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Abstract. In this paper, we mainly investigate how the general-
ized metrizability properties of the remainders affect the metrizabil-
ity of rectifiable spaces, and how the character of the remainders
affects the character and the size of a rectifiable space. Some re-
sults in [A. V. Arhangel’skǐı and J. Van Mill, On topological groups
with a first-countable remainder, Topology Proc. 42 (2013) 157–
163.] and [F. C. Lin, C. Liu, S. Lin, A note on rectifiable spaces,
Topology Appl. 159 (2012), no. 8, 2090–2101.] are improved, re-
spectively.
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1. Introduction

By a space we mean a Tychonoff topological space. A remainder
of a space X is the subspace bX \ X of bX, where bX is a Hausdorff
compactification of X. The closure of a subset A in the space X is

denoted by A
X
, and A stands for the closure of A in bX. In this paper,

τ is an infinite cardinal.
Remainders of a space X have many interesting properties and have

been studied extensively in literature. A famous classical result in this
study is the following theorem of Henriksen and Isbell [12]:
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Theorem 1.1. [12, Theorem 3.6] A space X is of countable type if and
only if the remiander in any (in some) compactification of X is Lindelöf.

Recall that a space X is of countable type [10] if every compact sub-
space P of X is contained in a compact subspace F ⊆ X that has a
countable base of open neighborhoods in X.

A rectification on a space X is a homeomorphism φ : X×X → X×X
with the following two properties:

(R1) φ({x} ×X) = {x} ×X for each x ∈ X;
(R2) there exists an element e ∈ X such that φ(x, x) = (x, e) for

every x ∈ X.
The point e ∈ X is called the neutral element of the space X. A space

with a rectification is called a rectifiable space. Every rectifiable space
is homogeneous (see [8, 9]).

The following result is due to Čhoban.

Theorem 1.2. [9] A topological space G is a rectifiable space if and
only if there exist e ∈ G and two continuous maps p : G × G → G,
q : G×G → G such that for any x ∈ G, y ∈ G the next identities hold:

p(x, q(x, y)) = q(x, p(x, y)) = y and q(x, x) = e.

In recent years, there have been many interesting and new results
on rectifiable spaces and their remainders. In 2010, Arhangel’skǐı and
Čhoban [3] showed that for any Hausdorff compactification bG of an ar-
bitrary rectifiable space G, the remainder bG\G is either pseudocompact
or Lindelöf. They also proved that the remainder Y of a paracompact
rectifiable space G has a Gδ-diagonal if and only if Y,G, and bG are sep-
arable metrizable spaces [3]. In 2012, Fucai Lin, Chuan Liu and Shou
Lin [14] investigated how the generalized metrizability properties of the
remainder affect the metrizability of a rectifiable space. Some other
results on a rectifiable space and its remainder can be found in [13, 15].

A space X is said to have the property (L) if X satisfies one of the
following conditions:

(L1) if the cardinality of X is Ulam non-measurable, then X is weakly
HN-complete1;

(L2) every Lindelöf p-subspace2 of X is metrizable;

1 A space X is weakly HN-complete if the remainder Z of X in the Čech-Stone
compactification βX of X is a space of point-countable type.

2A space X is a Lindelöf p-space if and only if it is the inverse image of a separable
metric space by a perfect map.
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(L3) every countably compact subset of X is metrizable;
(L4) every compact subset of X is a Gδ-set in X.

Since every countably compact metrizable space is compact, the con-
ditions (L3) and (L4) in (L) can be replaced by the following condition
(L5): every countably compact subset of X is a metrizable Gδ-set.

Remark 1.3. A paracompact space has the property (L1), since a para-
compact space with Ulam non-measurable cardinality is HN-complete
[10], and hence it is weakly HN-complete.

It was proved by Arhangel’skǐı and Van Mill [6] that for every non-
locally compact topological group G with a first-countable remainder,
the character of G does not exceed ω1 and the cardinality of G does not
exceed 2ω1 . Moreover, A.V. Arhangel’skǐı and Van Mill [6] showed that
there exists a non-metrizable non-locally compact topological group G
with a first-countable remainder. This fact shows that first-countability
of some remainder of a topological group does not imply the metrizability
of the group itself.

