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Abstract. In this paper we give a characterization of unmixed
tripartite graphs under certain conditions which is a generalization
of a result of Villarreal on bipartite graphs. For bipartite graphs two
different characterizations were given by Ravindra and Villarreal.
We show that these two characterizations imply each other.
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1. Introduction

Let G = (V (G), E(G)) be a finite, undirected, and simple graph, i.e.,
without multiple edges or loops. A graph G is said to be connected
if any two vertices of G can be connected by a sequence of edges of
G. A subset C of V (G) is called a vertex cover of G if for every edge
{x, y} ∈ E(G), C ∩ {x, y} ̸= ∅. A vertex cover C is called minimal, if
for every A ⊊ C, A is not a vertex cover of G. A graph G is called
unmixed, if every minimal vertex cover of G has the same cardinality.
A subset H of V (G) is called an independent (stable) set of G if no
two element subset of H is an edge of H. A maximal independent set
of G is an independent set M of G such for every H ⫌ M , H is not
an independent set of G. Note that a set H is a maximal independent
set of G if and only if V (G) \ H is a minimal vertex cover of G. The
maximum cardinality of all maximal independent set of G is called the
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independence number of G and is denoted by α(G). A graph G is called
well-covered, if every maximal independent set of G has the same car-
dinality, i.e., the cardinality of every maximal independent set of G is
α(G). Therefore a graph is unmixed if and only if it is well-covered.
The problem of determining the maximum cardinality of maximal in-
dependent sets of a graph is an old and well known problem in graph
theory. It is shown in [5], that for an arbitrary graph G, α(G) would be
determined in a nondeterministic polynomial time and hence it is an NP-
complete problem. Chvátal and Slater, [1], independently proved that
the problem of failing to be well-covered is an NP-complete problem.
In other words, there is no deterministic algorithm to decide whether
a graph is well-covered. Nevertheless, there are interesting classes of
graphs for which theoretical criteria are available to check whether they
are well-covered. Well-covered graphs were first introduced and studied
by Plummer. The reference [7] contains an interesting survey on well-
covered graphs and their properties.
Recall that for an integer r ≥ 2, a graph G is called r-partite if its ver-
tices can be partitioned into r disjoint parts such that for every edge
{x, y} ∈ E(G), the vertices x and y lie in different parts. An r-partite
graph for r = 2, 3, is called bipartite and tripartite, respectively. The
class of bipartite graphs is among the classes of graphs for which there
exist graph-theoretical criteria to check that a given graph is well-covered
(or, equivalently, unmixed), (see Section 2).
An immediate natural question is that what would be the criteria which
characterize unmixed tripartite graphs. In this paper we provide a com-
binatorial criterion which characterizes a special class of unmixed tripar-
tite graphs (see Theorem 3.2). Moreover, we provide an example of an
unmixed tripartite graph which does not belong to the class of graphs
characterized by our result. Furthermore, we show that in the absence
of either of the conditions (1) and (2) of Theorem 3.2, a tripartite graph
may fail to be unmixed.

2. Unmixed bipartite graphs

Unmixed bipartite graphs have already been characterized. In fact
there are combinatorial [8, 9], as well as, algebraic characterizations for
unmixed bipartite graphs [10]. In this section we show that each of these
two characterizations; [8] and [9] follows from the other one.
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Let G be a graph. For a vertex v ∈ V (G), let N(v) be the set of a
vertices u ∈ V (G) where {u, v} ∈ E(G). A set F ⊂ E(G) is called a
matching of G if for any two edges {x, y}, {a, b} ∈ F , {x, y}∩{a, b} = ∅.
A matching F of G is called perfect if for every v ∈ V (G), there exists
an edge {x, y} ∈ F such that v ∈ {x, y}.

Let G be a bipartite graph and let e = {x, y} be an edge of G. Let
Ge be the subgraph induced on N(x)∪N(y), i.e., V (Ge) = N(x)∪N(y)
and E(Ge) = {{u, v} ∈ E(G)|u, v ∈ V (Ge)}.
Ravindra in 1977 gave the following necessary and sufficient condition
for G to be unmixed.

Theorem 2.1. [8][A] Let G be a connected bipartite graph. Then G
is unmixed if and only if G contains a perfect matching F such that
for every edge e = {x, y} ∈ F the induced subgraph Ge is a complete
bipartite graph.

In 2007, Villarreal, inspired by [4], and in an attempt to provide a
criterion for unmixedness property of hypergraphs, gave the following
characterization of unmixed bipartite graphs.

