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Abstract. Let f be a proper k-coloring of a connected graph G
and Π = (V1, V2, . . . , Vk) be an ordered partition of V (G) into the
resulting color classes. For a vertex v of G, the color code of v
with respect to Π is defined to be the ordered k-tuple cΠ(v) =
(d(v, V1), d(v, V2), . . . , d(v, Vk)), where d(v, Vi) = min{d(v, x) : x ∈
Vi}, 1 ≤ i ≤ k. If distinct vertices have distinct color codes, then
f is called a locating coloring. The minimum number of colors
needed in a locating coloring of G is the locating chromatic number
of G, denoted by χ

L
(G). In this paper, we study the locating

chromatic number of the join of graphs. We show that when G1

and G2 are two connected graphs with diameter at most two, then
χ

L
(G1 ∨ G2) = χ

L
(G1) + χ

L
(G2), where G1 ∨ G2 is the join of

G1 and G2. Also, we determine the locating chromatic number of
the join of paths, cycles and complete multipartite graphs.
Keywords: Locating coloring, locating chromatic number, fan,
wheel, join.
MSC(2010): Primary: 05C15; Secondary: 05C12.

1. Introduction

Let G be a graph, without loops and multiple edges, with vertex set
V (G) and edge set E(G). A proper k-coloring ofG, k ∈ N, is a function f
defined from V (G) onto a set of colors [k] = {1, 2, . . . , k} such that every
two adjacent vertices have different colors. In fact, for every i, 1 ≤ i ≤ k,
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the set f−1(i) is a nonempty independent set of vertices which is called
the color class i. When S ⊆ V (G), then f(S) = {f(u) : u ∈ S}.
The minimum cardinality k for which G has a proper k-coloring is the
chromatic number of G, denoted by χ(G). For a connected graph G, the
distance d(u, v) between two vertices u and v in G is the length of the
shortest path between them, and for a subset S of V (G), the distance
between u and S is given by d(u, S) = min{d(u, x) : x ∈ S}. The
diameter of G is max{d(u, v) : u, v ∈ V (G)}. When u is a vertex of G,
then the neighbor of u in G is the set NG(u) = {v : v ∈ V (G), d(u, v) =
1}.

Definition 1.1. [4] Let f be a proper k-coloring of a connected graph
G and Π = (V1, V2, . . . , Vk) be an ordered partition of V (G) into the
resulting color classes. For a vertex v of G, the color code of v with
respect to Π is defined to be the ordered k-tuple

cΠ(v) = (d(v, V1), d(v, V2), . . . , d(v, Vk)).

If distinct vertices of G have distinct color codes, then f is called a locat-
ing coloring of G. The locating chromatic number, denoted by χ

L
(G),

is the minimum number of colors in a locating coloring of G.

The concept of locating coloring was first introduced and studied by
Chartrand et al. in [4]. They established some bounds for the locating
chromatic number of a connected graph. They also proved that for a
connected graph G with n ≥ 3 vertices, we have χ

L
(G) = n if and only

if G is a complete multipartite graph. Hence, the locating chromatic
number of the complete graph Kn is n. Also for paths and cycles of
order n ≥ 3 it is proved in [4] that χ

L
(Pn) = 3, χ

L
(Cn) = 3 when n is

odd, and χ
L
(Cn) = 4 when n is even.

The locating chromatic number of trees, of Kneser graphs, and that of
the Cartesian product of graphs were studied in [4] and [3], [2], and [1],
respectively. For more results in the subject and related topics, see [5]
to [10].

Obviously, χ(G) ≤ χ
L
(G). Note that the i-th coordinate of the color

code of each vertex in the color class Vi is zero and its other coordinates
are non zero. Hence, a proper coloring is a locating coloring whenever
the color codes of vertices in each color class are different.

Recall that the join of two graphs G1 and G2, denoted by G1∨G2, is a
graph with vertex set V (G1)

∪
V (G2) and edge set E(G1)

∪
E(G2)

∪
{uv :

u ∈ V (G1), v ∈ V (G2)}. For example K1 ∨ Pn is the fan Fn, K1 ∨ Cn
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is the wheel Wn, and the friendship graph Frn, n = 2t+1, is the graph
obtained by joining K1 to the t disjoint copies of K2.

In this paper, we study the locating chromatic number of the join of
graphs. Although we always have χ(G1 ∨G2) = χ(G1) + χ(G2), but it
may happen that χ

L
(G1∨G2) ̸= χ

L
(G1)+χ

L
(G2). For example we have

χ
L
(P10) = 3 while, by Corollary 3.8 (see Section 3), χ

L
(P10 ∨P10) = 8.

