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Abstract. For any k ∈ N, the k-subdivision of a graph G is a

simple graph G
1
k , which is constructed by replacing each edge of G

with a path of length k. In [Moharram N. Iradmusa, On colorings
of graph fractional powers, Discrete Math., (310) 2010, No. 10-11,
1551-1556] the mth power of the n-subdivision of G has been intro-

duced as a fractional power of G, denoted by G
m
n . In this regard, we

investigate domination number and independent domination num-
ber of fractional powers of graphs.
Keywords: Domination number, subdivision of a graph, power of
a graph.
MSC(2010): Primary: 05C69.

1. Introduction and preliminaries

In this paper, we only consider graphs with nonempty edge set that
are finite, with no loops or multiple edges. We mention some of the
definitions that are used through the paper. We denote the number of
vertices and edges in G by p(G) and q(G); these two basic parameters are
called the order and size of G, respectively. In addition, NG(v), called
the open neighborhood of v in G, denotes the set of vertices of G which
are adjacent to the vertex v of G, and the closed neighborhood of v is
NG[v] = NG(v)∪{v}. Also for any set S ⊆ V (G), the open neighborhood
of S, NG(S), is defined to be

∪
v∈S NG(v), and the closed neighborhood of

S is NG[S] = NG(S)∪S. Generally, the open k-neighborhood of a vertex
v ∈ V (G), denoted by Nk(v), is the set Nk(v) = {u : u ̸= v, d(u, v) ≤ k};
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the set Nk[v] = Nk(v)∪{v} is called the closed k-neighborhood of v and
every vertex w ∈ Nk[v] is said to be k-adjacent to v. Finally, for a set S
of vertices we define Nk(S) to be the union of the open k-neighborhoods
of vertices in S, while Nk[S] is the union of the closed k-neighborhoods
of vertices in S.
A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating
set if every vertex v ∈ V is either an element of S or adjacent to an
element of S, or equivalently, NG[S] = V (G). The minimum cardinality
of a dominating set in G is called the domination number of G and is
denoted by γ(G). In addition, each dominating set of minimum cardi-
nality is called a γ-set of G. Furthermore, a set S of vertices in a graph
G = (V,E) is called an independent dominating set if S is both an in-
dependent and a dominating set of G; the minimum cardinality of an
independent dominating set of G is the independent domination number
i(G). We refer the reader to the textbooks [1, 3] for the necessary defi-
nitions and notations.
In [4], the author has introduced the fractional powers of a graph. Let
G be a graph and k be a positive integer. The k-power of G, denoted
by Gk, is defined on the vertex set V (G) by joining any two distinct
vertices x and y with distance at most k in G [1], or equivalently,
E(Gk) = {xy : 1 ≤ dG(x, y) ≤ k}. Also for any mapping f : E(G) → N,
the f -subdivision of G, denoted by G

1
f , is constructed by replacing each

edge xy of G with a path of length f(xy), say Pxy. These paths are
called G-edges and any new vertex is called an internal vertex or briefly
i-vertex and is denoted by (xy)l, if it belongs to the G-edge Pxy and
has distance l from the vertex x, where l ∈ {0, 1, 2, . . . , f(xy)}. Note
that (xy)l = (yx)f(xy)−l, (xy)0 = x and (xy)f(xy) = y. Also any vertex

x = (xy)0 of G
1
f is a terminal vertex or brifely t-vertex. In particular,

when f(xy) = k for each edge xy of the graph G, we denote G
1
f by G

1
k

and when

f(xy) =

{
k xy = e
1 xy ̸= e,

we denote G
1
f with Se,k(G). The second one is a useful notation, because

for any mapping f : E(G) → N, we have

G
1
f = Se1,f(e1)(Se2,f(e2)(· · ·Seq ,f(eq)(G) · · · )),

where E(G) = {e1, e2, . . . , eq}.
Note that for k = 1, we have G

1
1 = G1 = G, and if the graph G



1481 Iradmusa

has p vertices and E(G) = {e1, e2, . . . , eq}, then the graph G
1
f has∑q

i=1 f(ei) + p − q vertices and
∑q

i=1 f(ei) edges. Especially, G
1
k has

p+(k−1)q vertices and kq edges. In [4], the fractional power of a graph
was defined as follows.

