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1. Introduction

A continuous complex-valued function f = u+iv defined in a simply-
connected complex domain D is said to be harmonic in D if both u and
v are real harmonic in D. In any simply-connected domain we can write

(1.1) f=h+7,

where h and g are analytic in D. We call h the analytic part and g the
co-analytic part of f. A necessary and sufficient condition for f to be
locally univalent and sense-preserving in D is that |h'(z)| > |¢'(2)| in D
(see [10]).

Recently, Jahangiri and Ahuja [15] defined the class H,(p € N
{1,2,3,...}), consisting of all harmonic p—valent functions f = h +
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Classes of harmonic p—valent functions 1540

that are sense preserving in U= {z € C: |z| < 1} and h and g are of the
form:

(1.2) z) =2 4+ Z ar 2%, g(z Zbkz by < 1.

k=p+1

For complex parameters a1, .., ag and f1, ..,ﬁs (Bj ¢ Zy ={0,—-1,-2,..},
j=12..,s),n € Ny=NU{0}, 4,67y >0, A\ >0 and z € U, let
Hpq.s(n, €, A, o137, 0) denote the family of harmonic p—valent functions
f =h+ g, where h and g of the form (1.2) such that

£ & /
NG >f<z>ﬂ(f£m<al>f<z>) 5

(1.3) RC(1—7) > .

2P pr_l

where 0 < § < p and the operator Ipq’s y(a1) f (z) is defined as follows
(see El-Ashwah and Aouf [14]):

(14) I () f(2) =T \(aa)h(z) + (1) I\ (on)g(2),

n + 04+ Nk —
(1.5) Ipqgs)\( z)=2P + Z [p / p)} Ty (o) apz”,
k=p+1 P
+ 0+ Mk —
(1.6) I \(on)g(z) = 2" + Z {p ; p)} Ty, () bz”,
k=p+1 p
where
(17) Fk’ (al) —_ (al)k*P”‘(aq)k*P

(B)k—p-(Bs)k—p(r—p

and (0), is the Pochhammer symbol defined, in terms of the Gamma
function I', by

g _LO+v) _[1 (v =0;0 € C* = C\{0}),
(6), = r(9) _{9(0+1)....(9—|—1/—1) (v e N;0 € C).

Let the subclass H, , (n, £, A\, a1;7, ) consist of harmonic functions
fn=h+7,inH,qs(n, ¢l X\ ar;7v,0) so that h and g, are of the form:

(1.8) h Z|ak]z,gn = ”1Z\bk| bl < 1.

k=p+1
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We note that, by the special choices of a; (i = 1,2,...,q) and f; (
j=1,2,..,8), n, £, and A\, we obtain the following classes studied by
various authors:

(i)Forg=s+1,0,=1(i=1,...,s+1),8,=1(j =1,...,5) and
n =0, we have H, s41,5(0,¢, A, 1;7,0) = H,pR (7, ) the class of harmonic
multivalent functions f in U studied by Ahuja and Jahangiri [1];

(ii) For ¢ = 2,s = 1,p = L,ay = B1,01 = m+ 1(m > —1) and
[ =0weget Hi21(n,0,\,m+1;v,6) = SHP\(7v,6,n,m, k), the class of
harmonic univalent functions f in U studied by Darus and Sangle [11];

(iii) For g =2,s = 1,aa = f1,a1r =m+p(m > —p,pe N) and | =0
we get Hp21(n, 0, \, m+p;v,d) = H,(n,v,d, A\, m), the class of harmonic
multivalent functions f in U studied by Atshan et al. [5].

We further, observe that, by the special choices of o; (i = 1,2, ...,q)
and 85 (j = 1,2,...,5),n,£ and X our class Hp 4 s(n,l, A, o1;7,6) gives
rise the following new subclasses of the class H,:

(i) For n = 0 we obtain M, q.s(n, £, X, 01;7,9) = Hpq,s(a1;7,9)

_ { feH R { (1 ras(@)f @) | (Hpasla))f () } 9 } |

2P pzP~1 P

where H,, , s(a1) is the modified Dziok-Srivastava operator (see [2], [12]
and [13]);

(i) Forg=s+1,0s=1(i=1,...,5s4+1),8;=1(j=1,...,s), we get
Hp,si1,s(n:6, 7,137, 0) = Hp(n, £, Ay, 0)

L(n, A\ 1) f(2) ﬂ<1p<n,A,z>f<z>>’} . 6}7

2P pzP~1 5

- {fe%z%{(l—w
where I))(n, A, ¢) is the modified Catas operator (see [7]);
(iii) Forg =s+1l,a; =1(i=1,..,s+1),8;=1(j =1,...,s), and
1 =0, we get Hps+1,5(n,0,X,1;7,6) = Hp(n,v,6,A)

DY f(2) (Dz,pﬂz))' 5

_ . . Ap v
=qfeH,: RS (1 =) o + pp 1 >p )

where DY  is the modified El-Ashwah-Aouf operator [6];
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(iv) Forg=s+1l,a;=1(i=1,...,5+1),5 = (jzl,...,s),sz
and A = 1, we get Hpsi1,5(n 0,1,1,7, ) Hp(n,7,0)

- {fe%z%{(l—w e +7(D3f<f)) }>5},

2P pzP~1

where D} is the modified operator defined BY Kamali and Orhan [16]
and Aouf and Mostafa [4];

(v) For ¢g=s+1,04 =1 (1
A =1, we get Hpot1.5(n,1,1,1;