In section 2, we investigate how the generalized metrizability proper-
ties of the remainders affect the metrizability of rectifiable spaces. The
following results are obtained:

(1) Let G be a non-locally compact rectifiable space with property
(L1). If the remainder Y = bG \ G has locally a property (L5), then
G is separable metrizable and Y is a first-countable, Lindelöf p-space.
This result generalizes some known results on rectifiable spaces and their
remainders.

(2) Let G be a non-locally compact rectifiable space. Then bG is
separable metrizable if the remainder Y = bG \ G of G has a locally
point-countable p-meta-base with πχ(Y ) ≤ ω.

(3) Let G be a paracompact and non-locally compact rectifiable space
and Y = bG \ G be locally symmetrizable. Then bG is separable and
metrizable if each singleton of Y is a Gδ-set in Y .

In section 3, we study how the character of the remainders affect
the character and the size of a rectifiable space. We generalize a result
of A.V. Arhangel’skii and J. Van Mill’s in [6]. We mainly show that:
(1) If G is a non-locally compact rectifiable space with a remainder Y
such that χ(Y ) ≤ τ , then χ(G) ≤ τ+; (2) If G is a non-locally compact

rectifiable space with a reminder Y satisfying χ(Y ) ≤ τ , then |G| ≤ 2τ
+
.
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2. On some generalized metrizability properties

In this section, we investigate how the generalized metrizability prop-
erties of the remainders affect the metrizability of rectifiable spaces. The
following theorem was proved in [1].

Lemma 2.1. [1, Theorem 2.1] If X is a Lindelöf p-space, then every
remainder of X is a Lindelöf p-space.

Remark 2.2. If G is a non-locally compact rectifiable space, then G is
nowhere locally compact since G is homogeneous. Hence Y = bG \G is
dense in bG, i.e., bG is also a compactification of Y . By Theorem 1.1
and Lemma 2.1, the following statements hold:

(1) Y is of countable type ⇔ G is Lindelöf;
(2) Y is a Lindelöf p-space ⇔ G is a Lindelöf p-space.

Recall that a space X has locally a property Φ if for each point x ∈ X
there exists an open neighborhood U(x) of x such that U(x) has property
Φ. Firstly, we give a lemma, which plays an important role in the proofs
of our main results and is interesting itself as well.

Lemma 2.3. [3, Lemma 2.3] Suppose that B = X ∪ Y , where B is a
compact space, and X,Y are dense nowhere locally compact subspaces
of B. Suppose that Y is of subcountable type 3. Then each locally finite
(in X) family of non-empty open subsets of X is countable.

Lemma 2.4. Let Y be a remainder of a paracompact and non-locally
compact rectifiable space G. Then Y is of countable type if and only if
Y is of subcountable type.

Proof. Necessity. It is trivial.
Sufficiency. Suppose that Y is a remainder of a paracompact and

non-locally compact rectifiable space G and that Y is of subcountable
type. We know that Y is either pseudocompact or Lindelöf.

Case 1. Y is pseudocompact.
Take an arbitrary compact subset F of Y . Since Y is of subcountable

type, F is contained in a compact Gδ-set L of Y . By the pseudocom-
pactness of Y it follows that the compact Gδ-set L has a countable base
of open neighborhoods in Y , and hence Y is of countable type.

Case 2. Y is Lindelöf.

3A space X is of subcountable type [3] if every compact subset of X is contained
in a compact Gδ-set of X.
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Since Y is of subcountable type, by Lemma 2.3 it follows that each
locally finite (in G) family of non-empty open subsets of G is countable.
Thus G is Lindelöf by the paracompactness of G. Therefore, Y is of
countable type by Remark 2.2. □

Recall that a π-network (π-base) of a space X at a point x ∈ X
is a family ξ of non-empty subsets (open subsets, respectively) of X
such that every open neighborhood of x contains a member of ξ. The π-
character of x inX is defined by πχ(x,X) = ω+min{|ξ| : ξ is a local π−
base at x in X}. The π-character of X is defined by πχ(X) = sup
{πχ(x,X) : x ∈ X}.