The diameter of G1 ∨G2 is at most two. Hence, in each proper color-
ing of G1 ∨G2, the color code of no vertex of G1 ∨G2 has a coordinate
greater than two. This fact motivated us to define a new parameter,
the adjacency locating chromatic number, which is closely related to the
locating chromatic number. Proposition 2.2 and Theorem 3.1 (see Sec-
tion 3) show the relation of this parameter with the locating chromatic
number. Using this new parameter we determine the exact value of the
locating chromatic number of Pm ∨ Pn, Km ∨ Pn, Pm ∨ Cn, Km ∨ Cn,
and Cm ∨ Cn in terms of m and n.

2. The adjacency locating chromatic number

The following parameter can be defined for disconnected graphs.

Definition 2.1. Let f be a proper k-coloring of a graph G. If for each
two distinct vertices u and v with the same color f(NG(u)) ̸= f(NG(v)),
then we say f is an adjacency locating coloring of G. The adjacency
locating chromatic number, χ

L2
(G), is the minimum number of colors

in an adjacency locating coloring of G.

Note that we always have χ(G) ≤ χ
L2
(G) ≤ |V (G)|. To see the

relation between two parameters χ
L
and χ

L2
, let f be a k-coloring of the

connected graph G and Π = (V1, V2, . . . , Vk) be an ordered partition of
V (G) into the resulting color classes. Now for each v ∈ V (G) determine
the color code cΠ(v). Then, in the color code of each vertex replace
by 2 all of the coordinates which are at least two. We call these new
color codes modified color codes. Thus, in the modified color code of a
vertex v exactly one coordinate is zero, |NG(v)| coordinates are 1, and
the other coordinates are 2.

Now it is easy to see that f is an adjacency locating coloring if and only
if different vertices of G have different modified color codes. Therefore,
each adjacency locating coloring of G is a locating coloring. Hence,
χ

L
(G) ≤ χ

L2
(G). Also, note that when the diameter of G is at most

two, then each locating coloring of G is an adjacency locating coloring
and hence, χ

L2
(G) ≤ χ

L
(G). Thus, we have the following proposition.
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Proposition 2.2. If G is a connected graph with diameter at most two,
then χ

L
(G) = χ

L2
(G).

Specially, χ
L2
(Kn) = n and χ

L2
(Km,n) = m + n. It is well known

that almost all graphs have diameter two. According to this fact, it is
possible to compute χ

L2
instated of χ

L
almost for all graphs. This is

interesting and useful, since computing the locating chromatic number
of a graph directly may be infeasible if computing the distances in the
graph is costly, while the adjacency locating chromatic number may be
computed by only considering the equality, adjacency or non-adjacency
of a vertex with each of the color classes. These two parameters can
also be arbitrarily far apart. For example, by Theorem 3.6 (see Section
3), for each n ≥ 3, χ

L2
(Pn) = min{k : k ∈ N, n ≤ 1

2(k
3 − k2)} while

χ
L
(Pn) = 3. Note that the path P9 is a graph whose diameter is greater

than two but χ
L2
(P9) = χ

L
(P9) = 3. Theorem 3.6 also implies that for

each positive integer m there exists a graph (a path) whose adjacency
locating chromatic number is m.

3. The locating chromatic number and the join operation

In this section, we first study the locating chromatic number of the
join of two arbitrary graphs. Then, we determine the locating chro-
matic number of the friendship graphs, and the join of paths, cycles
and complete multipartite graphs. Specially, we determine χ

L
(Fn) and

χ
L
(Wn).

Theorem 3.1. For two arbitrary graphs G1 and G2, we have χ
L
(G1 ∨

G2) = χ
L2
(G1) + χ

L2
(G2).

Proof. The diameter of G1∨G2 is at most two and hence, by Proposition
2.2, χ

L
(G1 ∨ G2) = χ

L2
(G1 ∨ G2). Let k1 = χ

L2
(G1), k2 = χ

L2
(G2),

and k = χ
L2
(G1 ∨G2). Also, let f be an adjacency locating k-coloring

of G1 ∨G2. Vertices of G1 are adjacent to the vertices of G2 and hence,

{f(u) : u ∈ V (G1)}
∩

{f(v) : v ∈ V (G2)} = ∅.

Let k′1 = |{f(u) : u ∈ V (G1)}| and k′2 = |{f(v) : v ∈ V (G2)}|. Thus,
k = k′1 + k′2. Assume that u and u′ are two vertices of G1 with the
same color. Since f is an adjacency locating coloring and V (G2) ⊆
NG1∨G2

(u)
∩

NG1∨G2
(u′), we have f(NG1

(u)) ̸= f(NG1
(u′)). This means

that the restriction of f to V (G1) is an adjacency locating k′1-coloring of
G1. Hence, k1 ≤ k′1. A similar argument holds for G2. Thus, k1 + k2 ≤
k′1 + k′2 = k.
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Now let f1 be an adjacency locating k1-colorings of G1 with the color set
{1, 2, . . . , k1}, and f2 be an adjacency locating k2-colorings of G2 with
the color set {k1 + 1, k1 + 2, . . . , k1 + k2}. Define the (k1 + k2)-coloring
f ′ of G1 ∨ G2 as f ′(u) = f1(u) when u ∈ V (G1), and f ′(v) = f2(v)
when v ∈ V (G2). If z1 and z2 are two vertices in G1 ∨G2 with f ′(z1) =
f ′(z2), then {z1, z2} ⊆ V (G1) or {z1, z2} ⊆ V (G2). Without loss of
generality, assume that {z1, z2} ⊆ V (G1). Since f1 is an adjacency
locating k1-coloring and V (G2) ⊆ NG1∨G2

