)

Thus |π(G)| = 2 or 3.
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Suppose that |π(G)| = 2 and G = ⟨a⟩ × ⟨b⟩, |a| = pn1
1 and |b| = pn2

2 .
If ni ≥ 3, for each i ∈ {1, 2}, then there exists a normal subgroup N
of G such that G := G

N = ⟨ā⟩ × ⟨b̄⟩ and |ā| = p31, |b̄| = p32. Now if we

put H1 = ⟨b̄⟩, H2 = ⟨āp21 , b̄⟩, H3 = ⟨āp1 , b̄⟩, K1 = ⟨ā⟩, K2 = ⟨ā, b̄p22⟩
and K3 = ⟨ā, b̄p2⟩, then by Lemma 2.5-(4), we conclude that ∆(G) is
non-planar, a contradiction. Therefore n1 ≤ 2 or n2 ≤ 2. By symmetry
we may assume that n1 ≤ 2. Thus G ∼= Zp1p

n2
2

or Zp21p
n2
2
, as desired.

Now let |π(G)| = 3. Then G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩, where a, b, c are
elements of orders pn1

1 , pn2
2 and pn3

3 , respectively. Suppose, if possible,
that there exists i ∈ {1, 2, 3} such that ni ≥ 3. We may assume that
i = 1. Then there exists a normal subgroup N of G such that G := G

N =

⟨ā⟩×⟨b̄⟩×⟨c̄⟩, with |ā| = p31, |b̄| = p2, |c̄| = p3. If we put H1 = ⟨āp1 , b̄, c̄⟩,
H2 = ⟨āp21 , b̄, c̄⟩, H3 = ⟨b̄, c̄⟩, K1 = ⟨ā⟩, K2 = ⟨ā, c̄⟩ and K3 = ⟨ā, b̄⟩,
then by Lemma 2.5-(4), ∆(G) is non-planar and so is ∆(G), which is a
contradiction.

Thus without loss of generality we may assume that

(n1, n2, n3) ∈ {(1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2)}.

If (n1, n2, n3) = (2, 2, 2), then G = ⟨a⟩×⟨b⟩×⟨c⟩ ∼= Zp21p
2
2p

2
3
. Hence ∆(G)

contains a subdivision of K5, as shown in Figure 9, so it is non-planar.

〈a, b, cp3〉

〈b, c〉 〈a, c〉
〈a〉 〈b〉

〈a, bp2 , c〉 〈ap1 , b, c〉

Figure 9. A subdivision of K5 in ∆(Zp21p
2
2p

2
3
)

Therefore (n1, n2, n3) ∈ {(1, 1, 1), (2, 1, 1), (2, 2, 1)} and this completes
the proof. □

Now we want to consider abelian groups. First we need the following
lemma, which classifies abelian p−groups with planar graphs. Recall
that the number of maximal subgroups of an elementary abelian p-group
of rank n is pn−1

p−1 .
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Lemma 2.8. Let P be an abelian p−group of order pn where p is a
prime number and n ≥ 2. Then ∆(P ) is planar if and only if p ∈ {2, 3}
and P is one of the types Z2 × Z2n−1 or Z3 × Z3.

Proof. First we prove that if P is one of the types mentioned above,
then ∆(P ) is planar. If P ∼= Z3 × Z3, then since P has four maximal
subgroups ∆(P ) = K4, which is planar. If P = ⟨a⟩ × ⟨b⟩ ∼= Z2 × Z2n−1 ,
where a, b are of orders 2 and 2n−1 respectively, we have P

Φ(P )
∼= Z2×Z2.

So P has exactly three maximal subgroups ⟨b⟩, ⟨ab⟩, ⟨a, b2⟩ and hence
Φ(P ) = ⟨b2⟩. If n = 2, then clearly ∆(P ) = K3, which is planar.
So suppose that n ≥ 3 and let H ∈ V (∆(P )), i.e., H ≰ Φ(P ), such
that H /∈ M(P ). Then H is contained in a maximal subgroup of P .
Obviously H ≰ ⟨b⟩ and H ≰ ⟨ab⟩, because the maximal subgroup of ⟨b⟩
(respectively, ⟨ab⟩) is contained in Φ(P ). Hence H ≤ ⟨a, b2⟩. Now it
follows easily that ∆(P ) is the planar graph shown in Figure 10.

