Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 6, pp. 1539-1551

Title:
On a linear combination of classes of harmonic p-valent functions defined by certain modified operator

Author(s):

T. M. Seoudy

ON A LINEAR COMBINATION OF CLASSES OF HARMONIC p-VALENT FUNCTIONS DEFINED BY CERTAIN MODIFIED OPERATOR

T. M. SEOUDY

(Communicated by Ali Abkar)

Abstract

In this paper we obtain coefficient characterization, extreme points and distortion bounds for the classes of harmonic p-valent functions defined by certain modified operator. Some of our results improve and generalize previously known results. Keywords: Analytic functions, harmonic functions, extreme points, distortion bounds. MSC(2010): Primary: 30C45.

1. Introduction

A continuous complex-valued function $f=u+i v$ defined in a simplyconnected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply-connected domain we can write

$$
\begin{equation*}
f=h+\bar{g}, \tag{1.1}
\end{equation*}
$$

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in D (see [10]).

Recently, Jahangiri and Ahuja [15] defined the class $\mathcal{H}_{p}(p \in \mathbb{N}=$ $\{1,2,3, \ldots\}$), consisting of all harmonic p-valent functions $f=h+\bar{g}$

[^0]that are sense preserving in $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and h and g are of the form:
\[

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=p}^{\infty} b_{k} z^{k},\left|b_{p}\right|<1 . \tag{1.2}
\end{equation*}
$$

\]

For complex parameters $\alpha_{1}, . ., \alpha_{q}$ and $\beta_{1}, . ., \beta_{s}\left(\beta_{j} \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, .\right.$.$\} ,$ $j=1,2, \ldots, s), n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \ell, \gamma \geq 0, \lambda \geq 0$ and $z \in \mathbb{U}$, let $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ denote the family of harmonic p-valent functions $f=h+g$, where h and g of the form (1.2) such that

$$
\begin{equation*}
\Re\left\{(1-\gamma) \frac{I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)}{z^{p}}+\gamma \frac{\left(I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p} \tag{1.3}
\end{equation*}
$$

where $0 \leq \delta<p$ and the operator $I_{p, q, s, \lambda}^{m, \ell}\left(\alpha_{1}\right) f(z)$ is defined as follows (see El-Ashwah and Aouf [14]):

$$
\begin{gather*}
I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)=I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) h(z)+(-1)^{n} I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) g(z), \tag{1.4}\\
I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) h(z)=z^{p}+\sum_{k=p+1}^{\infty}\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n} \Gamma_{k}\left(\alpha_{1}\right) a_{k} z^{k} \tag{1.5}\\
I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) g(z)=z^{p}+\sum_{k=p+1}^{\infty}\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n} \Gamma_{k}\left(\alpha_{1}\right) b_{k} z^{k} \tag{1.6}
\end{gather*}
$$

where

$$
\begin{equation*}
\Gamma_{k}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{k-p \ldots}\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \ldots\left(\beta_{s}\right)_{k-p}(1)_{k-p}} \tag{1.7}
\end{equation*}
$$

and $(\theta)_{\nu}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by
$(\theta)_{\nu}=\frac{\Gamma(\theta+\nu)}{\Gamma(\theta)}= \begin{cases}1 & \left(\nu=0 ; \theta \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right), \\ \theta(\theta+1) \ldots .(\theta+\nu-1) & (\nu \in \mathbb{N} ; \theta \in \mathbb{C}) .\end{cases}$
Let the subclass $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ consist of harmonic functions $f_{n}=h+\bar{g}_{n}$ in $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ so that h and g_{n} are of the form:

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=p+1}^{\infty}\left|a_{k}\right| z^{k}, g_{n}(z)=(-1)^{n-1} \sum_{k=p}^{\infty}\left|b_{k}\right| z^{k},\left|b_{p}\right|<1 \tag{1.8}
\end{equation*}
$$