Definition 1.1. [4] Let G be a graph and m,n ∈ N. The graph G
m
n

is defined to be the m-power of the n-subdivision of G. In other words

G
m
n = (G

1
n )m.

We can extend this definition to define G
m
f for any mapping f : E(G) →

N and any m ∈ N as follows.

Definition 1.2. Let G be a graph, f : E(G) → N be a mapping and

m ∈ N. The graph G
m
f is defined to be the m-power of the f-subdivision

of G. In other words G
m
f = (G

1
f )m.

Note that the graphs (G
1
f )m and (Gm)

1
f are different graphs. In this

paper, we only consider the graphs (G
1
f )m. Furthermore, the identity

V (G
m
f ) = V (G

1
f ) follows from Definition 1.2.

For any graph G, we have γ(G) ≥ γ(G2) ≥ γ(G3) ≥ · · · ≥ γ(Gr) = 1,
where r is the radius of G. In fact, because Gk is an spanning subgraph
of Gk+1, any γ-set of Gk is a dominating set for Gk+1 and so γ(Gk) ≥
γ(Gk+1). This shows that the domination number of a graphG decreases
when we replace G by its powers. In other words, each dominating set
of Gk is equivalent to a distance-k dominating set of G. One can say
that S is a dominating set if every vertex v is within a distance of at
most one from S, d(v, S) ≤ 1. So we can consider domination for the
distance greater than one. A set S is a distance-k dominating set if for
every vertex u ∈ V (G) \ S, d(u, S) ≤ k. The distance-k domination
number γ≤k(G) of G is equal to the minimum cardinality of a distance-
k dominating set in G. Therefore, γ≤k(G) = γ(Gk). In many ways
the distance versions of these concepts are more applicable to modeling
real-world problems. For a comprehensive survey of results on distance
domination in graphs the reader is referred to [5]. See also [3, 6].
On the other hand, it is easy to verify that by replacing any graph by
its subdivisions, the domination number of graph increases. In other

words, γ(G) ≤ γ(G
1
k ) ≤ γ(G

1
k+1 ) for any k ∈ N. Now, the following

question arises naturally.
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Question 1.3. What happens to the domination number, when we con-
sider the fractional power of a graph, specially for fractions less than
one?

In this paper, we investigate the domination of the fractional powers of
a graph and establish some relations between the domination numbers
of these graphs.

2. Main results

Let G be a graph and suppose that f, r : E(G) → N are two functions
such that f(e) ≡ r(e)(mod 2m + 1) for each e ∈ E(G). We begin this

section by obtaining a relation between γ(G
m
f ) and γ(G

m
r ).

Theorem 2.1. Let G be a graph, f, r : E(G) → N be two functions,
m ∈ N, f(ei) = (2m + 1)ki + r(ei) where 1 ≤ r(ei) ≤ 2m + 1 and
ei ∈ E(G) = {e1, e2, . . . , eq}. Then

(a) γ(G
m
f ) =

∑q
i=1 ki + γ(G

m
r ),

(b) i(G
m
f ) =

∑q
i=1 ki + i(G

m
r ).

In order to prove the above theorem, we need the following lemmas.

Lemma 2.2. Let G be a graph, S be a nonempty subset of V (G), x and
y be two vertices of G such that dG(x, S) = l1, dG(y, S) = l2, P1 is a
xu1-path of length l1 and P2 is a yu2-path of length l2 where u1, u2 ∈ S.
If P1 and P2 have a common edge say zt, then
(a) dG(y, z)− dG(y, t) = 1 if and only if dG(x, z)− dG(x, t) = 1,
(b) dG(t, u1) = dG(t, u2) and dG(z, u1) = dG(z, u2).