Theorem 2.2. [9, Theorem 1.1][B] Let G be a bipartite connected graph .
Then G is unmixed if and only if there is a bipartition X = {x1, . . . , xn},
Y = {y1, . . . , yn} of G such that:

(a) {xi, yi} ∈ E(G) for all i, (i.e., a perfect matching),
(b) if {xi, yj} ∈ E(G) and {xj , yk} are in E(G) and i, k, j are dis-

tinct, then {xi, yj} ∈ E(G).

We now show that each of these results imply the other one.

Proposition 2.3. Each of the above two characterizations imply the
other one.

Proof. A ⇒ B): Let G be a bipartite graph which satisfies the con-
ditions of Theorem A. Then E(G) contains a perfect matching F =
{{xi, yi} | 1 ≤ i ≤ n}. Hence X = {x1, . . . , xn}, Y = {y1, . . . , yn}
gives a bipartition of V (G). Let {xi, yj} and {xj , yk} be edges of G.
Then by Ravindra’s criterion, G induces a complete bipartite graph on
N(xj)∪N(yj). Since yk ∈ N(xj) and xi ∈ N(yj) and the induced graph
on N(xj)∪N(yj) is complete bipartite, {xi, yk} ∈ N(xj)∪N(yj), hence
this edge is in E(G).
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B ⇒ A). First note that condition (a), gives a perfect matching F =
{{xi, yi} | 1 ≤ i ≤ n} for G. Let e = {xj , yj} ∈ F . If N(xj) ∪N(yj) ⊂
X ∪ {yj} or N(xj) ∪ N(yj) ⊂ Y ∪ {xj}, then the induced graph on
N(xj) ∪ N(yj) is K1,m for some positive integer m and the Theorem
A holds. So let xi, yk ∈ N(xj) ∪ N(yj) where i, k are different from j.
Since the induced graph on N(xj) ∪ N(yj) is a bipartite graph, hence
xi ∈ N(yj) and yk ∈ N(xj). So {xi, yj} ∈ E(G) and {xj , yk} ∈ E(G).
Therefore, by condition (b), {xi, yk} ∈ E(G) and consequently {xi, yk} ∈
E(N(xj)∪N(yj)), which means that the induced graph onN(xj)∪N(yj)
is a complete bipartite graph. □

Remark 2.4. As the above theorems exhibit, in an unmixed bipartite
graph, the cardinality of a minimal vertex cover is equal to the cardinality
of a maximal perfect matching, and both are equal to | V (G) | /2. An
unmixed graph which its independence number is equal to the half of the
number of its vertices is called very well-covered. This class of graphs
contains unmixed bipartite graphs. Moreover, a characterization of very
well-covered graph is given in (see [2, Theorem 1.2]), which is very close
to the one in Theorem 2.2.

Remark 2.5. Since the cardinality of a maximum perfect matching of a
bipartite graph is polynomially computable [6, Theorem 9.1.8], the inde-
pendence number, as well as, the cardinality of a minimal vertex cover
of these graphs are also polynomially computable.

3. The Main Result

In the above two characterizations of unmixed bipartite graphs, the
existence of a perfect matching is essential to prove the unmixedness
property of bipartite graphs, and conversely, unmixedness of these graphs
implies the existence of a perfect matching. But for unmixed tripartite
graphs, there seems no natural perfect matching attached to a three-
partition. To consider the unmixedness of tripartite graphs, we impose
the following condition.
Let G be a tripartite graph with partitions

U = {u1, . . . , un}, V = {v1, . . . , vn},W = {w1, . . . , wn}.

We will consider those tripartite graphs for which the following condition
holds:

(∗) {ui, vi}, {ui, wi}, {vi, wi} ∈ E(G), for all i = 1, . . . , n.
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Lemma 3.1. Let G be a tripartite graph which satisfies the condition
(∗). Let G be unmixed. Then every minimal vertex cover of G contains
2n vertices. In particular the independence number of G is n =| V (G) |
/3.

Proof. Let C be a minimal vertex cover of G. Since for each i; 1 ≤ i ≤ n,
ui is adjacent to vi and wi, C must contain at least two vertices in
{ui, vi, wi} hence it contains at least 2n vertices of G. By hypothesis,
U ∪ V is a vertex-cover of G with 2n vertices and G is unmixed, hence
C must have exactly 2n elements. Since the complement of a minimal
vertex-cover is a maximal independent set the last claim of the lemma
is immediate. □

To simplify the notations in the following theorem, we use {xi, yi, zi}
and {ri, si, ti} as two permutations of {ui, vi, wi}.

Theorem 3.2. Let G be a tripartite graph which satisfies the condition
(∗). Then the graph G is unmixed if and only if the following conditions
hold:

(1) If {ui, xq}, {vj , yq}, {wk, zq} ∈ E(G), where no two vertices of
{xq, yq, zq} lie in one of the three parts of V (G) and i, j, k, q are
distinct, then the set {ui, vj , wk} contains an edge of G.