We note that, by the special choices of $\alpha_{i}(i=1,2, \ldots, q)$ and $\beta_{j}($ $j=1,2, \ldots, s), n, \ell, \gamma$ and λ, we obtain the following classes studied by various authors:
(i) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s)$ and $n=0$, we have $\mathcal{H}_{p, s+1, s}(0, \ell, \lambda, 1 ; \gamma, \delta)=\mathcal{H}_{p} \mathcal{R}(\gamma, \delta)$ the class of harmonic multivalent functions f in \mathbb{U} studied by Ahuja and Jahangiri [1];
(ii) For $q=2, s=1, p=1, \alpha_{2}=\beta_{1}, \alpha_{1}=m+1(m>-1)$ and $l=0$ we get $\mathcal{H}_{1,2,1}(n, 0, \lambda, m+1 ; \gamma, \delta)=S H P_{\lambda}(\gamma, \delta, n, m, k)$, the class of harmonic univalent functions f in \mathbb{U} studied by Darus and Sangle [11];
(iii) For $q=2, s=1, \alpha_{2}=\beta_{1}, \alpha_{1}=m+p(m>-p, p \in \mathbb{N})$ and $l=0$ we get $\mathcal{H}_{p, 2,1}(n, 0, \lambda, m+p ; \gamma, \delta)=\mathcal{H}_{p}(n, \gamma, \delta, \lambda, m)$, the class of harmonic multivalent functions f in \mathbb{U} studied by Atshan et al. [5].

We further, observe that, by the special choices of $\alpha_{i}(i=1,2, \ldots, q)$ and $\beta_{j}(j=1,2, \ldots, s), n, \ell$ and λ our class $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ gives rise the following new subclasses of the class \mathcal{H}_{p} :
(i) For $n=0$ we obtain $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)=\mathcal{H}_{p, q, s}\left(\alpha_{1} ; \gamma, \delta\right)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{H_{p, q, s}\left(\alpha_{1}\right) f(z)}{z^{p}}+\gamma \frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p}\right\}
$$

where $H_{p, q, s}\left(\alpha_{1}\right)$ is the modified Dziok-Srivastava operator (see [2], [12] and [13]);
(ii) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s)$, we get $\mathcal{H}_{p, s+1, s}(n, \ell, \lambda, 1 ; \gamma, \delta)=\mathcal{H}_{p}(n, \ell, \lambda ; \gamma, \delta)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{I_{p}(n, \lambda, l) f(z)}{z^{p}}+\gamma \frac{\left(I_{p}(n, \lambda, l) f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p}\right\},
$$

where $I_{p}(n, \lambda, \ell)$ is the modified Catas operator (see [7]);
(iii) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s)$, and $l=0$, we get $\mathcal{H}_{p, s+1, s}(n, 0, \lambda, 1 ; \gamma, \delta)=\mathcal{H}_{p}(n, \gamma, \delta, \lambda)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{D_{\lambda, p}^{n} f(z)}{z^{p}}+\gamma \frac{\left(D_{\lambda, p}^{n} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p}\right\},
$$

where $D_{\lambda, p}^{n}$ is the modified El-Ashwah-Aouf operator [6];
(iv) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s), \ell=0$ and $\lambda=1$, we get $\mathcal{H}_{p, s+1, s}(n, 0,1,1 ; \gamma, \delta)=\mathcal{H}_{p}(n, \gamma, \delta)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{D_{p}^{n} f(z)}{z^{p}}+\gamma \frac{\left(D_{p}^{n} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p}\right\},
$$

where D_{p}^{n} is the modified operator defined BY Kamali and Orhan [16] and Aouf and Mostafa [4];
(v) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s)$, and $\lambda=1$, we get $\mathcal{H}_{p, s+1, s}(n, l, 1,1 ; \gamma, \delta)=\mathcal{H}_{p}(n, l ; \gamma, \delta)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{I_{p}(n, \ell) f(z)}{z^{p}}+\gamma \frac{\left(I_{p}(n, \ell) f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p}\right\},
$$