〈a, b2〉

〈b〉 〈ab〉

...

Figure 10. ∆(Z2 × Z2n−1) is planar

Now to prove the converse suppose that ∆(P ) is planar. First we claim
that p ∈ {2, 3}. Suppose, by contrary that p ≥ 5. Since rank(P ) ≥ 2,
there exists a normal subgroup N of P such that P := P

N = ⟨ā⟩ × ⟨b̄⟩ ∼=
Zp × Zp, where ā and b̄ are elements of P both of order p. Thus P has

p+1 maximal subgroups and so by Lemma 2.5-(2), ∆(P ) is non-planar
and so is ∆(P ). Therefore p ∈ {2, 3}.

If rank(P ) ≥ 3, then similarly we have P := P
N = ⟨ā⟩ × ⟨b̄⟩ × ⟨c̄⟩ ∼=

Zp × Zp × Zp, for some normal subgroup N of P and distinct elements

ā, b̄, c̄ of P all of order p. Clearly |M(P )| = 7 or 13, for p = 2 or 3,
respectively. Hence in both cases, Lemma 2.5-(2) implies that ∆(P ) is
non-planar. Thus ∆(P ) is non-planar, which is a contradiction. This
shows that rank(P ) = 2. Now we handle the cases p = 2 and p = 3
separately:
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Case 1. p = 2. In this case we have P ∼= Z2 × Z2n−1 or P := P
N =

⟨ā⟩ × ⟨b̄⟩ ∼= Z4 × Z4, for some normal subgroup N of P and distinct
elements ā and b̄ of P both of order 4. In the second case if we put
H1 = ⟨ā, b̄2⟩, H2 = ⟨ā2, āb̄2⟩, H3 = ⟨ā⟩, K1 = ⟨ā−1b̄⟩, K2 = ⟨āb̄⟩ and
K3 = ⟨ā2, b̄ā−1⟩, then Lemma 2.5-(4) implies that ∆(P ) is non-planar
and so is ∆(P ). Thus we have the first case, as desired.
Case 2. p = 3. In this case we have P ∼= Z3 × Z3 or P := P

N =

⟨ā⟩ × ⟨b̄⟩ ∼= Z3 × Z9, for some normal subgroup N of P and distinct
elements ā and b̄ of P of orders 3 and 9 respectively. In the second case
if we put H1 = ⟨ā, b̄3⟩, H2 = ⟨āb̄3⟩, H3 = ⟨āb̄6⟩, K1 = ⟨āb̄⟩, K2 = ⟨ā2b̄⟩
and K3 = ⟨b̄⟩, then by Lemma 2.5-(4), ∆(P ) is non-planar and so is
∆(P ). Thus the first case happens. This completes the proof. □

Now we are ready to characterize abelian non-cyclic groups with pla-
nar graphs.

Proposition 2.9. Let G be an abelian non-cyclic group. Then ∆(G)
is planar if and only if G is isomorphic to Z2 × Z2n−1, Z3 × Z3 or
Z2 × Z2 × Zp, where p is an arbitrary odd prime and n ≥ 2.

Proof. By Lemma 2.8, the graphs of Z2×Z2n−1 and Z3×Z3 are planar.
Now let G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= Z2 ×Z2 ×Zp, where p is an arbitrary odd
prime. Then ∆(G) is the planar graph shown in Figure 11.

〈c〉

〈a, b〉

〈b, c〉〈ab〉 〈a〉

〈b〉

〈a, c〉 〈ab, c〉

Figure 11. ∆(Z2 × Z2 × Zp) is planar

Now we prove the converse. Suppose that ∆(G) is planar. Since G is
abelian, G = G1×G2× · · · ×Gk, where Gi is the Sylow pi−subgroup of
G for 1 ≤ i ≤ k. If k ≥ 4, then G := G

N
∼= Zp1 ×Zp2 ×Zp3 ×Zp4 , for some

normal subgroup N of G and by Proposition 2.7, ∆(G) is non-planar
and so is ∆(G). Hence 1 ≤ k ≤ 3.