(z1)
∩

NG1∨G2
(z2), we have

f ′(NG1∨G2
(z1)) ̸= f ′(NG1∨G2

(z2)). This means that f ′ is an adjacency

locating (k1 + k2)-coloring of G1 ∨ G2 and hence, k ≤ k1 + k2. Thus,
k = k1 + k2, which completes the proof. □

Thus, χ
L
(G1∨G2) ≥ χ

L
(G1)+χ

L
(G2). Theorem 3.1 and Proposition

2.2 imply the following corollary.

Corollary 3.2. If G1 and G2 are two connected graphs with diameter
at most two, then χ

L
(G1 ∨G2) = χ

L
(G1) + χ

L
(G2).

Letm, t be two positive integers and G = tKm be the graph consisting
of t disjoint copies of Km. A coloring of G is an adjacency locating
coloring if and only if no two different components of G have the same
color set. For a positive integer k, the set [k] has

(
k
m

)
distinct subsets of

size m. Thus, χ
L2
(G) = min{k : t ≤

(
k
m

)
}. Now Theorem 3.1 implies

the following result.

Proposition 3.3. For a positive integer t, let n = 2t + 1. Then, the
locating chromatic number of the friendship graph Frn is 1+min{k : t ≤(
k
2

)
}.

Let Pn = v1v2 · · · vn be a path with vertex set {v1, v2, . . . , vn} and edge
set {v1v2, v2v3, . . . , vn−1vn}, and Cn = v1v2 · · · vnv1 be a cycle with ver-
tex set {v1, v2, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn, vnv1}. Let
G ∈ {Pn, Cn}. Each coloring f of G can be represented by a sequence,
say [f(v1), f(v2), . . . , f(vn)]. For convenience, we identify each coloring
with its sequence and work with the colors instated of vertices. For
1 ≤ n1 ≤ n, let f|[n1]

= [f(v1), f(v2), . . . , f(vn1)] be the restriction of f

to the subgraph induced by the vertices {v1, v2, . . . , vn1}.
If there exists a vertex v

l
∈ V (G) such that f(v

l
) = s and f(NG(vl

)) =
{r, t}, then we say that the segment [[r, s, t]] occurs in (the correspond-
ing sequence of) f . This notation indicates that in G there exists a
vertex with color s between two vertices with colors r and t. Note that
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[[r, s, t]] = [[t, s, r]]. Also, if f(v
l
) = s and f(NG(vl

)) = {r}, then we say
that the segment [[r, s, r]] occurs in f . This indicates that there exists
a vertex with color s between two vertices with color r, or there exists
a vertex of degree one (a leaf) with color s whose neighbor has color r.
When r, s, t are elements of [k] with r ̸= s and t ̸= s, then we say that
[[r, s, t]] is a proper segment over the set [k]. Using these notations we
have the following observation.

Observation 3.4. Let f be a k-coloring of Pn or Cn. Then, f is an
adjacency locating k-coloring if and only if each proper segment over the
set [k] occurs at most once in f .

Now assume that f is an adjacency locating k-coloring of G, G ∈
{Pn, Cn}, for some k ∈ N. If u and v are two vertices in G with the
same color i, 1 ≤ i ≤ k, then f(NG(u)) ̸= f(NG(v)). Note that for each
u ∈ V (G), |f(NG(u))| ≤ 2. Hence, we have

|{u : u ∈ V (G), f(u) = i, |f(NG(u))| = 1}| ≤ k − 1

and,

|{u : u ∈ V (G), f(u) = i, |f(NG(u))| = 2}| ≤
(
k − 1

2

)
.

This means that there are at most (k − 1) +
(
k−1
2

)
= 1

2(k
2 − k) vertices

in G with color i. Hence, n ≤ k(k
2−k
2 ). Therefore, we have the following

proposition.

Proposition 3.5. Let n, k be two positive integers. If there exists an
adjacency locating k-coloring f of Pn or Cn, then n ≤ 1

2(k
3 − k2). The

equality holds if and only if each proper segment over the set [k] occurs
exactly once in f .