where $I_{p}(n, \ell)$ is the modified operator defined by Kumar et al. [17];
(vi) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s), p=$ $\lambda=1$ and $\ell=0$, we obtain $\mathcal{H}_{1, s+1, s}(n, 0,1,1 ; \gamma, \delta)=\mathcal{H}(n, \gamma, \delta)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{D^{n} f(z)}{z}+\gamma\left(D^{n} f(z)\right)^{\prime}\right\}>\delta\right\},
$$

where D^{n} is the modified Salagean operator (see [18]);
(vii) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s), p=$ $\lambda=1$, we get $\mathcal{H}_{1, s+1, s}(n, l, 1,1 ; \gamma, \delta)=\mathcal{H}(n, l ; \gamma, \delta)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{I_{\ell}^{n} f(z)}{z}+\gamma\left(I_{\ell}^{n} f(z)\right)^{\prime}\right\}>\delta\right\},
$$

where I_{ℓ}^{n} is the modified operator introduced and studied by Cho and Srivastava [8] and Cho and Kim [9];
(viii) For $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=1, \ldots, s), p=1$ and $\quad \ell=0$, we obtain $\mathcal{H}_{1, s+1, s}(n, 0, \lambda, 1 ; \gamma, \delta)=\mathcal{H}(n, \lambda ; \gamma, \delta)$

$$
=\left\{f \in \mathcal{H}_{p}: \Re\left\{(1-\gamma) \frac{D_{\lambda}^{n} f(z)}{z}+\gamma\left(D_{\lambda}^{n} f(z)\right)^{\prime}\right\}>\delta\right\},
$$

where D_{λ}^{n} is the modified Al-Oboudi operator [3].
In this paper we obtain coefficient characterization of the classes $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ and $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$. We also obtain extreme points and distortion bounds for the class $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$.

2. Coefficient characterization

Unless otherwise mentioned, we assume throughout this paper that $n \in \mathbb{N}_{0}, 0 \leq \delta<p, \ell, \gamma \geq 0, \lambda>0$ and $\Gamma_{k}\left(\alpha_{1}\right)$ is given by (1.7). We begin with a necessary condition for functions in $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$.

Theorem 2.1. Let $f=h+\bar{g}$ be so that h and g are given by (1.2). Then $f \in \mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ if

$$
\begin{align*}
& \sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right| \tag{2.1}\\
+ & \sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right| \leq p-\delta .
\end{align*}
$$

Proof. Let

$$
\omega(z)=(1-\gamma) \frac{I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)}{z^{p}}+\gamma \frac{\left(I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{p z^{p-1}} .
$$

To prove $\operatorname{Re}\{\omega(z)\}>\frac{\delta}{p}$, it suffices to show that $|p-\delta+p \omega(z)| \geq$ $|p+\delta-p \omega(z)|$. Substituting for $\omega(z)$ and making use of (1.5) to (1.7), we find that

$$
\begin{align*}
& |p-\delta+p \omega(z)| \geq 2 p-\delta-\sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right||z|^{k-p} \tag{2.2}\\
& -\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right||z|^{k-p}
\end{align*}
$$

and

$$
\begin{align*}
&|p+\delta-p \omega(z)| \leq \delta+\sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right||z|^{k-p} \tag{2.3}\\
&+\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right||z|^{k-p}
\end{align*}
$$

Evidently, the inequalities (2.2) and (2.3) in conjunction with (2.1) yield

$$
\begin{aligned}
& |p-\delta+p \omega(z)|-|p+\delta-p \omega(z)| \\
\geq & 2\left[p-\delta-\sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right||z|^{k-p}\right. \\
& \left.-\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right||z|^{k-p}\right] \geq 0 .
\end{aligned}
$$