1423 Ahmadi and Taeri

Suppose, if possible, that k = 3. Then we can assume that rank(G1) ≥
2. So G := G

N
∼= Zp1 × Zp1 × Zp2 × Zp3 and by Proposition 2.7, ∆(G) is

non-planar and so is ∆(G). Therefore 1 ≤ k ≤ 2.
If k = 2, then G = G1 × G2. Since G is non-cyclic, we can assume

that rank(G1) = 2 and rank(G2) = 1. Suppose that G1 = ⟨a⟩ × ⟨b⟩ and
G2 = ⟨c⟩, where a, b, c are distinct elements of G of orders pn1

1 , pn2
1 , pn3

2
respectively. So we have G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= Zp

n1
1

× Zp
n2
1

× Zp
n3
2
. If

p1 ≥ 5, then G := G
N

∼= Zp1 × Zp1 , for some normal subgroup N of G.

Therefore G has p1 + 1 maximal subgroups and Lemma 2.5-(2) implies
that ∆(G) is non-planar and so is ∆(G). Thus p1 ∈ {2, 3}. Without
loss of generality, we may assume that n1 ≥ 3. Again for some normal
subgroup N of G we have G := G

N
∼= Zp31

× Zp1 × Zp2 and similar to

that of the proof of Proposition 2.7, ∆(G) is non-planar and so is ∆(G).
Hence ni ≤ 2, for each i ∈ {1, 2, 3} and G is isomorphic to one of the
following types

Zp1 × Zp1 × Zp2 , Zp1 × Zp1 × Zp22
, Zp1 × Zp21

× Zp2 ,

Zp1 × Zp21
× Zp22

, Zp21
× Zp21

× Zp2 , or Zp21
× Zp21

× Zp22
,

where p1 ∈ {2, 3} and p2 is an arbitrary prime different from p1. Now
we want to show that p1 = 2 and G ∼= Z2 × Z2 × Zp2 .
Case 1. p1 = 2. If G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= Z2 × Z2 × Zp22

, then ∆(G)

contains a subdivision of K5, as shown in Figure 12 and it is non-planar.
Also if G is one of the types Z4 × Z2 × Zp22

or Z4 × Z4 × Zp22
, then G :=

〈a, b, cp2〉

〈a, c〉 〈b, c〉

〈c〉

〈a, b〉 〈ab, c〉

Figure 12. A subdivision of K5 in ∆(Z2 × Z2 × Zp22
)

G
N

∼= Z2 × Z2 × Zp22
for some normal subgroup N of G and by previous

part ∆(G) is non-planar and so is ∆(G). Now let G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼=
Z4 × Z2 × Zp2 . If we put H1 = ⟨a, b⟩, H2 = ⟨a⟩, H3 = ⟨a2, a−1b⟩,
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K1 = ⟨b, c⟩, K2 = ⟨a2b, c⟩ and K3 = ⟨a2, b, c⟩, then Lemma 2.5-(4)
implies that Then ∆(G) is non-planar.

Finally if G = ⟨a⟩×⟨b⟩×⟨c⟩ ∼= Z4×Z4×Zp2 , then G := G
N

∼= Z4×Z4,

for some normal subgroupN ofG and by Lemma 2.8, ∆(G) is non-planar
and so is ∆(G).
Case 2. p1 = 3. In all types of G mentioned before Case 1, there exists
a normal subgroup N of G such that G := G

N
∼= Z3×Z3×Zp2 . Obviously

|M(G)| ≥ 5, and by Lemma 2.5-(2), ∆(G) is non-planar and so is ∆(G).
Finally suppose that k = 1. Then G is an abelian p1−group of order

pn1
1 and since ∆(G) is planar, p1 ∈ {2, 3} and by Lemma 2.8, G is

isomorphic to Z2 × Z2n1−1 or Z3 × Z3, and the result follows. □

Now we want to classify non-abelian groups with planar graphs. First
we consider non-abelian p−groups. We need the classification of minimal
non-abelian p-groups. Recall that a non-abelian p-group P is minimal
non-abelian if all its proper subgroups are abelian groups. By the main
result of [15], a p-group P is minimal non-abelian if and only if P is
isomorphic to one of the following:

(i) ⟨a, b | aps = bp
t
= 1, [a, b] = ap

s−1⟩, s > 1, t ≥ 1 ; |P | = ps+t

(ii) ⟨a, b, c | aps = bp
t
= cp = 1, c = [a, b], [a, c] = [b, c] = 1⟩, s, t ≥ 1,

|P | = ps+t+1

(ii) Q8.

