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Abstract. In this paper, we consider a general integral operator
Gn(z). The main object of the present paper is to study some prop-
erties of this integral operator on the classes S∗(α), K(α), M(β),
N (β) and KD(µ, β).
Keywords: Analytic functions, integral operator, starlike func-
tions, convex functions.
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1. Introduction

Let A denote the class of functions of the form

f (z) = z +
∞∑
n=2

anz
n,

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}

and satisfy the following normalization condition

f (0) = f ′ (0)− 1 = 0.

We denote by S the subclass of A consisting of functions f which are
univalent in U.
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A function f ∈ A is a starlike function by the order α, 0 ≤ α < 1 if f
satisfies the inequality

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U.

We denote the class of functions f ∈ A satisfying the above condition
by S∗(α).
A function f ∈ A is a convex function by the order α, 0 ≤ α < 1 if f
satisfies the inequality

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> α, z ∈ U.

We denote the class of functions f ∈ A satisfying the above condition
by K(α).
Let N (β) be the subclass of A consisting of the functions f which satisfy
the inequality

Re

(
zf ′′(z)

f ′(z)
+ 1

)
< β, z ∈ U;β > 1.

This class was studied by Owa and Srivastava [8].
LetM(β) be the subclass of A consisting of the functions f which satisfy
the inequality

Re

(
zf ′(z)

f(z)

)
< β, z ∈ U;β > 1.

This class was studied by Porwal and Dixit [12].
A function f is said to be in the class KD(µ, β), if it satisfies the following
inequality

(1.1) Re

(
zf ′′(z)

f ′(z)
+ 1

)
≥ µ

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣+ β

for some µ ≥ 0 and 0 ≤ β < 1. This class was studied in [13].
For fi, gi ∈ A and αi > 0, γi > 0, i = 1, 2, ..., n, we define the integral
operator Gn(z) by

(1.2) Gn(z) =

∫ z

0

n∏
i=1

(
fi(t)

t

)αi (
g′i(t)

)γi dt.
Remark 1.1. This integral operator is a generalization of the integral
operator defined by Pescar in [10]. For n = 1, g = f, from (1.2), we
obtain the integral operator defined by Pescar.
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Remark 1.2. Note that the integral operator Gn(z) generalizes the fol-
lowing operators introduced and studied by several authors:
(1) If g′i(z) = f ′

i(z), i = 1, 2, ..., n, we obtain the integral operator

Iαi,γi(f1, ..., fn)(z) =

∫ z

0
(f ′

1(t))
γ1

(
f1(t)

t

)α1

...(f ′
n(t))

γn

(
fn(t)

t

)αn

dt

introduced and studied by Frasin [6] (see also [5, 4]).
(2) For γi = 0, i = 1, 2, ..., n, we obtain the integral operator

Fn(z) =

∫ z

0

(
f1(t)

t

)α1

...

(
fn(t)

t

)αn

dt

introduced and studied by D. Breaz and N. Breaz [2].
(3) For αi = 0, i = 1, 2, ..., n, we obtain the integral operator

Fγ1 , ...,γn (z) =

∫ z

0
(g′1(t))

γ1 ...(g′n(t))
γndt

introduced and studied by Breaz et. al. [3].
(4) For n = 1, γ1 = 0, α1 = α and f1 = f, we obtain the integral
operator

Fα(z) =

∫ z

0

(
f(t)

t

)α

dt

studied in [7]. In particular, for α = 1, we obtain Alexander integral
operator

I(z) =

∫ z

0

f(t)

t
dt.

introduced in [1].
(5) For n = 1, α1 = 0, γ1 = γ and g1 = g, we obtain the integral operator

Gα(z) =

∫ z

0
(g′(t))γdt

studied in [9] (see also [11]).

2. Main results

Theorem 2.1. Let αi, γi be positive real numbers, i = 1, 2, ..., n. If
fi ∈ M(βi), βi > 1 and gi ∈ N (λi), λi > 1, i = 1, 2, ..., n, then the
integral operator Gn(z) defined in (1.2) is in the class N (µ), where

µ = 1 +

n∑
i=1

[αi (βi − 1) + γi (λi − 1)].
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Proof. We calculate the derivatives of the first and second order ofGn(z).
From (1.2), we have:

G′
n(z) =

n∏
i=1

((
fi(z)

z

)αi (
g′i(z)

)γi)
and

G′′
n(z) =

n∑
i=1

[
αi

(
fi(z)

z

)αi−1 ( zf ′
i(z)− fi(z)

z2

)(
g′i(z)

)γi

] n∏
k=1
k ̸=i

((
fk(z)

z

)αk (
g′k(z)

)γk

)

+
n∑

i=1

[(
fi(z)

z

)αi

γi
(
g′i(z)

)γi−1
g′′i (z)

] n∏
k=1
k ̸=i

((
fk(z)

z

)αk (
g′k(z)

)γk

)
.

By a calculation, we obtain that

(2.1)
zG′′

n(z)

G′
n(z)

=
n∑

i=1

(
αi

(
zf ′

i(z)

fi(z)
− 1

)
+ γi

zg′′i (z)

g′i(z)

)
.

The relation (2.1) is equivalent to

(2.2)
zG′′

n(z)

G′
n(z)

+ 1 =
n∑

i=1

(
αi

(
zf ′

i(z)

fi(z)
− 1

)
+ γi

zg′′i (z)

g′i(z)

)
+ 1.