The harmonic functions

$$
\begin{align*}
f(z) & =z^{p}+\sum_{k=p+1}^{\infty} \frac{x_{k}}{[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} z^{k} \tag{2.4}\\
& +\sum_{k=p}^{\infty} \frac{\bar{y}_{k}}{|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} \bar{z}^{k},
\end{align*}
$$

where $\sum_{k=p+1}^{\infty}\left|x_{k}\right|+\sum_{k=p}^{\infty}\left|y_{k}\right|=p-\delta$, show that the coefficient bound given by (2.1) is sharp. The functions of the form (2.4) are in $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ because in view of (2.1), we have

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right| \\
& +\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right| \\
= & \sum_{k=p+1}^{\infty}\left|x_{k}\right|+\sum_{k=p}^{\infty}\left|y_{k}\right|=p-\delta .
\end{aligned}
$$

This completes the proof of Theorem 2.1.
The restriction imposed in Theorem 2.1 on the moduli of the coefficients of $f=h+\bar{g}$ implies that for arbitrary rotation of the coefficients of f, the resulting functions would still be harmonic multivalent and $f \in \mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$. In the following theorem, it is shown that the condition (2.1) is also necessary for functions $f_{n}=h+\bar{g}_{n}$, where h and g_{n} are of the form (1.8).

Theorem 2.2. Let $f_{n}=h+\bar{g}_{n}$, where h and g_{n} are of the form (1.8). Then $f_{n} \in \mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ if and only if

$$
\begin{gather*}
\sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right| \tag{2.5}\\
+\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right| \leq p-\delta .
\end{gather*}
$$

Proof. Since $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right) \subset \mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$, we only need to prove the "only if" part of the theorem. To this end, for functions $f_{n}=h+\bar{g}_{n}$, where h and g_{n} are of the form (1.8), we notice that the condition

$$
R\left\{(1-\gamma) \frac{I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)}{z^{p}}+\gamma \frac{\left(I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\frac{\delta}{p}
$$

is equivalent to

$$
\begin{aligned}
& R\left\{(1-\gamma) \frac{I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) h(z)+(-1)^{n} I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) g(z)}{z^{p}}\right. \\
&\left.+\gamma \frac{\left(I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) h(z)+(-1)^{n} I_{p, q, s, \lambda}^{n, \ell}\left(\alpha_{1}\right) g(z)\right)^{\prime}}{p z^{p-1}}\right\} \\
& \geq 1-\frac{1}{p} \sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right||z|^{k-p} \\
&-\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right||z|^{k-p} \geq \frac{\delta}{p}
\end{aligned}
$$

Upon choosing the values of z on the positive real axis where $0 \leq z=$ $r<1$, we must have

$$
\begin{aligned}
& 1-\frac{1}{p} \sum_{k=p+1}^{\infty}[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right| r^{k-p} \\
& -\sum_{k=p}^{\infty}|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right| r^{k-p} \geq \frac{\delta}{p}
\end{aligned}
$$

Letting $r \rightarrow 1^{-}$, we obtain the inequality (2.5) and so the proof of Theorem 2.2 is completed.

3. Extreme points and distortion theorem

The next theorem is on the extreme points of convex hulls of the class $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ denoted by $\operatorname{clcoH}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$.

Theorem 3.1. Let $f_{n}=h+\bar{g}_{n}$, where h and g_{n} are of the form (1.8). Then $f_{n} \in \operatorname{clocH}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ if and only if

$$
f_{n}(z)=\sum_{k=p}^{\infty}\left[x_{k} h_{k}(z)+y_{k} g_{k}(z)\right],
$$

where $h_{p}(z)=z^{p}$,

$$
h_{k}(z)=z^{p}-\frac{p-\delta}{[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} z^{k}(k=p+1, p+2, \ldots),
$$

and

$$
\begin{gathered}
g_{k}(z)=z^{p}-(-1)^{n} \frac{p-\delta}{|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} \bar{z}^{k}(k=p, p+1, \ldots), \\
x_{k}, y_{k} \geq 0, x_{p}=1-\sum_{k=p+1}^{\infty} x_{k}-\sum_{k=p}^{\infty} y_{k} .
\end{gathered}
$$

In particular, the extreme points of the class $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ are $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$.