When f = [f(v1), f(v2), . . . , f(vt)] is a coloring of Pt = v1v2 · · · vt,
f ′ = [f ′(v′1), f

′(v′2), . . . , f
′(v′t′)] is a coloring of Pt′ = v′1v

′
2 · · · v′t′ , f(vt) ̸=

f ′(v′1), and {v1, v2, . . . , vt}
∩
{v′1, v′2, . . . , v′t′} = ∅, then by f⊕f ′ we mean

[f(v1), f(v2), . . . , f(vt), f
′(v′1), f

′(v′2), . . . , f
′(v′t′)],

which is a coloring of the path Pt+t′ = v1v2 · · · vtv′1v′2 · · · v′t′ . In fact,
we stick the colorings of two small paths in order to get a coloring
of a larger path. Note that the segment corresponding to vt in f
is [[f(vt−1), f(vt), f(vt−1)]], while the segment corresponding to vt in
f ⊕ f ′ is [[f(vt−1), f(vt), f

′(v′1)]]. In this case we say that the segment
[[f(vt−1), f(vt), f

′(v′1)]] occurs between f an f ′. A similar argument
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holds for v′1. For convenience, for the empty sequence ∅ we define
f ⊕ ∅ = ∅ ⊕ f = f .

Now we are ready to determine the adjacency locating chromatic num-
ber of paths.

Theorem 3.6. For a positive integer n ≥ 2, χ
L2
(Pn) = m, where

m = min{k : k ∈ N, n ≤ 1
2(k

3 − k2)}. More precisely, there exist an
adjacency locating m-coloring fn of the path Pn = v1v2 · · · vn with the
color set {1, 2, ...,m}, and two specified colors (say “1” and “2”) such
that fn satisfies the following properties.

(a) fn(vn−1) = 2 and fn(vn) = 1.
(b) If n ≥ 9, then fn(vn−2) = m.
(c) If n ≥ 9 and n ̸= 1

2(m
3−m2)−1, then fn(v1) = 2 and fn(v2) = 1.

Proof. Since

1

2
((m− 1)3 − (m− 1)2) < n ≤ 1

2
(m3 −m2),

if we give an adjacency locating m-coloring of Pn, then Proposition 3.5
implies that χ

L2
(Pn) = m.

For 2 ≤ n ≤ 50, consider the colorings which are listed in Table 1. It
is not hard to check that each proper segment over the set [5] occurs at
most once in the fi, 2 ≤ i ≤ 50. Hence, each fi is an adjacency locating

coloring. Note that 33−32

2 = 9, 43−42

2 = 24, and 53−52

2 = 50. Also, note
that all of the proper segments over the sets [3], [4], and [5] occur in f9,
f24, and f50, respectively.

Here after let n ≥ 51. Thus, m ≥ 6. Now in an inductive way we prove
the theorem. Let n′ = 1

2((m−1)3− (m−1)2), and assume that fn′ is an
adjacency locating (m−1)-coloring of Pn′ with the mentioned properties
in the theorem (let us denote this by writing fn′ = [2, 1, . . . ,m−1, 2, 1]).
Specially, by Proposition 3.5, all of the proper segments over the set
[m− 1] occur in fn′ . Note that 1

2(m
3 −m2) = n′ +(2(m− 1)+ 3

(
m−1
2

)
).

Using the new color “m”, we will add 2(m−1)+3
(
m−1
2

)
new entries to fn′ .

These new entries are (m− 1) pairs of the form [m, i], and
(
m−1
2

)
triples

of the form [m, i, j], {i, j} ⊆ [m− 1]. Step by step, we provide an adja-

cency locating m-coloring fi for each i, n′ < i ≤ n′+(2(m−1)+3
(
m−1
2

)
).

In each step we modify the coloring for a path with one more vertex.
Equivalently, we add a new entry to somewhere in the coloring sequence
and probably, we change some other entries.
Let T =[m, 1, 3,m, 3, 2,m, 2, 1] andA=[m,m−4,m,m−5, . . . ,m, 2,m, 1].
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Table 1. Optimal adjacency locating colorings of the small paths.

f2=[2, 1] f19=f9 ⊕ [4, 1, 4, 3, 4, 3, 2, 4, 2, 1]

f3=[3, 2, 1] f20=f9 ⊕ [4, 3, 1, 4, 2, 4, 3, 2, 4, 2, 1]

f4=[1, 3, 2, 1] f21=f9 ⊕ [4, 1, 4, 2, 4, 3, 4, 3, 2, 4, 2, 1]

f5=[2, 1, 3, 2, 1] f22=f7 ⊕ [4, 3, 4, 2, 4, 1, 4, 1, 3, 4, 3, 2, 4, 2, 1]

f6=[3, 2, 3, 1, 2, 1] f23=f8 ⊕ [4, 3, 4, 2, 4, 1, 4, 1, 3, 4, 3, 2, 4, 2, 1]

f7=[2, 1, 3, 2, 3, 2, 1] f24=f9 ⊕ [4, 3, 4, 2, 4, 1, 4, 1, 3, 4, 3, 2, 4, 2, 1]

f8=[3, 2, 3, 1, 3, 1, 2, 1] f25=f24|[22]
⊕ [5, 2, 1]