Proof. (a) It is easy to see that either dG(y, z)−dG(y, t) = 1 or −1 (Sim-
ilarly dG(x, z)−dG(x, t) = 1 or −1). Assume that dG(y, z)−dG(y, t) = 1
and dG(x, z)− dG(x, t) = −1. Then we have dG(y, z) = dG(y, t) + 1 and
dG(x, t) = dG(x, z)+1 and so dG(y, t)+dG(z, u2) = l2−1 and dG(x, z)+
dG(t, u1) = l1−1. Therefore, dG(y, t)+dG(z, u2)+dG(x, z)+dG(t, u1) =
(dG(x, z) + dG(z, u2)) + (dG(y, t) + dG(t, u1)) = (l1 − 1) + (l2 − 1). It
follows that, either dG(x, S) ≤ dG(x, u2) ≤ dG(x, z) + dG(z, u2) ≤ l1 − 1
or dG(y, S) ≤ dG(y, u1) ≤ dG(y, t) + dG(t, u1) ≤ l2 − 1, a contradiction.
(b) The proof is straightforward. □

Lemma 2.3. Let G be a graph and m ∈ N. Then for any e ∈ E(G)
(a) γ((Se,2m+2(G))m) = γ(Gm) + 1 and
(b) i((Se,2m+2(G))m) = i(Gm) + 1.
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Proof. Suppose that S is a γ-set in Gm, we subdivide the edge e = xy
to a (2m+ 2)-path Pxy and H = Se,2m+2(G). Consider two cases:
Case1. For any vertex v of Gm we have dHm(v, S) ≤ m. In this case,
S′ = S ∪ {(xy)m+1} is a dominating set for Hm where (xy)m+1 is the
central vertex of Pxy which dominates all i-vertices of Pxy.
Case2. There is some vertex v in Gm for which dHm(v, S) > m and
dGm(v, S) ≤ m. Assume that V1 = {v1, v2, . . . , vk} is the set of all
vertices which are similar to v. So xy is a common edge of the paths
Pv1u1 , Pv2u2 , · · · , Pvkuk

of minimum lengths between the elements of V1

and S. Thus, Lemma 2.2 implies that dG(x, u1) = dG(x, u2) = · · · =
dG(x, uk) = l and dG(y, u1) = dG(y, u2) = · · · = dG(y, uk) = l − 1 (sup-
pose that dG(x, S) = dG(y, S) + 1). To define a dominating set S′ for
Hm, we add i-vertex (xy)l to S. This vertex dominates all elements
of V1 and the i-vertices (xy)1, (xy)2, . . . , (xy)l+m of Pxy. In addition,
because dG((xy)l+m+1, S) = 2m + 2 − (l + m + 1) + l − 1 = m so S
dominates all i-vertices (xy)l+m+1, (xy)l+m+2, . . . , (xy)2m+2. Hence, S′

is a dominating set of Hm.
It follows that, γ(Hm) ≤ |S′| = γ(Gm) + 1.
Now we prove that γ(Hm) ≥ γ(Gm) + 1. Let S′ be a γ-set of Hm.
Since the i-vertex (xy)m+1 is only dominated by i-vertices of Pxy, so
S1 = S′ ∩ {(xy)j |1 ≤ j ≤ 2m + 1} ̸= ∅. If |S1| ≥ 2, then we can easily
show that S = (S′ − S1) ∪ {x} is a dominating set of Gm. Therefore,
γ(Hm) − 1 = |S′| − 2 + 1 ≥ |S| ≥ γ(Gm). Now assume that |S1| = 1.
We consider two cases:
Case1. S1 = {(xy)m+1}. In this case, this element of γ-set S′ only
dominates i-vertices of Pxy and so S = S′ \ {(xy)m+1} must be a domi-
nating set of Gm. Hence, γ(Hm)− 1 = |S′| − 1 = |S| ≥ γ(Gm).
Case2. S1 = {(xy)i}, where i ̸= m + 1. Without loss of gener-
ality, suppose that 1 ≤ i ≤ m. Because Nm[(xy)i] = {(xy)j |1 ≤
j ≤ i + m} ∪ Nm−i[x], i-vertices (xy)i+m+1, (xy)i+m+2, . . ., (xy)2m+1