Proof. Suppose that

$$
\begin{aligned}
f_{n}(z)= & \sum_{k=p}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right) \\
= & \sum_{k=p}^{\infty}\left(x_{k}+y_{k}\right) z^{p}-\sum_{k=p+1}^{\infty} \frac{p-\delta}{[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n} \Gamma_{k}\left(\alpha_{1}\right)} x_{k} z^{k} \\
& -(-1)^{n} \sum_{k=p}^{\infty} \frac{p-\delta}{|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n} \Gamma_{k}\left(\alpha_{1}\right)} y_{k} \bar{z}^{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}\left[[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|\right] \\
& \cdot\left(\frac{p-\delta}{\left.[(k-p) \gamma+p]] \frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} x_{k}\right) \\
& +\sum_{k=p}^{\infty}\left[|(k-p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|\right] \\
& \cdot\left(\frac{p-\delta}{|(k-p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} y_{k}\right) \\
= & (p-\delta)\left(\sum_{k=p+1}^{\infty} x_{k}+\sum_{k=p}^{\infty} y_{k}\right)=(p-\delta)\left(1-x_{p}\right) \\
\leq & p-\delta
\end{aligned}
$$

and so $f_{n} \in \operatorname{clco\mathcal {H}_{p,q,s}^{-}}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$.
Conversely, if $f_{n} \in \operatorname{clco} \mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$. Set

$$
x_{k}=\frac{[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|}{p-\delta}\left|a_{k}\right| \quad(k=p+1, p+2, \ldots .),
$$

and

$$
y_{k}=\frac{|(k+p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|}{p-\delta}\left|b_{k}\right|(k=p, p+1, \ldots .) .
$$

Then note that by Theorem $2.2,0 \leq x_{k} \leq 1,(k=p+1, p+2, \ldots)$, and $0 \leq y_{k} \leq 1,(k=p, p+1, \ldots)$. Let $x_{p}=1-\sum_{k=p+1}^{\infty} x_{k}-\sum_{k=p}^{\infty} y_{k}$ and $x_{p} \geq 0$.

Consequently, we obtain the required representation, since

$$
\begin{aligned}
f_{n}(z)= & z^{p}-\sum_{k=p+1}^{\infty}\left|a_{k}\right| z^{k}-(-1)^{n} \sum_{k=p}^{\infty}\left|b_{k}\right| z^{k} \\
= & z^{p}-\sum_{k=p+1}^{\infty} \frac{p-\delta}{[(k-p) \gamma+p]\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} x_{k} z^{k} \\
& -(-1)^{n} \sum_{k=p}^{\infty} \frac{p-\delta}{|(k-p) \gamma-p|\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right)\right|} y_{k} \bar{z}^{k} \\
= & z^{p}-\sum_{k=p+1}^{\infty}\left(z^{p}-h_{k}(z)\right) x_{k} z^{k}-\sum_{k=p}^{\infty}\left(z^{p}-g_{k}(z)\right) y_{k} \bar{z}^{k} \\
= & \left(1-\sum_{k=p+1}^{\infty} x_{k}-\sum_{k=p}^{\infty} y_{k}\right) z^{p}+\sum_{k=p+1}^{\infty} h_{k}(z) x_{k} z^{k} \\
& +\sum_{k=p}^{\infty} g_{k}(z) y_{k} \bar{z}^{k} \\
= & \sum_{k=p}^{\infty}\left\{x_{k} h_{k}(z)+y_{k} g_{k}(z)\right\} .
\end{aligned}
$$

This completes the proof of Theorem 3.1.

The following theorem gives the distortion bounds for functions in the class $\mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ which yields a covering result for this class.