Lemma 2.10. Let P be a non-abelian p−group of order pn, where p is
a prime number and n ≥ 3. Then ∆(P ) is planar if and only if p = 2

and P ∼= Q8 or P ∼= ⟨a, b | a2s = b2 = 1, [a, b] = a2
s−1⟩, for some s ≥ 3.

Proof. First note that ∆(Q8) ∼= K3 is planar. Now suppose that

(1) P = ⟨a, b | a2s = b2 = 1, [a, b] = a2
s−1⟩,

where s ≥ 3. Clearly P = ⟨a⟩ ⋊ ⟨b⟩ and P ′ = ⟨[a, b]⟩, the derived
subgroup of P , and so

P :=
P

P ′ = ⟨ā, b̄ | ā2s−1
= b̄2 = 1̄, [ā, b̄] = 1̄⟩; ā := aP ′, b̄ := bP ′.

Hence P = ⟨ā⟩ × ⟨b̄⟩ ∼= Z2s−1 × Z2. Thus M(P ) = {⟨ā⟩, ⟨ā2, b̄⟩, ⟨āb̄⟩}
from which it follows that M(P ) = {⟨a⟩, ⟨a2, b⟩, ⟨ab⟩}. Now one can
easily check that ∆(P ) is the same as the Figure 10 and so it is planar.

To prove the converse suppose that ∆(P ) is planar. We consider three
cases:
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Case 1. p = 2. We have to prove that P is either Q8 or P has the
presentation (1). If this is not the case, choose a non-abelian 2-group
P of least order such that ∆(P ) is planar, P ̸∼= Q8 and P ̸∼= ⟨a, b |
a2

s
= b2 = 1, [a, b] = a2

s−1⟩. Take x ∈ Z(P ) ∩ Φ(P ) such that |x| = 2
and put P := P/⟨x⟩. Note that P is not cyclic, ∆(P ) is planar and
|P | < |P |. Thus the minimality of |P | implies that P ∼= Q8 or P has the
presentation (1) or P is abelian. We show that the first and the second
cases do not happen.

Suppose that P ∼= Q8 and let M be a maximal subgroup of P . Thus,
since x ∈ Φ(P ) ≤ M , M := M

⟨x⟩ is a maximal subgroup of P and so

is cyclic. Thus, as x ∈ Z(P ), M is abelian. Hence P is a minimal
non-abelian 2-group of order 16. By the classification of minimal non-
abelian p−groups, P has type (i) or (ii). If P has type (i), then (s, t) ∈
{(3, 1), (2, 2)}. When (s, t) = (3, 1), P has the presentation (1) which is a
contradiction; and when (s, t) = (2, 2), P has a factor group isomorphic
to D8, which is impossible by Lemma 2.6. If P has type (ii), then
(s, t) = (2, 1) and P has a factor group isomorphic toD8, a contradiction.

Now suppose that P has presentation (1). To obtain a contradiction
we need a slightly long argument. We distinguish two subcases:
Subcase 1. P has no cyclic maximal subgroup. Then since M(P ) =
{⟨ā⟩, ⟨ā2, b̄⟩, ⟨āb̄⟩}, we have M(P ) = {⟨a, x⟩, ⟨a2, b, x⟩, ⟨ab, x⟩}. If we
put H1 = ⟨a, x⟩, H2 = ⟨ab, x⟩, H3 = ⟨a⟩, K1 = ⟨a2, b, x⟩, K2 = ⟨b⟩ and
K3 = ⟨a2b⟩, then by Lemma 2.5-(4), ∆(P ) is non-planar, which is a
contradiction. Thus this subcase cannot happen.
Subcase 2. P has a cyclic maximal subgroup. Since P is non-abelian
of order 2s+2, by [16, Theorem 5.3.4], P is isomorphic to one of the
following groups:

(a) ⟨a, b | a2s+1
= b2 = 1, ab = a1+2s⟩; s ≥ 1.