Before giving one of our main results we recall another result which
was proved in [14].

Lemma 2.5. [14, Lemma 7.1] Let G be a non-locally compact rectifiable
space. Then G is metrizable and locally separable, if the remainder Y =
bG \G has locally a property (L3) and π-character of Y is countable.

Proposition 2.6. Let G be a non-locally compact rectifiable space. If the
remainder Y = bG \G with πχ(Y ) ≤ ω has locally a property (L5), then
G is separable metrizable and Y is a first-countable, Lindelöf p-space.

Proof. Claim. Every compact subset F of Y is a metrizable Gδ-set in
Y .

Suppose that Y = bG \ G has locally a property (L5). Consider the
open cover U = {U(y) : y ∈ F}, where U(y) is an open neighborhood of
y in Y such that every countably compact subset of U(y) is a metrizable
Gδ-set of U(y) for each point y ∈ F . There exists a finite subfamily U ′

of U such that U ′ covers F because F is compact. For each U ∈ U ′

and each zU ∈ U ∩ F , take an open neighborhood V (zU ) of zU in Y

such that V (zU )
Y ⊂ U . Clearly, V (zU )

Y ∩ F is countably compact

in U , so V (zU )
Y ∩ F is a metrizable Gδ-set of U . Since U is open

in Y , V (zU )
Y ∩ F is a Gδ-set of Y . Put V =

∪
{VU : U ∈ U ′},

where VU = {V (zU ) : zU ∈ U ∩ F}. Then V is an open cover of F .
There is a finite subfamily V ′ of V such that V ′ covers F . Clearly

F =
∪
{F ∩ V

Y
: V ∈ V ′}. Since each F ∩ V

Y
is a metrizable Gδ-set of

Y , it is easy to show that F is a metrizable Gδ-set of Y .
By Lemma 2.5 it follows that G is metrizable. Thus, according to

Lemma 2.1 and Lemma 2.4 one can easily obtain that G is separable
metrizable and Y is a Lindelöf p-space, since the claim above implies
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that Y is of subcountable type. Then Y is first-countable since Y is a
p-space with a countable pseudocharacter. □

Theorem 2.7. Let G be a non-locally compact rectifiable space with
property (L1). If the remainder Y = bG \G has locally a property (L5),
then G is separable metrizable and Y is a first-countable, Lindelöf p-
space.

Proof. According to Proposition 2.6 it is enough to show that Y has
countable π-character. We have seen above that Y is either pseudo-
compact or Lindelöf. Thus it is enough to consider the following two
cases.

Case 1. The space Y is pseudocompact.
Since Y has locally a property (L5), each singleton of Y is a Gδ-set.

Thus Y is first-countable by the pseudocompactness of Y .
Case 2. The space Y is Lindelöf.
Since Y is a space of countable pseudocharacter, it follows that the

cardinality of Y is Ulam non-measurable [5]. Since G is a non-locally com-
pact rectifiable space, the cardinality of G is also Ulam non-measurable
[5]. Then G is weakly HN-complete by Remark 1.3. By [2, Theorem
4], each Gδ-point of Y is a point of bisequentiality of Y , it follows that
πχ(Y ) ≤ ω. □

According to Remark 1.3 and Theorem 2.7 one can easily obtain the
following result.

Corollary 2.8. Let G be a paracompact and non-locally compact rectifi-
able space. If the remainder Y = bG\G has locally a property (L5), then
G is separable metrizable and Y is a first-countable, Lindelöf p-space.

Corollary 2.9. [14, Proposition 7.2] Let G be a non-locally compact
rectifiable space with property (L1). If the remainder Y = bG \ G has
locally a properties (L2) and (L5) , then bG is separable metrizable.