Theorem 3.2. Let $f_{n} \in \mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ with $\frac{p(2 \gamma-1)}{p-\delta}\left|b_{p}\right|<1$. Then for $|z|=r<1$, we have

$$
\begin{aligned}
& \left(1-\left|b_{p}\right|\right) r^{p}-\frac{p-\delta}{[\gamma+p]\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|}\left(1-\frac{p(2 \gamma-1)}{p-\delta}\left|b_{p}\right|\right) r^{p+1} \\
\leq & \left|f_{n}(z)\right| \leq\left(1+\left|b_{p}\right|\right) r^{p}+\frac{p-\delta}{[\gamma+p]\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|}\left(1-\frac{p(2 \gamma-1)}{p-\delta}\left|b_{p}\right|\right) r^{p+1} .
\end{aligned}
$$

Proof. We only prove the right-hand inequality. The proof for the lefthand inequality is similar and will be omitted.

Let $f_{n} \in \mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$. Taking the absolute value of f_{n} we have

$$
\begin{aligned}
& \left|f_{n}(z)\right| \leq\left(1+\left|b_{p}\right|\right) r^{p}+\sum_{k=p+1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \\
& \leq\left(1+\left|b_{p}\right|\right) r^{p}+r^{p+1} \sum_{k=p+1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \\
& =\left(1+\left|b_{p}\right|\right) r^{p}+\frac{p-\delta}{[\gamma+p]\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|} \\
& . r^{p+1} \sum_{k=p+1}^{\infty} \frac{[\gamma+p]}{p-\delta}\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \\
& \leq\left(1+\left|b_{p}\right|\right) r^{p}+\frac{p-\delta}{[\gamma+p]\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|} r^{p+1} \\
& \left\{\sum_{k=p+1}^{\infty} \frac{[(k-p) \gamma+p]}{p-\delta}\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) a_{k}\right|\right. \\
& \left.+\sum_{k=p+1}^{\infty} \frac{|(k+p) \gamma-p|}{p-\delta}\left[\frac{p+\ell+\lambda(k-p)}{p+\ell}\right]^{n}\left|\Gamma_{k}\left(\alpha_{1}\right) b_{k}\right|\right\} \\
& \leq\left(1+\left|b_{p}\right|\right) r^{p}+\frac{p-\delta}{[\gamma+p]\left[\frac{p++\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|}\left(1-\frac{p(2 \gamma-1)}{p-\delta}\left|b_{p}\right|\right) r^{p+1} .
\end{aligned}
$$

This completes the proof of Theorem 3.2.
Remark 3.3. The bounds given in Theorem 3.2 for functions $f_{n}=h+$ \bar{g}_{n}, where h and g_{n} are given by (1.8), also hold for functions of the form $f=h+\bar{g}$, where h and g are given by (1.2) if the coefficient condition (2.1) is satisfied. The upper bound given for $f \in \mathcal{H}_{p, q, s}^{-}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ is sharp and the equality occurs for the functions

$$
f(z)=z^{p}+\left|b_{p}\right| \bar{z}^{p}-\frac{p-\delta}{[\gamma+p]\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|}\left(1-\frac{p(2 \gamma-1)}{p-\delta}\left|b_{p}\right|\right) z^{p+1},
$$

and

$$
f(z)=z^{p}+\left|b_{p}\right| \bar{z}^{p}-\frac{p-\delta}{[\gamma+p]\left[\frac{p+\ell+\lambda}{p+\ell}\right]^{n}\left|\Gamma_{p+1}\left(\alpha_{1}\right)\right|}\left(1-\frac{p(2 \gamma-1)}{p-\delta}\left|b_{p}\right|\right) \bar{z}^{p+1},
$$

showing that the bounds given in Theorem 3.2 are sharp.