(b) The dihedral group D2s+2 of order 2s+2; s ≥ 1.

(c) Q2s+2 = ⟨a, b | a2s+1
= 1, b2 = a2

s
, ab = a−1⟩; s ≥ 1, generalized

quaternion group.

(d) SD2s+2 = ⟨a, b | a2s+1
= b2 = 1, ab = a2

s−1⟩; s ≥ 1, semidihedral
group.
In the case (a), P clearly has the presentation (1), a contradiction. The
case (b) cannot happen, by Lemma 2.6. Also since Q2s+2/Z(Q2s+2) ∼=
D2s+1 and SD2s+2/⟨a2s⟩ ∼= D2s+1 , the cases (c) and (d) cannot hapen.
Therefore we have shown that P cannot have presentation (1).
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Hence the minimality of |P | implies that P is abelian, and so by
Lemma 2.8 we have

(2) P =
P

⟨x⟩
∼= Z2 × Z2m−2 ,

where m ≥ 3. Hence P/⟨x⟩ is generated by 2 elements and so P is
generated by 2 elements, as x ∈ Φ(P ). Thus by Burnside basis The-
orem (see [16, Theorem 5.3.2]) P

Φ(P )
∼= Z2 × Z2. Therefore |M(P )| =

|M( P
Φ(P ))| = 3. Also it is easy to see that P ′ = ⟨x⟩ and so for each

a, b ∈ P , we have [a2, b] = [a, b]a[a, b] = [a, b]2 = 1, as P ′ = ⟨x⟩ ≤ Z(P )
and x has order 2. Therefore a2 ∈ Z(P ) and P 2 ≤ Z(P ). These imply
that Φ(P ) = P ′P 2 ≤ Z(P ). Now let H be a maximal subgroup of P .
Then, since H

Φ(P ) ≤
P

Φ(P ) is cyclic and Φ(P ) ≤ Z(P ), H is abelian. Thus

all proper subgroups of P are abelian, that is P is a minimal non-abelian
2−group. By the classification of minimal non-abelian p−groups, P has
type (i), (ii) or (iii). Since P ̸∼= Q8 the case (iii) cannot happen. If P
has type (i), then clearly P = ⟨a⟩⋊ ⟨b⟩ and P ′ = ⟨[a, b]⟩ = ⟨x⟩ and so

P =
P

P ′ = ⟨ā, b̄ | ā2s−1
= b̄2

t
= 1̄, [ā, b̄] = 1̄⟩; ā := aP ′, b̄ := bP ′.

Hence P = ⟨ā⟩ × ⟨b̄⟩ ∼= Z2s−1 × Z2t . According to (2), s = 2 or t = 1.
If t = 1, then P has presentation (1), a contradiction. If s = 2,

then P = ⟨a, b | a4 = b2
t
= 1, [a, b] = a2⟩ and so P

⟨b2⟩
∼= D8 (note that

[a, b2] = 1 and so ⟨b2⟩◁P ), which has non-planar graph, a contradiction.
Now let P be of type (ii). Similar to that of type (i), we have P ′ =

⟨[a, b]⟩ and
P = ⟨ā, b̄ | ā2s = b̄2

t
= 1̄, [ā, b̄] = 1̄⟩.

Hence P = ⟨ā⟩ × ⟨b̄⟩. According to (2), s = 1 or t = 1. By symmetry it
suffices to assume that t = 1. Then we have:

P = ⟨a, b, c | a2s = b2 = c2 = 1, c = [a, b], [a, c] = [b, c] = 1⟩.

Clearly [a2, b] = 1 and so ⟨a2⟩◁ P . It follows that P
⟨a2⟩

∼= D8, which has

non-planar graph, a contradiction.