Proof. From Theorem 2.7 it follows that G is separable metrizable, and
Y is a first-countable, Lindelöf p-space. Thus Y is locally metrizable,
since Y has locally a property (L2) and the property Lindelöf p-space
is hereditary with respect to closed subspaces. Then Y is separable
metrizable by [10, 5.4.A], since Y is Lindelöf. Therefore, both Y and G
have countable networks, which implies that bG has a countable network
as well. By the compactness of bG, one can easily obtain that bG is
separable metrizable. □
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Corollary 2.10. [14, Proposition 7.5] Let G be a non-locally compact
rectifiable space. If the remainder Y = bG \ G with πχ(Y ) ≤ ω has
locally a property (L2) and (L5), then bG is separable metrizable.

Proof. From Lemma 2.5 it follows that G is metrizable. Thus G has
property (L1) by Remark 1.3. It follows that bG is separable metrizable
from Corollary 2.9. □

We refer the reader to [16] for the definition of p-meta-base. The
following result improves Corollary 7.6 in [14].

Corollary 2.11. Let G be a non-locally compact rectifiable space. Then
bG is separable metrizable if the remainder Y = bG \G of G has locally
a point-countable p-meta-base with πχ(Y ) ≤ ω.

Proof. The property point-countable p-meta-base is hereditary with re-
spect to subspaces. Thus, by [16, Theorem 3.1.8] and [7, Proposition
2.1], a space with a point-countable p-meta-base satisfies the properties
(L2) and (L5). It follows that bG is separable metrizable from Corollary
2.10. □

Let X be a set and all non-negative real numbers be denoted by R+.
A function d : X × X → R+ is symmetric on the set X if, for each
x, y ∈ X, (i) d(x, y) = 0 if and only if x = y; (ii) d(x, y) = d(y, x).
A space X is said to be symmetrizable if there is a symmetric d on X
satisfying the following condition: U ⊆ X is open if and only if for each
x ∈ U there exists ε > 0 with B(x, ε) = {y ∈ X : d(x, y) < ε} ⊂ U .

Lemma 2.12. [11, Lemma 9.12] Every ω1-compact 4 symmetric space
is hereditary Lindelöf.

Lemma 2.13. [4, Corollary 2.8] Let G be a rectifiable space. Then G is
of countable type if and only if there exists a non-empty compact subset
F of G such that F has a countable base of open neighborhoods in G.

The following result was proved in [17]. For completeness we give its
proof.

Lemma 2.14. Every countably compact subset of a symmetric space is
compact and metrizable.

4A space X is ω1-compact if every closed discrete subset of X has cardinality less
than ω1.
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Proof. Let A be a countably compact subset of a symmetric space X.
If {xn} is a sequence in A which converges to a point x in X, then
the sequence {xn} has an accumulation point a in A by the countable
compactness of A. Thus a is also an accumulation point of {xn} in X,
hence x = a ∈ A, i.e., A is a sequentially closed subset in X. Since X
is symmetrizable, X is a sequential space [11, p.481], i.e., every sequen-
tially closed subset is closed in X. Therefore, A is closed in X, which
implies that A is symmetrizable, thus A is compact and metrizable by
[11, Theorem 9.13]. □

Theorem 2.15. Let G be a paracompact and non-locally compact rec-
tifiable space, and Y = bG \ G be locally symmetrizable. Then bG is
separable and metrizable if each singleton of Y is a Gδ-set in Y .

Proof. Case 1. G is of countable type.
By Theorem 1.1, Y is Lindelöf, thus Y is ω1-compact. Then Y is lo-

cally a hereditarily Lindelöf space by Lemma 2.12. Thus, from Lemma
2.14 it follows that Y has locally a property (L5), since Y is locally sym-
metrizable. Therefore, G is separable metrizable and Y is a Lindelöf
p-space by Theorem 2.7. Since every symmetrizable, Lindelöf p-space is
metrizable [11, Theorem 9.13], Y is locally metrizable. Then Y is sepa-
rable metrizable by [10, 5.4.A], since Y is Lindelöf. Therefore, both Y
and G have a countable network, which implies that bG has a countable
network as well. By the compactness of bG, one can easily obtain that
bG is separable metrizable.

Case 2. Each singleton of Y is a Gδ-set in bG.
Y is first-countable by the conditions Gδ-subset and the compactness

of bG. Then G is metrizable and locally separable by Lemma 2.5, which
implies that G is of countable type. Then bG is separable and metrizable
by Case 1.