f9=[2, 1, 3, 1, 3, 2, 3, 2, 1] f26=f24|[22]
⊕ [2, 5, 2, 1]

f10=[2, 1, 3, 1, 3, 2, 3, 4, 2, 1] f27=f24|[22]
⊕ [2, 1, 5, 2, 1]

f11=[2, 1, 3, 1, 3, 2, 3, 2, 4, 2, 1] f28=f24|[22]
⊕ [5, 3, 1, 5, 2, 1]

f12=[2, 1, 3, 1, 3, 2, 3, 2, 1, 4, 2, 1] f29=f24|[22]
⊕ [5, 3, 5, 1, 5, 2, 1]

f13=[2, 1, 3, 1, 3, 2, 3, 4, 3, 1, 4, 2, 1] f30=f24|[22]
⊕ [5, 3, 5, 1, 3, 5, 2, 1]

f14=[2, 1, 3, 1, 3, 2, 3, 4, 3, 4, 1, 4, 2, 1] f31=f24|[22]
⊕ [5, 3, 5, 1, 5, 2, 5, 2, 1]

f15=[2, 1, 3, 1, 3, 2, 3, 4, 3, 4, 1, 3, 4, 2, 1] f32=f24|[22]
⊕ [5, 3, 5, 1, 3, 5, 2, 5, 2, 1]

f16=[2, 1, 3, 1, 3, 2, 3, 4, 3, 4, 1, 4, 2, 4, 2, 1] f33=f24 ⊕ [5, 1, 3, 5, 3, 2, 5, 2, 1]

f17=[2, 1, 3, 1, 3, 2, 3, 4, 3, 4, 1, 3, 4, 2, 4, 2, 1] f34=f24 ⊕ [5, 1, 5, 3, 5, 3, 2, 5, 2, 1]

f18=F9 ⊕ [4, 1, 3, 4, 3, 2, 4, 2, 1]

f26+i = fi ⊕ [5, 4, 5, 3, 5, 2, 5, 1, 5, 3, 4, 5, 4, 2, 5, 4, 1, 5, 1, 3, 5, 3, 2, 5, 2, 1], 9 ≤ i ≤ 24

For each i, j, 4 ≤ i ≤ m−1, and 1 ≤ j ≤ i−2, let Di,j = [m, i, j,m, i, j−
1, . . . ,m, i, 1]. Also, let Di = [m, i−1, i]⊕Di,i−2 and D[i] = Di⊕Di−1⊕
· · ·⊕D4. For example we have D5 = [m, 4, 5,m, 5, 3,m, 5, 2,m, 5, 1]. For
convenience, define Di,0 = D3 = D[3] = ∅. Now consider the following

coloring which is an m-coloring of a path with n′ + 2(m − 1) + 3
(
m−1
2

)
vertices.

fn′+2(m−1)+3(m−1
2 ) = fn′⊕ [m,m−1,m,m−2,m,m−3]⊕A⊕D[m−1]⊕T.

This is our final “complete model”. Using this complete model we
want to build the smaller colorings {fn′+i : 1 ≤ i < 2(m − 1) +

3
(
m−1
2

)
}. Note that all of the proper segments over the set [m] occur in

fn′+2(m−1)+3(m−1
2 ), each of them just once. More precisely,

• All of the proper segments over the set [m − 1] occur in fn′ ,
except the segment [[2, 1, 2]] which occurs at the end of T .
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• The segments of the form [[m, i, j]], where i, j ∈ [m−1] and i ̸= j,
occur in D[m−1] ⊕ T , except the segment [[m, 1, 2]] = [[2, 1,m]]
which occurs between fn′ and [m,m− 1,m,m− 2,m,m− 3].

• The segments of the form [[m, i,m]], 2 ≤ i ≤ m − 1, occur in
[m,m−1,m,m−2,m,m−3]⊕A. The segment [[m, 1,m]] occurs
between A and D[m−1].

• The segments of the form [[i+ 1,m, i]], 1 ≤ i ≤ m− 2, occur in
[m,m− 1,m,m− 2,m,m− 3]⊕A.

• The segments of the forms [[j,m, i]] and [[i,m, i]], where 4 ≤ i ≤
m− 1 and 2 ≤ j ≤ i− 2, occur in Di, inside D[m−1].

• The segments of the form [[1,m, j]], 3 ≤ j ≤ m−3, occur between
Dj+2 and Dj+1, inside D[m−1]. The segment [[1,m, 1]] occurs be-
tween D[m−1] and T . The segment [[1,m,m−2]] occurs between
A and D[m−1], and the segment [[1,m,m − 1]] occurs between
fn′ and [m,m− 1,m,m− 2,m,m− 3].

• The segments of the form [[2,m, j]], 4 ≤ j ≤ m− 1, occur in Dj .
The segment [[2,m, 2]] occurs in T .