must be dominated by a vertex of G such as u ∈ S − S1. Thus,
dH((xy)i+m+1, u) ≤ m and dH(y, u) ≤ m−(2m+2−(i+m+1)) = i−1.
Hence, we have Nm−i[x] ⊆ Nm[u] in G. Therefore, S′−S1 is a dominat-
ing set ofGm and γ(Hm)−1 = |S′−S1| ≥ γ(Gm). So γ(Hm) ≥ γ(Gm)+1
and consequently, γ(Hm) = γ(Gm) + 1.
The proof of the second part is quite similar. □

Corollary 2.4. Let G be a graph, m ∈ N, and P2m+2 is an induced
subgraph of G between vertices x and y. If we replace this subgraph with
the edge xy, then for the resulting graph H, we have
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(a) γ(Hm) = γ(Gm)− 1,
(b) i(Hm) = i(Gm)− 1.

Lemma 2.5. Let G be a graph and n,m ∈ N. If n = (2m + 1)k + r,
1 ≤ r ≤ 2m+ 1, and e ∈ E(G), then
(a) γ((Se,n(G))m) = k + γ((Se,r(G))m),
(b) i((Se,n(G))m) = k + i((Se,r(G))m).

Proof. (a) We proceed by induction on k. There is nothing to prove if
k = 0. Suppose that n = (k + 1)(2m + 1) + r and n′ = k(2m + 1) + r.
We have γ((Se,n′(G))m) = k + γ((Se,r(G))m). On the G-edge e = xy of
Se,n′(G) consider the edge e′ = (xy)0(xy)1 ∈ Se,n′(G). It is easy to show
that Se′,2m+2(Se,n′(G)) ∼= Se,n(G). By applying Lemma 2.3, we conclude
that γ((Se,n(G))m) = γ((Se′,2m+2(Se,n′(G)))m) = 1 + γ((Se,n′(G))m) =
1 + k + γ((Se,r(G))m). So (a) was proved for n = (k + 1)(2m+ 1) + r.
We can similarly prove the second part. □

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. We only prove part (a). As seen before,

G
1
f = Se1,f(e1)(Se2,f(e2)(· · ·Seq ,f(eq)(G) · · · )),

and

G
1
r = Se1,r(e1)(Se2,r(e2)(· · ·Seq ,r(eq)(G) · · · )).

Now by applying Lemma 2.5,

γ(G
m
f ) = γ((Se1,f(e1)(Se2,f(e2)(· · ·Seq ,f(eq)(G))m) · · · ))

= k1 + γ((Se1,r(e1)(Se2,f(e2)(· · ·Seq ,f(eq)(G))m) · · · ))
= k1 + k2 + γ((Se1,r(e1)(Se2,r(e2)(· · ·Seq ,f(eq)(G))m) · · · ))
= . . . =

∑q
i=1 ki + γ((Se1,r(e1)(Se2,r(e2)(· · ·Seq ,r(eq)(G))m) · · · ))

=
∑q

i=1 ki + γ(G
m
r ). □

Corollary 2.6. If G is a graph, n,m ∈ N and n = (2m+1)k+ r where
1 ≤ r ≤ 2m+ 1, then
(a) γ(G

m
n ) = k.q(G) + γ(G

m
r ),

(b) i(G
m
n ) = k.q(G) + i(G

m
r ).

Proof. According to Theorem 2.1, we only need to consider the constant
mappings F,R : E(G) → N defined by F (e) = n and R(e) = r for each
edge e ∈ E(G). □
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In the next theorem, we prove that the set of t-vertices of the m
2m+1 -

power of any graph is an independent γ-set.