(2) If {r, xq}, {s, yq} and {t, zq} are edges of G, where r and s belong
to one of the three parts of V (G) and t belongs to another part,
then the set {r, s, t} contains an edge of G (here r and s may be
equal).

Proof. Let G be an unmixed graph, we prove that both conditions (1)
and (2) hold. First we prove the condition (1). Assume the contrary. Let
{ui, xq}, {vj , yq} and {wk, zq} be edges of G such that the set {ui, vj , wk}
does not contain any edge of G. Therefore, {xi, yj , zk} is an independent
set of G. Hence there exists a maximal independent set M of G which
contains {xi, yj , zk}. Since M is maximal, the set C = V (G) \ M is a
minimal vertex cover of G. Since {ui, vj , wk} ⊂ M , the vertices xi, yj , zk
are not in C.
The assumptions {ui, xq} ∈ E(G) and ui /∈ C imply that xq ∈ C. Sim-
ilarly, since {vj , yq} ∈ E(G) and vj /∈ C, we have yq ∈ C. And, while
{wk, zq} ∈ E(G) and wk /∈ C, it follows that zq ∈ C. Since for each
m ∈ {1, . . .¸ , n} \ {q}, the edges {um, vm}, {um, wm} and {wm, vm} are
among the edges of G, C must contain at least 2n − 2 vertices. Fur-
thermore, it contains {xq, yq, zq}, hence the cardinality of C is at least
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2n+ 1 which contradicts Lemma 3.1.
Now we prove condition (2). Let {r, xq}, {s, yq} and {t, zq} be edges of
G, and assume that {r, s, t} does not contain any edge of G. Similar to
the above argument, let M be a maximal independent set which con-
tains {r, s, q} and put C = V (G) \M .
The assumptions {r, xq} ∈ E(G) and r /∈ C imply that xq ∈ C. Simi-
larly, since {s, yq} ∈ E(G) and s /∈ C it follows that yq ∈ C. Further-
more, while {t, zq} ∈ E(G) and t /∈ C we have zq ∈ C. Hence similar to
the above case, | C |≥ 2n+ 1 which contradicts Lemma 3.1.
Conversely let the conditions (1), (2) hold, we have to prove that G is
unmixed.
Let C be a minimal vertex cover of G. We have to show that for each
i = 1, . . .¸ n,C intersects the set {xi, yi, zi} in exactly two elements. Since
C is a vertex cover of G, it intersects this set in at least two elements.
In contrary, assume that for some q, the cardinality of C ∩{xq, yq, zq} is
3. Since G is connected, the minimality of C implies that

(a) N(zq) contains another element different from xq, yq; say xi or
yj , such that:

xi /∈ C and {xi, zq} ∈ E(G), or, yj /∈ C and {yj , zq} ∈ E(G).

(b) N(yq) contains another element different from xq, zq; say xm or
zn, such that:

xm /∈ C and {xm, yq} ∈ E(G), or, zn /∈ C and {zn, yq} ∈ E(G).

(c) N(xq) contains another element different from xq, yq; say yℓ or
zk, such that:

yℓ /∈ C and {yℓ, xq} ∈ E(G), or, zk /∈ C and {zk, xq} ∈ E(G).

Depending on the choices of the vertices xi, xm, yj , yℓ, zk, zn, we en-
counter with the following cases, where each case, gives rise to a contra-
diction. Cases 1 and 2, follow from condition (1) and cases 3, 4, . . . , 8,
follow from condition (2).
Case 1: If {yj , zq}, {zk, xq}, {xm, yq} ∈ E(G) ⇒ C ∩ {yj , zk, xm} ̸= ∅
while {yj , zk, xm} ∩ C = ∅.
Case 2: If {xi, zq}, {yℓ, xq}, {zn, yq} ∈ E(G) ⇒ C ∩ {xi, yℓ, zn } ̸= ∅
while {xi, yℓ, zn } ∩ C = ∅.
Case 3: If {xi, zq}, {zk, xq}, {xm, yq} ∈ E(G) ⇒ C ∩ {xi, zk, xm} ̸= ∅
while {xi, zk, xm} ∩ C = ∅.
Case 4: If {xi, zq}, {zk, xq}, {zn, yq} ∈ E(G) ⇒ C ∩ {xi, zk, zn } ̸= ∅
while {xi, zk, zn } ∩ C = ∅.
Case 5: If {yj , zq}, {yℓ, xq}, {xm, yq} ∈ E(G) ⇒ C ∩ {yj , yℓ, xm} ̸= ∅
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while {yj , yℓ, xm} ∩ C = ∅.
Case 6: If {yj , zq}, {yℓ, xq}, {zn, yq} ∈ E(G) ⇒ C ∩ {yj , yℓ, zn } ̸= ∅
while {yj , yℓ, zn } ∩ C = ∅.
Case 7: If {xi, zq}, {yℓ, xq}, {xm, yq} ∈ E(G) ⇒ C ∩ {xi, yℓ, xm} ̸= ∅
while {xi, yℓ, xm} ∩ C = ∅.
Case 8: If {yj , zq}, {zk, xq}, {zn, yq} ∈ E(G) ⇒ C ∩ {yj , zk, zn } ̸= ∅
while {yj , zk, zn} ∩ C = ∅.