• The segments of the form [[3,m, j]], 5 ≤ j ≤ m− 1, occur in Dj .
The segment [[3,m, 3]] occurs in T .

Note that f24 and f50 are given using this complete model. Now we pro-
ceed to build the other smaller colorings. Note that by the hypothesis,
we have fn′ = [2, 1, . . . ,m− 1, 2, 1]. Let

fn′+1 = fn′|[n′−2]
⊕ [m, 2, 1],

fn′+2 = fn′|[n′−2]
⊕ [2,m, 2, 1],

fn′+3 = fn′|[n′−2]
⊕ [2, 1,m, 2, 1],

fn′+4 = fn′|[n′−2]
⊕ [m, 3, 1,m, 2, 1],

fn′+5 = fn′|[n′−2]
⊕ [m, 3,m, 1,m, 2, 1],

fn′+6 = fn′|[n′−2]
⊕ [m, 3,m, 1, 3,m, 2, 1],

fn′+7 = fn′|[n′−2]
⊕ [m, 3,m, 1,m, 2,m, 2, 1],

fn′+8 = fn′|[n′−2]
⊕ [m, 3,m, 1, 3,m, 2,m, 2, 1],

fn′+9 = fn′|[n′−2]
⊕ [2, 1,m, 1, 3,m, 3, 2,m, 2, 1],

fn′+10 = fn′|[n′−2]
⊕ [2, 1,m, 1,m, 3,m, 3, 2,m, 2, 1],

fn′+11 = fn′|[n′−2]
⊕ [2, 1,m,m− 1, 1,m, 3,m, 3, 2,m, 2, 1],

fn′+12 = fn′|[n′−2]
⊕ [2, 1,m,m− 1,m− 2,m, 1, 3,m, 3, 2,m, 2, 1].
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Let 1 ≤ i ≤ 12. The coloring fn′+i has two parts. The first part
is fn′|[n′−2]

which the color m does not appear in it, and the second

part which m appears in it. Since fn′ is an adjacency locating (m− 1)-
coloring, each proper segment over the set [m− 1] occurs at most once
in fn′|[n′−2]

. Note that the segment [[2, 1, 2]] occurs at the end of the

second pat of fn′+i and not in the first part. Also, it is easy to see that
each segment in fn′+i which contains m occurs just once. Hence, fn′+i

is an adjacency locating m-coloring. Note that fn′+12 = fn′ ⊕ [m,m −
1,m− 2]⊕ T . Now step by step we add the part A. Let

fn′+12+1 = fn′ ⊕ [m,m− 1,m,m− 2]⊕ T,

and

fn′+12+2 = fn′ ⊕ [m,m− 1,m− 2]⊕ [m, 1]⊕ T.

Also, for each i, 2 ≤ i ≤ m− 4, let

fn′+12+2i−1=fn′⊕[m,m− 1,m,m− 2]⊕[m, i− 1,m, i− 2, . . . ,m, 1]⊕T,

and

fn′+12+2i = fn′ ⊕ [m,m− 1,m− 2]⊕ [m, i,m, i− 1, . . . ,m, 1]⊕ T.

Specially, fn′+12+2(m−4) = fn′ ⊕ [m,m − 1,m − 2] ⊕ A ⊕ T . Let
1 ≤ j ≤ 2(m−4). In the coloring fn′+12+j the segment [[2, 1, 2]] occurs at
the end of part T instead of part fn′ . Note that in fn′+12+j , the segment
corresponding to the final entry of fn′ is [[2, 1,m]], not [[2, 1, 2]]. Each
proper segment over the set [m − 1] occurs at most once and, except
[[2, 1, 2]], each one occurs just in the part fn′ . Also, by the case by case
investigation, we can see that each proper segment containing m occurs
at most once. Hence, fn′+12+j is an adjacency locating m-coloring.

For adding the parts D4, D5, . . ., Dm−3 we proceed as follows. Let
4 ≤ i ≤ m − 3 and assume that Di−1 is added (note that D3 = ∅).
For adding Di, alternately, we add a new entry m, then we remove
it in order to add the portion [m,m − 3] to the beginning of A, and
then we remove this portion in order to add a portion of the form
[m, i, j]. More precisely, assume that Di,j−1 is completed, where 1 ≤
j ≤ i − 1. We want to add the portion [m, i, j] or [m, j, i] of Di. Let
ni = n′ + 12 + 2(m − 4) + 3(3 + 4 + · · · + (i − 1 − 1)). Note that
n4 = n+ 12 + 2(m− 4) and Di,0 = D[3] = ∅. Let
fni+3j−2 = fn′ ⊕ [m,m− 1,m,m− 2]⊕A⊕Di,j−1 ⊕D[i−1] ⊕ T,
fni+3j−1 = fn′ ⊕ [m,m−1,m−2]⊕ [m,m−3]⊕A⊕Di,j−1⊕D[i−1]⊕T,
and fni+3j =
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fn′ ⊕ [m,m− 1,m− 2]⊕A⊕ [m, i, j]⊕Di,j−1 ⊕D[i−1] ⊕ T j < i− 1
fn′ ⊕ [m,m− 1,m− 2]⊕A⊕ [m, j, i]⊕Di,j−1 ⊕D[i−1] ⊕ T j = i− 1.