We calculate the real part of both terms of (2.2) and obtain

Re

(
zG′′

n(z)

G′
n(z)

+ 1

)
=

n∑
i=1

(
αiRe

zf ′
i(z)

fi(z)
− αi + γiRe

zg′′i (z)

g′i(z)

)
+ 1

=
n∑

i=1

(
αiRe

zf ′
i(z)

fi(z)
− αi + γiRe

(
zg′′i (z)

g′i(z)
+ 1

)
−γi

)
+1.

Since fi ∈ M(βi), βi > 1 and gi ∈ N (λi), λi > 1, i = 1, 2, ..., n, we
obtain

Re

(
zG′′

n(z)

G′
n(z)

+ 1

)
<

n∑
i=1

(αiβi − αi + γiλi − γi) + 1

< 1 +

n∑
i=1

[αi (βi − 1) + γi (λi − 1)].

Hence Gn(z) ∈ N (µ), where µ = 1+
∑n

i=1[αi (βi − 1) + γi (λi − 1)]. □

Setting n = 1 in Theorem 2.1, we obtain the following



1437 Laura Stanciu and Daniel Breaz

Corollary 2.2. Let α, γ be positive real numbers. If f ∈ M(β), β > 1
and g ∈ N (λ), λ > 1, then the integral operator

G(z) =

∫ z

0

(
f(t)

t

)α (
g′(t)

)γ
dt

is in the class N (µ), where µ = 1 + α (β − 1) + γ (λ− 1) .

Theorem 2.3. Let αi, γi be positive real numbers, i = 1, 2, ..., n. We
suppose that the functions fi are starlike functions by order 1

αi
, that is

fi ∈ S∗( 1
αi
) and gi ∈ KD(µi, λi), µi ≥ 0, 0 ≤ λi < 1, i = 1, 2, ..., n. If

n∑
i=1

[αi + γi (1− λi)]− n < 1,

then the integral operator Gn(z) defined by (1.2) is in the class K(δ),
where

δ = 1 + n+

n∑
i=1

[γi (λi − 1)− αi].

Proof. Following the same steps as in Theorem 2.1, we obtain

zG′′
n(z)

G′
n(z)

=

n∑
i=1

(
αi

(
zf ′

i(z)

fi(z)
− 1

)
+ γi

zg′′i (z)

g′i(z)

)

=

n∑
i=1

(
αi

zf ′
i(z)

fi(z)
− αi + γi

zg′′i (z)

g′i(z)

)
.(2.3)

The relation (2.3) is equivalent to

zG′′
n(z)

G′
n(z)

+ 1 =

n∑
i=1

(
αi

zf ′
i(z)

fi(z)
− αi + γi

zg′′i (z)

g′i(z)

)
+ 1.

Taking the real part of the above expression, we obtain

Re

(
zG′′

n(z)

G′
n(z)

+ 1

)
=

n∑
i=1

(
αiRe

zf ′
i(z)

fi(z)
− αi + γiRe

zg′′i (z)

g′i(z)

)
+ 1

=
n∑

i=1

(
αiRe

zf ′
i(z)

fi(z)
− αi + γiRe

(
zg′′i (z)

g′i(z)
+1

)
− γi

)
+ 1.(2.4)
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But fi ∈ S∗( 1
αi
), so Re

zf ′
i(z)

fi(z)
> 1

αi
and since gi ∈ KD(µi, λi), for µi ≥ 0

and 0 ≤ λi < 1, i = 1, 2, ..., n, from (2.4), we get

Re

(
zG′′

n(z)

G′
n(z)

+ 1

)
> 1 +

n∑
i=1

(
αi ·

1

αi
− αi + γi

(
µi

∣∣∣∣zg′′i (z)g′i(z)

∣∣∣∣+ λi

)
− γi

)

> 1 + n−
n∑

i=1

αi +

n∑
i=1

γiµi

∣∣∣∣zg′′i (z)g′i(z)

∣∣∣∣+ n∑
i=1

γi (λi − 1) .

Since γiµi

∣∣∣ zg′′i (z)g′i(z)

∣∣∣ > 0, we obtain

Re

(
zG′′

n(z)

G′
n(z)

+ 1

)
> 1 + n−

n∑
i=1

αi +
n∑

i=1

γi (λi − 1)

> 1 + n+
n∑

i=1

[γi (λi − 1)− αi].(2.5)

Using the hypothesis
∑n

i=1[αi + γi (1− λi)]− n < 1 in (2.5), we obtain
that the integral operator Gn(z) is in the class K(δ), where

δ = 1 + n+

n∑
i=1

[γi (λi − 1)− αi].

□
Setting n = 1 in Theorem 2.3, we obtain the following

Corollary 2.4. Let α, γ be positive real numbers. We suppose that the
function f is a starlike function of order 1

α , that is f ∈ S∗( 1α) and the
function g ∈ KD(µ, λ), µ ≥ 0, 0 ≤ λ < 1. If

α+ γ (1− λ) < 2,

then the integral operator

G(z) =

∫ z

0

(
f(t)

t

)α (
g′(t)

)γ
dt

is in the class K(δ), where

δ = 2 + γ (λ− 1)− α.
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