□

4. Some examples and counterexamples

Theorem 3.2 does not characterize all unmixed tripartite graphs. In
fact, the condition (∗) is not valid for all unmixed tripartite graphs.
Hence our result characterizes just a sub-class of unmixed tripartite
graphs. We first provide an example of an unmixed tripartite graph
which does not satisfy the condition (∗).

Example 4.1. The following graph is an unmixed tripartite graph with
partitions {y1, y4}, {y2, y5}, {y3, y6}, where the cardinality of each min-
imal vertex cover is 4, and does not satisfy the condition (∗). Indeed, if
it satisfies the condition (∗), it must have two disjoint triangles, while
even by any relabeling of its vertices it is not possible to find two disjoint
triangles in it. Therefore Theorem 3.2 is not applicable to it.

..

y2

.

y3

.

y4

.

y5

. y1. y6.

Figure 1

Example 4.2. The tripartite graphs depicted in Figure 2 (which is a
complete tripartite graph, K2,2,2) and in Figure 3 satisfy the condition
(∗) and the assumptions of Theorem 3.2 hold, hence they are unmixed.
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..

z1

.

x1

.

y1

.
x2

.

y2

.
z2

.

Figure 2

.

z1

.

x1

.

y1

.
x2

.

y2

.
z2

.

Figure 3

As the second part of the proof of Theorem 3.2 shows, in this theorem
neither condition (1) nor condition (2) alone, does imply the unmixed-
ness of the tripartite graph. This fact is illustrated in the following
examples.

Example 4.3. The following graph shows that condition (1) of the The-
orem 3.2 alone does not imply unmixedness (see Figure 4). In this graph,
the edge set is:

E(G) ={{u1, v1}, {u2, v2}, {u3, v3}, {u4, v4}, {w1, v1}, {w2, v2},
{w3, v3}, {w4, v4}, {u1, w1}, {u2, w2}, {u3, w3}, {u4, w4},
{w1, u4}, {v2, w4}, {u3, v4}, {w1, u2}}.

(4.1)

Observe that the following two sets are minimal vertex covers of G:

C1 = {u1, u2, u3, u4, v1, v2, v3, v4}, C2 = {u1, u2, u4, v1, v3, v4, w2, w3, w4},
where | C1 |= 8, while | C2 |= 9, which shows that this graph is not
well-covered.

Example 4.4. This example shows that the condition (2) of the The-
orem 3.2 alone does not imply unmixedness of a tripartite graph (see
Figure 5). In this graph, the edge set is:

E(G) ={{u1, v1}, {u2, v2}, {u3, v3}, {u4, v4}, {v1, w1}, {v2, w2},
{v3, w3}, {v4, w4}, {u1, w1}, {u2, w2}, {u3, w3}, {u4, w4},
{u3, w4}, {v3, w2}, {v1, w3}, {v1, w2}, {u1, v2}, {v1, w3},
{v4, w1}, {v4, w3}, {u4, v2}, {v1, w2}, {u2, v1}, {u4, v1}}.

(4.2)

The following two sets are among its minimal vertex covers of G:

C1 = {u1, u3, u4, v1, v2, v4, w2, w3}, C2 = {u1, u2, u4, v1, v3, v4, w2, w3, w4},
where | C1 |= 8, while | C2 |= 9, which shows that this graph is not
well-covered.
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.

Figure 5
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u4
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v1

.

v2

.

v3

.

v4

.

w4

.

w3

.

w2

.

w1

We end this section with a relevant remark. We refer to [3] for con-
cepts which are not defined in this paper.

Remark 4.5. In [3, Theorem 1.3] an algebraic characterization of un-
mixed bipartite graphs was given. In this result it has been shown that for
bipartite graphs unmixedness property is equivalent to Cohen-Macaulay
property of the edge ideal associated to the graph. For unmixed tripartite
graphs a similar characterization is more subtle. For example, the graph
given in 4.1, does not satisfy the condition (∗) but it is Cohen-Macaulay,
while the graph given in Figure 2, satisfies the condition (∗) but it is not
Cohen-Macaulay.
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