Theorem 2.7. Let G be a graph and m ∈ N; and let f : E(G) → N
be a mapping such that for each ei ∈ E(G) = {e1, e2, . . . , eq}, f(ei) =
(2m+ 1)ki and ki ∈ N(1 ≤ i ≤ q). Then

(a) i(G
m

2m+1 ) = γ(G
m

2m+1 ) = p(G).

(b) i(G
m
f ) = γ(G

m
f ) =

∑q
i=1 ki − q(G) + p(G).

Proof. (a) Consider the closedm-neighborhoods of the t-vertices of G
m

2m+1.
The intersection of any two of them is empty. Additionally, any dominat-

ing set has a common vertex with each of them. Therefore, γ(G
m

2m+1 ) ≥
p(G). Furthermore, the set of t-vertices of G

m
2m+1 is an independent

dominating set. Hence, i(G
m

2m+1 ) = γ(G
m

2m+1 ) = p(G).
(b) This part can be deduced from Theorem 2.1 and part (a). □
Next theorems and corollaries give us some inequalities between domi-
nation numbers of fractional powers of a graph.

Theorem 2.8. Let G be a graph and m,n ∈ N.
(a) γ(G

m
n ) ≥ γ(G

m+1
n ),

(b) γ(G
m
n ) ≤ γ(G

m
n+1 ),

(c) if m
n < 1 then γ(G

m
n ) ≥ γ(G

m+1
n+1 ), and

(d) if m
n > 1 then γ(G

m
n ) ≤ γ(G

m+1
n+1 ).

Proof. (a) Because G
m
n is a spanning subgraph of G

m+1
n , any γ−set of

G
m
n is a dominating set for G

m+1
n and so γ(G

m
n ) ≥ γ(G

m+1
n ).

(b) Suppose that S is a γ-set of G
m

n+1 . We select one i-vertex from each

G-edge of G
1

n+1 and collect them in S1. Assume that x ∈ S ∩ S1 and y

and z are two neighbours of x in G
1

n+1 . It is easy to see that either y /∈ S
or z /∈ S. To see this, suppose that {x, y, z} ⊆ S. Any vertex that is
dominated by x, is also dominated by y or z. In addition, x is dominated

by y and z. So S \{x} is a dominating set of G
m

n+1 , a contradiction. For

each v ∈ S1 we do the following operation on G
1

n+1 : If v /∈ S we connect

two neighbours of v in G
1

n+1 , and if v ∈ S we connect two neighbours v′

and v′′ of v in G
1

n+1 and change S to (S \{v})∪{v′} where v′ /∈ S. If we

denote this graph by H then we can easily show that G
1
n is a subgraph

of H and (the new) S is a dominating set for Hm. Therefore, S is a

dominating set of G
m
n and so γ(G

m
n ) ≤ γ(Hm) ≤ |S| = γ(G

m
n+1 ).
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(c) Assume that S is a γ-set of G
m
n . To construct a dominating set from

S for G
m+1
n+1 , select a central edge (or one of the two central edges) of each

G-edges of G
1
n and subdivide each of them to the two edges. Let vxy be

a vertex which is added to G-edge xy. The resulting graph is isomorphic

to G
1

n+1 and we denote it by H. We prove that S is a dominating set

for (m+1)-power of H, that is isomorphic to G
m+1
n+1 . Suppose that x is a

vertex of G
1
n . Since S is a γ-set for G

m
n , we deduce that d

G
1
n
(x, S) ≤ m.

Therefore, there is v ∈ S such that d
G

1
n
(x, v) ≤ m. Call the shortest

xv−path P . Because the distance of any two new vertices vxy and vx′y′

in H is at least n, we deduce that P contains at most one of these new
vertices and hence dH(x, v) ≤ m+ 1. So x is dominated by S in Hm+1.
In addition, for any vertex vxy of H, dH(vxy, S) ≤ dH((xy)[n

2
], S) + 1

where (xy)[n
2
] is a neighbour of vxy in H. Therefore, dH(vxy, S) ≤ m+1

and vxy is also dominated by S in Hm+1. So, S is a dominating set in

G
m+1
n+1 and hence γ(G

m+1
n+1 ) ≤ |S| = γ(G

m
n ).