Case 2. p = 3. We claim that there is no non-abelian 3−group with
planar graph. Suppose on the contrary that there exists a 3−group
P with planar graph ∆(P ) and |P | is minimal with respect to these
properties. Choose x ∈ Z(P ) such that |x| = 3 and put P := P

⟨x⟩ . Since

∆(P ) is planar and |P | < |P |, by the minimality of |P |, P is an abelian
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3−group. By Lemma 2.8, we have P ∼= Z3 × Z3. Therefore |P | = 27.
There exist two non-abelian 3-groups of order 27 such that their graphs
contain K3,3 as a subgraph, hence they are non-planar which gives a
contradiction.
Case 3. Let p ≥ 5. Since E := P

Φ(P )
∼= Zp × · · · × Zp = Zm

p , where

m ≥ 2, then there exists A ◁ E such that E := E
A

∼= Zp × Zp, and

hence by Lemma 2.5-(2), ∆(E) is non-planar and so is ∆(P ), which is
a contradiction. □

Now we classify non-abelian groups with planar graphs. We divide it
into two cases; non-abelian nilpotent groups and non-nilpotent groups.

Theorem 2.11. Let G be a non-abelian nilpotent group. Then ∆(G) is

planar if and only if G ∼= Q8, G ∼= ⟨a, b | a2s = b2 = 1, [a, b] = a2
s−1⟩ or

G ∼= Q8 × Zp, where p is an arbitrary odd prime and s ≥ 3.

Proof. Put Q8 = ⟨u, v | u2 = v2, vu = u3v⟩.
If G has the first or the second type, then by Lemma 2.10, ∆(G) is

planar. If G has the third type, ∆(G) is the planar graph as shown in
the Figure 13

〈uv〉 × 〈y〉

〈u〉 × 1〈v〉 × 1

〈u〉 × 〈y〉

〈uv〉

〈v〉 × 〈y〉

〈y〉
Q8

〈u2〉 × 〈y〉

Figure 13. ∆(Q8 × Zp) is planar

To prove the converse, let ∆(G) be planar. Then it contains no K5 as
a subgraph. Therefore |M(G)| ≤ 4. If |M(G)| = 2, then G is a cyclic
group, which is a contradiction. If |M(G)| = 3, then by [3, Lemma
1], G is a 2−group or a cyclic group of order pnqmrk, where p, q, r are
distinct primes and m,n, k are positive integers. By hypothesis the later
case does not hold and since ∆(G) is planar, by Lemma 2.10, we have

G ∼= Q8 or G ∼= P , where P := ⟨a, b | a2s = b2 = 1, [a, b] = a2
s−1⟩; s ≥ 3.



Planarity of a graph related to a finite group 1428

Finally let |M(G)| = 4. By hypothesis G is non-abelian and [3,
Theorem 4] implies that either G is a 3−group such that G

Φ(G)
∼= Z3×Z3

or G = Q × R, where Q is a 2−group and R = ⟨x⟩ is a cyclic Sylow
p−subgroup of G of order pm, where p is an odd prime number and
m ≥ 1. By Lemma 2.10, the first case cannot happen, so we have the
second case. Now ∆(Q) is planar because of planarity of ∆(G). Hence
by Lemma 2.10, Q ∼= P or Q ∼= Q8.

First suppose that Q ∼= P , i.e., G ∼= P × R. If we put H1 = P ,
H2 = ⟨a⟩ × R, H3 = ⟨ab⟩ × R, K1 = ⟨a2, b⟩ × R, K2 = ⟨b⟩ × R and
K3 = ⟨a2b⟩ ×R, then Lemma 2.5-(4) implies that ∆(G) is non-planar.

Hence Q ∼= Q8, i.e., G ∼= Q8 × Zpm . If m ≥ 2, then ∆(G) contains a
subdivision of K5, as shown in Figure 14, and so is non-planar.

Q8 × 〈xp〉

〈v〉 × 〈x〉 〈u〉 × 〈x〉

〈uv〉 × 〈x〉 Q8

〈u2〉 × 〈x〉

Figure 14. A subdivision of K5 in ∆(Q8 × ⟨x⟩)

Therefore m = 1 and so G ∼= Q8 × Zp, as desired. □
Now we recall some well-known facts which are needed to prove The-

orem 2.12. If G is a finite supersolvable group and p is the largest
prime divisor of |G|, then the Sylow p−subgroup of G is normal (see [6,
Theorems 6.2.2 and 6.2.5]).