Case 3. There exists a point y ∈ Y such that {y} is not a Gδ-set in
bG.

There exists a Gδ-set P in bG such that {y} = P ∩ Y and P ∩G ̸= ∅.
Take a sequence {Un} of open subsets in bG with P =

∩
n∈ω Un. Fix a

point g ∈ P \ {y}. There is an open subset Vn in bG such that y /∈ Vn,
and g ∈ Vn+1 ⊂ Vn+1 ⊆ Vn ∩ Un+1 for each n ∈ ω. Put F =

∩
n∈ω Vn.

Clearly, F is a non-empty closed Gδ-set in bG with F ⊆ G. One can
easily obtain that F has a countable base of open neighborhoods in bG
by the compactness of bG. Therefore F has a countable base of open
neighborhoods in G as well. It is obvious that F is a compact subset of
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G. Then G is of countable type by Lemma 2.13. Thus bG is separable
and metrizable by Case 1. □

Corollary 2.16. Let G be a paracompact and non-locally compact rec-
tifiable space, and Y = bG \ G be locally symmetrizable. Then bG is
separable and metrizable if Y satisfies one of the following conditions.

(1) Y is locally perfect;
(2) Y is locally Lindelöf;
(3) Y is locally ω1-compact.

Corollary 2.17. Let G be a non-locally compact rectifiable space, and
Y = bG \G be locally symmetrizable. Then bG is separable and metriz-
able if π-character of Y is countable.

Proof. G is metrizable and locally separable by Lemmas 2.5 and 2.14,
then Y is Lindelöf by Theorem 1.1. Thus the statement follows from
Corollary 2.16. □

3. On the character of rectifiable spaces

In this section, we study how the character of the remainders affect the
character and the size of a rectifiable space. The following proposition
is similar to the result [6, Proposition 2.2].

Recall that the tightness of a space X is the minimal cardinal τ ≥ ω
with the property that for every point x ∈ X and every set P ⊂ X with
x ∈ P , there is a subset Q of P such that |Q| ≤ τ and x ∈ Q. The
tightness of X is denoted by t(X).

The definition of complete accumulation point can be found in [10].

Proposition 3.1. Suppose that Y is a space of τ -tightness satisfying

the following condition: (c) for any subset A of Y with |A| ≤ τ+, A
Y

is
compact. Then Y is compact.

Proof. Assume the contrary. We can regard Y as a non-closed subspace
of some Hausdorff compactification X of the space Y . Pick x ∈ Y \ Y .

Claim 1: For any Gτ -subset P = {Pα}α∈τ of X with x ∈ P , we can
conclude that P ∩ Y ̸= ∅.

Since X is a Tychonoff space, there exists an open set Vα containing
x such that x ∈ Vα ⊂ Vα ⊂ Pα for each α ∈ τ . Next we shall prove
that (

∩
α∈τ Vα) ∩ Y ̸= ∅. Put F = {Vα}α∈τ and F ′ = {

∩
F ′′ : F ′′ ⊂

F and |F ′′| < ω} = {Kα}α∈τ . Since x ∈ Y \ Y , there is xα ∈ Kα ∩ Y
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for each α ∈ τ. Put A = {xα}α∈τ ⊂ Y . Then |A| ≤ τ . Thus A
Y

is

compact and {Vα∩A
Y }α∈τ is a family of non-empty closed subsets of A

Y

which has finite intersection property. Therefore, ∅ ̸=
∩

α∈τ (Vα ∩A
Y
) ⊂

(
∩

α∈τ Vα) ∩ Y ⊂ P ∩ Y, which completes the proof of the Claim 1.
By Claim 1, we define a point yα ∈ Y and a closed Gτ - subset Pα of X

containing x for each α < τ+. Let y0 be any element of Y and P0 = X.
Assume that α ∈ τ+, and that the points yβ ∈ Y and the closed Gτ -

subsets Pβ have been defined for each β < α. Let Fα = {yβ : β < α}.
Thus, Fα ⊂ Y and x /∈ Fα. Since Fα is closed in X, there exists a
closed Gδ-subset Vα of x in X such that x ∈ Vα and Vα ∩ Fα = ∅. Let
Pα = Vα ∩

∩
β<α Pβ. It is obvious that Pα is a closed Gτ -subset of X

and x ∈ Pα. We can conclude that Pα ∩Y ̸= ∅ by Claim 1. Pick a point
yα ∈ Pα ∩ Y . Then the sequences {yα : α ∈ τ+} and {Pα : α ∈ τ+}
are constructed. It is clear that the following statements hold for any
α ∈ τ+.