Except the segment [[2, 1, 2]] which occurs at the end of T , all of the other
proper segments over the set [m − 1] occur just in fn′ . Also, by con-
sidering the structures of A, Di,j−1, D[i−1] and T (and similar to what
we said about the complete model) it is not hard to see that each seg-
ment containing m occurs at most once in this colorings. Hence, these
colorings are adjacency locating m-colorings.

Let n′′ = nm−3 + 3(m − 4). Since (n′ + 2(m − 1) + 3
(
m−1
2

)
) − n′′ =

6m−12, we need 6m−12 steps to complete the proof. Adding Dm−2 and
Dm−1 in this way is complicated and requires more details. Instead, we
use the completed model, just we replace fn′ with the smaller colorings.
Let

fn′′+j=fn′−6m+12+j ⊕ [m,m− 1,m,m− 2,m,m− 3]⊕A⊕D[m−1] ⊕ T,

where 1 ≤ j ≤ 6m− 12. Note that since m ≥ 6, n′ − (6m− 12) ≥ 9. □

Note that the proof of Theorem 3.6 provides an algorithm which runs
in polynomial time and explicitly produces an adjacency locating color-
ing of each path. In fact, using the proof of Theorem 3.9, this algorithm
also produces an adjacency locating coloring of each cycle. Hence, it
explicitly provides optimal locating coloring of the fan graph Fn and the
wheel Wn in polynomial time. Theorems 3.1 and 3.6 imply the following
two corollaries.

Corollary 3.7. For m ≥ 1 and n ≥ 2, we have χ
L
(Km ∨ Pn) = m +

min{k : k ∈ N, n ≤ 1
2(k

3 − k2)}. Specially, the locating chromatic
number of the fan Fn is χ

L
(K1 ∨ Pn).

Corollary 3.8. For two positive integers m ≥ 2 and n ≥ 2, let m0 =
min{k : k ∈ N, m ≤ 1

2(k
3 − k2)} and n0 = min{k : k ∈ N, n ≤

1
2(k

3 − k2)}. Then, χ
L
(Pm ∨ Pn) = m0 + n0.

Now we determine the adjacency locating chromatic number of the
cycles. Then using it we determine the exact values of χ

L
(Pm ∨ Cn),

χ
L
(Km ∨ Cn), and χ

L
(Cm ∨ Cn).

For each n, 3 ≤ n < 9, consider the following coloring (sequence) hn
of the cycle Cn.

h3 = [1, 2, 3], h4 = [1, 2, 3, 4], h5 = [1, 2, 1, 2, 3], h6 = [1, 2, 1, 3, 2, 4],

h7 = [2, 1, 3, 2, 3, 2, 1], h8 = [3, 2, 3, 1, 3, 1, 2, 1, 4].
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It is easy to check that each coloring hn is an adjacency locating
coloring. Note that χ

L
(Cn) is three or four depending on the parity of n,

and χ
L
(Cn) ≤ χ

L2
(Cn). Therefore, χ

L
(Cn) = χ

L2
(Cn) for 3 ≤ n < 9.

For the general case n ≥ 9, we have the following theorem.

Theorem 3.9. For a positive integer n ≥ 9, let n0 = min{k : k ∈
N, n ≤ 1

2(k
3 − k2)}. Then,

χ
L2
(Cn) =

{
n0 n ̸= 1

2(n
3
0
− n2

0
)− 1

n0 + 1 n = 1
2(n

3
0
− n2

0
)− 1.

Proof. Suppose that Cn = v1v2 · · · vnv1. By Proposition 3.5, we have
χ

L2
(Cn) ≥ n0 . First assume that n ̸= 1

2(n
3
0
− n2

0
) − 1. By Theorem

3.6, there exists an adjacency locating n0-coloring fn of the path Pn =
v1v2 · · · vn such that fn(v1) = 2, fn(v2) = 1, fn(vn−1) = 2, and fn(vn) =
1. Consider fn as a coloring of the vertices of Cn. Since fn(v1) ̸= fn(vn),
this is a proper coloring of Cn. Note that E(Cn) = E(Pn)

∪
{vnv1}.

Hence, for each i, 1 ≤ i ≤ n, we have fn(NCn(vi)) = fn(NPn(vi)).
Therefore, fn is also an adjacency locating n0-coloring of Cn. This
implies that χ

L2
(Cn) = n0 .