(d) Suppose that S is a γ−set of G
m+1
n+1 . To construct a dominating

set from S for G
m
n , select a central i-vertex (or one of the two central

i-vertices) from each G-edge of G
1

n+1 and collect them in S1. Assume

that x ∈ S ∩ S1 and y and z are two neighbours of x in G
1

n+1 . As seen
in part (b), either y /∈ S or z /∈ S. For each v ∈ S1, we do the following

operation on G
1

n+1 : If v /∈ S we connect two neighbours of v in G
1

n+1

and remove v, and if v ∈ S we connect two neighbours v′ and v′′ of v in

G
1

n+1 and change S to (S \ {v})∪ {v′} where v′ /∈ S and then remove v.

If we denote this graph by H, then we can easily show that H ∼= G
1
n and

Hm ∼= G
m
n . We prove that the resulting set S is also a dominating set

of Hm and conclude that γ(G
m
n ) = γ(Hm) ≤ |S| = γ(G

m+1
n+1 ). Suppose

that x is a vertex of G
1

n+1 which is not in S1. Because S is a γ-set

for G
m+1
n+1 , so d

G
1

n+1
(x, S) ≤ m+ 1. Therefore, there is v ∈ S such that

d
G

1
n+1

(x, v) ≤ m+1. Since the distance of any two vertices of S1 in G
1

n+1

is at least n and m > n, so dH(x, v) ≤ m. Therefore, x is dominated by
S in Hm, and hence, S is a dominating set of Hm. □

We know that G
m
n is an induced subgraph of G

mk
nk which is not span-

ning subgraph when k ≥ 2. The next theorem and corollary show the
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relations between domination numbers of mk
nk -powers of a graph when

k ∈ N.

Theorem 2.9. Let G be a graph and m, k ∈ N. Then γ(G
mk
k ) ≤

γ(G
m(k+1)

k+1 ).

Proof. Assume that S is a γ-set of G
m(k+1)

k+1 . To construct a dominating

set from S for G
mk
k , select a central i-vertex (or one of the two central

i-vertices) from each G-edge of G
1

k+1 and collect them in S1. Assume

that x ∈ S∩S1 and y and z are two neighbours of x in G
1

k+1 . As you see
in part (b) of Theorem 2.8, either y /∈ S or z /∈ S. For each v ∈ S1 we do

the following operation on G
1

k+1 : If v /∈ S we connect two neighbours of

v in G
1

k+1 and remove v, and if v ∈ S we connect two neighbours v′ and

v′′ of v in G
1

k+1 and change S to (S−{v})∪{v′} where v′ /∈ S and then
remove v. If we denote this graph by H then we can easily show that

H ∼= G
1
k and Hmk ∼= G

mk
k . We prove that the resulting set S is also

a dominating set for Hmk and we conclude that γ(G
mk
k ) = γ(Hmk) ≤

|S| = γ(G
m(k+1)

k+1 ). Suppose that x is a vertex of G
1

k+1 which is not in S1.

Since S is a γ-set for G
m(k+1)

k+1 , so d
G

1
k+1

(x, S) ≤ mk + k and therefore,

there is v ∈ S such that d
G

1
k+1

(x, v) ≤ mk + k. We consider two cases:

Case1. d
G

1
k+1

(x, v) ≤ mk

In this case, dH(x, v) ≤ d
G

1
k+1

(x, v) ≤ mk and hence x is dominated by

S in Hmk.
Case2. mk + 1 ≤ d

G
1

k+1
(x, v) ≤ mk + k

Call the shortest xv-path P (in G
1

k+1 ) and assume that the length of P
is mk + i where 1 ≤ i ≤ m. P contains at least n1 = ⌊mk+i

k+1 ⌋ vertices of

S1. Therefore, dH(x, v) ≤ mk + i − n1. Because i ≤ m, i ≤ n1 and so
mk + i − n1 ≤ mk. Thus, dH(x, v) ≤ mk and x is dominated by S in
Hmk. Therefore, S is a dominating set of Hmk. □