Remark 3.4. Putting $q=s+1, \alpha_{i}=1(i=1, \ldots, s+1), \beta_{j}=1(j=$ $1, \ldots, s)$ and $n=0$ in the above results, we obtain the results of Ahuja and Jahangiri [1, Theorems $1,2,3$ and 7 and Corollary 3, respectively].

Remark 3.5. Putting $q=2, s=1, p=1, \alpha_{2}=\beta_{1}, \alpha_{1}=m+1(m>-1)$ and $l=0$ in the above results, we improve the results obtained by Darus and Sangle [11, Theorems 1,2,4 and 3 and Corollary 1, respectively].

Remark 3.6. Putting $q=2, s=1, \alpha_{2}=\beta_{1}, \alpha_{1}=m+p(m>-p, p \in \mathbb{N})$ and $l=0$ in the above results, we improve the results of Atshan et al. [5, Theorems 1, 2, 4 and 3 and Corollary 1, respectively].

Remark 3.7. For special choices of $\alpha_{i}(i=1,2, \ldots, q)$ and $\beta_{j}(j=$ $1,2, \ldots, s), n, \ell$ and λ in the above results, we get new results of novel subclasses of our class $\mathcal{H}_{p, q, s}\left(n, \ell, \lambda, \alpha_{1} ; \gamma, \delta\right)$ as stated in the introduction.

Acknowledgments

The author is grateful to the referees for their valuable suggestions.

References

[1] O. P. Ahuja and J. M. Jahangiri, On a linear combination of classes of multivalently harmonic functions, Kyungpook Math. J. 42 (2002), no. 1, 61-70.
[2] R. A. Al-Khal, Goodman-R ϕ nning-type harmonic univalent functions based on Dziok-Srivastava operator, Appl. Math. Sci. 5 (2011), no. 12, 573-584.
[3] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27 (2004), no. 25-28, 1429-1436.
[4] M. K. Aouf and A. O. Mostafa, On a subclass of n - p-valent prestarlike functions, Comput. Math. Appl. 55 (2008), no. 4, 851-861. .
[5] W. G. Atshan, S. R. Kulkarni and R. K. Raina, A class of multivalent harmonic functions involving a generalized Ruscheweyh type operator, Mat. Vesnik 60 (2008), no. 3, 207-213.
[6] R. M. El-Ashwah and M. K. Aouf, Inclusion and neighborhood properties of some analytic p-valent functions, Gen. Math. 18 (2010), no. 2, 173-184.
[7] A. Catas, On certain classes of p -valent functions defined by multiplier transformations, Book of the International Symposium on Geometric Function Theory and Applications, 241-250, Istanbul, 2007.
[8] N. E. Cho and H. M. Srivastava, Argument estimates of certain anaytic functions defined by a class of multipier transformations, Math. Comput. Modelling 37 (2003), no. 1-2, 39-49.
[9] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-toconvex functions, Bull. Korean Math. Soc. 40 (2003), no. 3, 399-410.
[10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fen. Series A. I, Math. 9 (1984) 3-25.
[11] M. Darus and N. D. Sangle, On Certain class of harmonic univalent functions defined by generalized derivative operator, Int. J. Open Problems Compt. Math. 4 (2011), no. 2, 83-96.
[12] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13.
[13] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), no. 1, 7-18.
[14] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modelling 51 (2010), no. 5-6, 349-360.
[15] J. M. Jahangiri and O. P. Ahuja, Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A. 55 (2001) 1-13.
[16] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.
[17] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations, Kyungpook Math. J. (2006), no. 46, 97-109.
[18] G. S. Salagean, Subclasses of univalent functions, Complex Analysis, 5th Romanian-Finnish seminar, Part 1, Bucharest, 1981, 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
(T. M. Seoudy) Department of Mathematics, Faculty of Science, Fayoum

University, P.O. Box 63514, Fayoum, Egypt
E-mail address: tms00fayoum.edu.eg

[^0]: Article electronically published on December 11, 2014.
 Received: 24 October 2012, Accepted: 21 November 2013.