Claim 2: Fα ∩ Pα = ∅.
Claim 3: {yβ : α ≤ β < τ+} ⊂ Pα.

Claim 4: Fα ∩ {yβ : α ≤ β < τ+} = ∅.
Let η = {yα : α ∈ τ+}. It is obvious that η ⊂ Y and |η| ≤ τ+. Some

point z of Y is a complete accumulation point for η. Since t(Y ) ≤ τ ,
it follows from Claim 4 that no point of Y is a complete accumulation
point for η. □
Proposition 3.2. Suppose that X is a nowhere locally compact space
with a remainder Y such that t(Y ) ≤ τ and πχ(Y ) ≤ τ+. Then the
π-character of the space X does not exceed τ+ at some point of X.

Proof. Assume that bX is a compactification of the space X such that
Y = bX \ X. Since X is nowhere locally compact, Y is not closed in
bX, that is, Y is not compact. It follows from Proposition 3.1 that Y
does not satisfy the condition (c). Therefore, there exists a subset A of

Y such that |A| ≤ τ+ and A
Y
is not compact. Then there is x ∈ A \ Y .

Clearly, Y = bX by the fact that X is nowhere locally compact. Since
πχ(Y ) ≤ τ , πχ(y, bX) ≤ τ for each y ∈ Y . Thus, we can fix a local π-
base ξy of bX at y for every y ∈ Y such that |ξy| ≤ τ . Let γ =

∪
y∈A ξy

and P = {W ∩ X : W ∈ γ}. Since X is dense in bX and x ∈ A, the
family P is a π-base of X at x. Clearly, |P| ≤ τ+. □

The following theorems generalize A.V. Arhangel’skǐı and J. Van
Mill’s results [6, Theorem 2.1 and Theoem 2.4].
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Theorem 3.3. Suppose that G is a non-locally compact rectifiable space
with a remainder Y such that χ(Y ) ≤ τ . Then χ(G) ≤ τ+.

Proof. It follows from Proposition 3.2 that there exists a π-base P of G
at the neutral element e of G such that |P| ≤ τ+. Therefore, the family
B = {q(P, P ) : P ∈ P} is a base of G at e such that |B| ≤ τ+. □
Theorem 3.4. If G is a non-locally compact rectifiable space with a

remainder Y satisfying χ(Y ) ≤ τ , then |G| ≤ 2τ
+
.

Proof. Let bG be a compactification of the space G such that the remain-
der Y = bG \ G satisfies χ(Y ) ≤ τ . Then χ(G) ≤ τ+ by Theorem 3.3.
Since χ(Y ) ≤ τ and Y = G = bG, χ(bG) ≤ τ+, it follows from compact-

ness of bG that |bG| ≤ 2τ
+
. Therefore, |G| ≤ 2τ

+
. □

Since it is consistent with ZFC that 2τ = 2τ
+
, it follows that the next

statement holds.

Corollary 3.5. It is consistent with ZFC that if G is any non-locally
compact rectifiable space with a remainder Y satisfying χ(Y ) ≤ τ , then

|G| ≤ 2τ
+
.

Theorem 3.6. Suppose that G is a non-locally compact rectifiable space
with a remainder Y such that the tightness of Y is τ and πχ(Y ) ≤ τ+.
Then χ(G) ≤ τ+.

Proof. Since Y = bG, πχ(y, Y ) = πχ(y, bG) for each y ∈ Y . Therefore,
χ(G) ≤ τ+ by Proposition 3.2 and Theorem 3.3. □
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[3] A. V. Arhangel’skǐı, A study of remainders of topological groups, Fund. Math.
203 (2009), no. 2, 165–178.
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