Corollary 2.10. Let G be a graph and m,n, k, l ∈ N.
(a) γ(G

mk
k ) ≤ γ(G

ml
l ) when k < l,

(b) γ(G
mk
nk ) ≤ γ(G

ml
nl ) when k < l,

(c) γ(Gm) ≤ γ(G
mk
k ), and

(d) γ(G
m
n ) ≤ γ(G

mk
nk ).
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Proof. We only prove (b). Since G
1

mn = (G
1
m )

1
n , we have

γ(G
mk
nk ) = γ((G

1
nk )mk) = γ(((G

1
n )

1
k )mk) = γ((G

1
n )

mk
k ) ≤ γ((G

1
n )

ml
l ) =

γ(G
ml
nl ). □

In the next theorem and its corollary, we find an upper bound for the

increasing sequence {γ(G
mk
nk )} when m,n, k ∈ N.

Theorem 2.11. Let G be a graph and m, k ∈ N. Then γ(G
mk
k ) ≤

γ(Gm−1) when m > 1, and γ(G
k
k ) ≤ p(G).

Proof. Suppose that m > 1 and S is a γ-set of Gm−1. Note that S is

also a subset of t-vertices of G
mk
k . We prove that S is a dominating

set of G
mk
k . Consider the vertex (xy)i of G

mk
k where 0 ≤ i ≤ k. Now

we have d
G

1
k
((xy)i, S) ≤ d

G
1
k
((xy)i, x) + d

G
1
k
(x, S) ≤ k + k.dG(x, S) ≤

k + k(m− 1) = km. Thus, γ(G
mk
k ) ≤ |S| = γ(Gm−1).

Obviously, we can prove that the set of terminal vertices of G
k
k is a

dominating set for this graph. □

Corollary 2.12. Let G be a graph and m,n, k ∈ N. Then γ(G
mk
nk ) ≤

γ(G
m−1
n ) when m > 1, and γ(G

k
nk ) ≤ p(G

1
n ).

Proof. Assume that m > 1. Because G
1

mn = (G
1
m )

1
n , we have

γ(G
mk
nk ) = γ((G

1
nk )mk) = γ(((G

1
n )

1
k )mk) = γ((G

1
n )

mk
k ) ≤ γ((G

1
n )m−1) =

γ(G
m−1
n ). □

3. Concluding remarks

Let G be a graph. When m
n < 1, the sequence xk = m+k

n+k is an increasing

sequence that converges to 1, and when m
n > 1, the sequence yk = m+k

n+k is

a decreasing sequence that converges to 1. By using Theorem 2.8, {ak} =
{γ(Gxk)} is a decreasing sequence and {bk} = {γ(Gyk)} is an increasing
sequence. In addition, γ(Gxk) ≥ 1 and γ(Gyk) ≤ p(G) (because in this

case the set of terminal vertices of G
m+k
n+k is a dominating set). Thus,

the sequences {ak} and {bk} are convergent.

Problem 3.1. What are the limits of the sequences {ak} and {bk}?

Similarly, consider the constant sequence zk = mk
nk . According to Theo-

rem 2.9 and Corollary 2.12, the sequence {ck} = {γ(Gzk)} is increasing
and bounded. Therefore, the sequence {ck} is convergent.
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Problem 3.2. What is the limit of the sequence {ck}?

We know that γ(Gk) ≥ γ(Gk+1) for any k ∈ N and we proved the similar
inequality for the fractional powers in some special cases.

Problem 3.3. Let r, r′ ∈ Q+ and r < r′. Is it correct that γ(Gr) ≥
γ(Gr′)?
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