For a finite non-nilpotent group G with |M(G)| = 4, we have: G is
a supersolvable group of order 2n3m; n,m ≥ 1 and G

Φ(G)
∼= S3. (see [3,

Theorem 3]). In particular Sylow subgroups of G are cyclic. To see this,
suppose that P ∈ Syl3(G) and Q ∈ Syl2(G). Since P ◁G, Φ(P ) ≤ Φ(G)
and so Φ(P ) ≤ P ∩ Φ(G). Now if there exists a maximal subgroup
M of P such that P ∩ Φ(G) ≰ M , then P = M(P ∩ Φ(G)) and so
G = PQ = M(P ∩ Φ(G))Q = MQ, which is a contradiction. Therefore
P ∩ Φ(G) ≤ Φ(P ). Thus Φ(P ) = P ∩ Φ(G). Now we have

P

Φ(P )
=

P

P ∩ Φ(G)
∼=

PΦ(G)

Φ(G)
∼= Z3,
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and hence P
Φ(P ) is cyclic and so is P . Also if N is a maximal subgroup

of Q, then PN is a maximal subgroup of G. Thus Φ(G) ≤ PN and
Q ∩ Φ(G) ≤ Q ∩NP = N . Hence Q ∩ Φ(G) ≤ Φ(Q) and similarly Q is
cyclic.

Now let P = ⟨a⟩ and Q = ⟨b⟩ and ϕ : Q −→ Aut(P ) be the per-
mutation representation corresponding to the action of Q on P . Note
that Aut(P ) ∼= Z2 × Z3m−1 (see [13, Theorem 2.2.6]). Since Aut(P ) is
cyclic, it has a unique involution. On the other hand ϕ(b) is a 2-element
of Aut(P ). Therefore ϕ(b) is the unique involution of Aut(P ). This
implies that ab = a−1, that is the action of Q on P is inversion.

The following result completes the proof of Theorem 2.4.

Theorem 2.12. Let G be a non-nilpotent group. Then ∆(G) is planar
if and only if G ∼= S3 or G ∼= Z3 ⋊ Z4.

Proof. First note that ∆(S3) ∼= K4, which is a planar graph. By GAP
[11], one can check that the group Z3 ⋊ Z4 has four cyclic maximal
subgroups Mi; 1 ≤ i ≤ 4 such that |Mi| = 4; 1 ≤ i ≤ 3 and |M4| = 6.
Let K be the subgroup of M4 of order 3. Thus ∆(G) is the planar graph
which is shown in the Figure 15.

M4

M2 M3

M1

K

Figure 15. ∆(Z3 ⋊ Z4) is planar

Now let ∆(G) be planar. Thus by Lemma 2.5-(2), |M(G)| ≤ 4.
Since G is non-cyclic, |M(G)| ̸= 1, 2. Also since G is non-nilpotent, [3,
Lemma 1] implies that |M(G)| ̸= 3. Hence |M(G)| = 4 and by above
discussion G is a supersolvable group of order 2n3m, where n,m ≥ 1,
and G = P ⋊Q, where P = ⟨a⟩ and Q = ⟨b⟩ are Sylow 3−subgroup and
Sylow 2−subgroup of G, respectively; and ab = a−1. Thus we have

G = ⟨a, b | a3m = b2
n
= 1, ab = a−1⟩.

Also since [a, b2] = 1 we have that ⟨b2⟩ ≤ Z(G). Clearly ⟨a9⟩◁G. Now
if |P | ≥ 9, consider the normal subgroup N := ⟨a9, b2⟩ of G and put

G := G
N , ā := aN and b̄ := bN . Therefore G = ⟨ā, b̄ | ā9 = b̄2 = 1̄, āb̄ =
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ā−1⟩ and so G ∼= D18. By Lemma 2.6, ∆(D18) is non-planar so is ∆(G).
Thus |P | = 3.

Also if |Q| ≥ 8, consider the normal subgroup N := ⟨b8⟩ of G and

again with the above notations, we have G = ⟨ā, b̄ | ā3 = b̄8 = 1̄, āb̄ =
ā−1⟩ and so G ∼= Z3 ⋊Z8. By Lemma 2.6, ∆(Z3 ⋊Z8) is non-planar, so
is ∆(G). Hence |Q| ∈ {2, 4}, which implies that G ∼= S3 or G ∼= Z3⋊Z4.
This completes the proof. □
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