Now assume that n = 1
2(n

3
0
− n2

0
) − 1. By Theorem 3.6, there exists

an adjacency locating n0-coloring fn−1 of the path Pn−1 = v1v2 · · · vn−1

such that fn−1(v1) = 2 and fn−1(vn−1) = 1. Define the coloring f ′
n of

Cn as f ′
n(vn) = n0 + 1 and f ′

n(vi) = fn−1(vi) for 1 ≤ i ≤ n − 1. Note
that

n0 + 1 ∈ f ′
n(NCn(v1))

∩
f ′
n(NCn(vn−1)), f

′
n(v1) ̸= f ′

n(vn−1),

and f ′
n(NCn(vi)) = fn−1(NPn−1(vi)) for each i, 2 ≤ i ≤ n−2. Thus, f ′

n is
an adjacency locating (n0 +1)-coloring of Cn. Hence, χ

L2
(Cn) ≤ n0 +1.

We want to show that χ
L2
(Cn) ̸= n0 . Suppose on the contrary there

exists an adjacency locating n0-coloring f of Cn. For each i, 1 ≤ i ≤ n0 ,
let Vi = {x : x ∈ V (Cn), f(x) = i}. Since f is an adjacency locating
n0-coloring, each color class contains at most 1

2(n
2
0
−n0) vertices (see the

argument before Proposition 3.5). Now since n = 1
2(n

3
0
−n2

0
)−1, exactly

one of the color classes, say V1, has size 1
2(n

2
0
− n0) − 1 and the others

have size 1
2(n

2
0
− n0). For each i, 2 ≤ i ≤ n0 , let Xi = {(x, y) : x ∈

NCn(y), f(x) = 1, f(y) = i}. Let 2 ≤ i ≤ n0 . Since |Vi| = 1
2(n

2
0
−n0), all

of the proper segments of the form [[r, i, j]], where r ∈ [n0 ] and j ∈ [n0 ],
occur in f . Thus, for each j with j /∈ {1, i}, there exists y ∈ Vi such that
f(NCn(y)) = {1, j}. Also, there exists z ∈ Vi such that f(NCn(z)) =
{1}. This implies that |Xi| = (n0−2)+2 = n0 . Hence, |X| = (n0−1)n0 ,
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where X = X2
∪
X3

∪
· · ·

∪
Xn0

. Each vertex x with color 1 has two
neighbors and hence, |X| = 2 |{x : x ∈ V (Cn), f(x) = 1}|. This

means that there are |X|
2 =

(n0−1)n0
2 vertices with color 1, which is a

contradiction. □
Theorems 3.1 and 3.9 imply the following corollaries.

Corollary 3.10. For two positive integers m ≥ 2 and n ≥ 3, let m0 =
min{k : k ∈ N, m ≤ 1

2(k
3 − k2)} and n0 = min{k : k ∈ N, n ≤

1
2(k

3 − k2)}. Then,

χ
L
(Pm ∨ Cn) =


m0 + χ

L
(Cn) 3 ≤ n < 9

m0 + n0 n ≥ 9, n ̸= 1
2(n

3
0
− n2

0
)− 1

m0 + n0 + 1 n ≥ 9, n = 1
2(n

3
0
− n2

0
)− 1.

Corollary 3.11. For two positive integers m ≥ 1 and n ≥ 3, let n0 =
min{k : k ∈ N, n ≤ 1

2(k
3 − k2)}. Then,

χ
L
(Km ∨ Cn) =


m+ χ

L
(Cn) 3 ≤ n < 9

m+ n0 n ≥ 9, n ̸= 1
2(n

3
0
− n2

0
)− 1

m+ n0 + 1 n ≥ 9, n = 1
2(n

3
0
− n2

0
)− 1.

Specially, the locating chromatic number of the wheel Wn is χ
L
(K1∨Cn).

Corollary 3.12. For positive integers m and n, 3 ≤ m ≤ n, let m0 =
min{k : k ∈ N, m ≤ 1

2(k
3 − k2)} and n0 = min{k : k ∈ N, n ≤

1
2(k

3 − k2)}. Also, let m1 = 1
2(m

3
0
−m2

0
) − 1 and n1 = 1

2(n
3
0
− n2

0
) − 1.

Then,

χ
L
(Cm ∨ Cn) =



χ
L
(Cm) + χ

L
(Cn) n < 9

χ
L
(Cm) + n0 m < 9 ≤ n, n ̸= n1

χ
L
(Cm) + n0 + 1 m < 9 ≤ n, n = n1

m0 + n0 m ≥ 9, m ̸= m1 , n ̸= n1

m0 + n0 + 1 m ≥ 9, m = m1 , n ̸= n1

m0 + n0 + 1 m ≥ 9, m ̸= m1 , n = n1

m0 + n0 + 2 m ≥ 9, m = m1 , n = n1 .

Remark 3.13. Note that the diameter of a complete multipartite graph
is two and its locating chromatic number is equal to the number of its
vertices. Hence Corollaries 3.7 and 3.11 hold also for complete multi-
partite graphs (such as stars) instead of complete graphs.
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