_ { feH, R { (1 — ) B0OSE) | (o0 O01(2) } 9 } |

1L.,s+1),6,=1(j=1,..5s), and

2P pzp—1

where Ip,(n, f) is the modified operator defined by Kumar et al. [17];
(vi)Forg=s+1l,as=1(i=1,...,s+1),8,=1(G=1,...,s), p=
A =1and ¢ =0, we obtain H s115(n,0,1,1;7,0) = H(n,v,9)

:{fer:%{(l_anﬁ(z)+’Y(D”f(z))/} >5},

where D" is the modified Salagean operator (see [18]);
(vii) Forg=s+1,0=1(i=1,...,s+1),8,=1((=1,..,5), p=
A= ]-7 we get H1,5+17s(n7l7 17 17’}/75) = H(”J?Va 6)

—{remn{a-n Ty mrey} > o},

where I}’ is the modified operator introduced and studied by Cho and
Srivastava [8] and Cho and Kim [9];

(viii) Forg =s+1,0 =1(i=1,...,s+1),8;=1((=1,..,s), p=1
and ¢ =0, we obtain Hj s41,5(n,0,X,1;7v,6) = H(n, A;v,0)

— {fGHpZ%{(l—V)D;Z(Z)+’7(D§f(z))'} >5},

where DY is the modified Al-Oboudi operator [3].

In this paper we obtain coefficient characterization of the classes
Hpq,s(n, €, N, 0157, 6) and H,, , ((n, £, A, 157, 0). We also obtain extreme
points and distortion bounds for the class H, , (n, ¢, \, a1;7, 9).

P,4q,s
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2. Coefficient characterization

Unless otherwise mentioned, we assume throughout this paper that
neNy, 0<6<p, £,y>0,A>0and I't (aq) is given by (1.7). We
begin with a necessary condition for functions in H, q.s(n, ¢, A, @157, 9).

Theorem 2.1. Let f = h+ g be so that h and g are given by (1.2).
Then f € Hpqs(n, €, A, o157, 6) if

S PG
@ 3 pr+al [P0 i o

= +L+AE—p)]"
# 3 Ik+p)y—ol [P i e < p -

Proof. Let

/

n,

Lasa@)f@)  (Baanlonf()

2P " pzp—l

)
To prove Re{w(z)} > —, it suffices to show that |p— ¢+ pw (2)| >
p

|p 4+ 6 — pw (2)|. Substituting for w (z) and making use of (1.5) to (1.7),
we find that

(2.2)
pd o) =253 (k- p)7 -+ o] | B Ty (o) a2
k=p+1
oo
L+ XN(k— k—
—Zlkﬂ?v pl [ZEE202 ) 1 () B 21
and
(2.3)
p+8—pw () <5+ > (b —p)y+p) [EEAERTT T, (ar) ag |27
k=p+1

HAE—p) 1" -
+ 301k +p) 7 = pl [PEE ] r ) b 7
k=p
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Evidently, the inequalities (2.2) and (2.3) in conjunction with (2.1) yield

lp—6+pw(2)|—|p+d—pw(z)l

> 2|p—d- 3 [(k—p)y+p] PG Tk (n) a2
k=p+1

—Z\ k+p)y—pl [Wﬁf p)} T (1) bi| |27 | > 0.

The harmonlc functions

(24)  f(z)=2"+ Z — z
et [k =)y + 7] [PERE2] 0 (o)
i Yk 2k7

i 1k +p) v = p| [P0 T (o))

oo [o.@]
where > |zk|+ Y. |yx| = p—J, show that the coefficient bound given
k=p+1 k=p
by (2.1) is sharp. The functions of the form (2.4) are in

Hp.q.s(n, £, A, o137, 6) because in view of (2.1), we have

> p+L+XE—p) "
> h=py ol [P i )
k=p+1 p
- p+l+Ak—p)]"
k — r b
+ I+ pr{ AR iy (o
= Z |l‘k|+Z|yk;!
k=p+1
This completes the proof of Theorem 2.1. O

The restriction imposed in Theorem 2.1 on the moduli of the coeffi-
cients of f = h + g implies that for arbitrary rotation of the coefficients
of f, the resulting functions would still be harmonic multivalent and
[ €Hpgs(n, €\ ar;7,0). In the following theorem, it is shown that the
condition (2.1) is also necessary for functions f, = h +g,,, where h and
gn are of the form (1.8).
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Theorem 2.2. Let f, = h+3,, where h and g, are of the form (1.8).

Then fn € H, 404N a157,0) if and only if

29 X W-prn [P

k=p+1

> + L4+ MNk—=p)]"
#3102 i e < p -

Proof. Since Hp 0.5 G A 159,0) C Hp g.s(n, £, A, a5, 0), we only need
to prove the "only if” part of the theorem. To this end, for functions
fn = h+7,, where h and g, are of the form (1.8), we notice that the
condition

I;if,s,ml)f(z)M(IZ;S,A( DFE) |

> —
2P pzP1 p

RS (1—19)

is equivalent to

R{(1 V)InqgsA( )h(2)+(z—pl)nfnqzsx( 1)9(2)
(1 A(@A() + ()" I (o) (=)
+y T
> 1 D (k] [P ) a2
pk:p+1

G A (k—p) " o 0
> l(k+p)y—p| [W} Tk (1) bil |2] pz};.
ki
0

Upon choosing the values of z on the positive real axis where
r <1, we must have

1 & ST _
1-= > [(k—p)v+p| [p7+zj,i(gk p)} T (o) ag| 7P
pk*p+1
n _ 1)
—Z|k+P’Y Pl {%] ‘Fk(al)bk“kpzﬁ

k=p
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Letting » — 17, we obtain the inequality (2.5) and so the proof of
Theorem 2.2 is completed. ]

3. Extreme points and distortion theorem

The next theorem is on the extreme points of convex hulls of the class

H o s(n, b\ ag;7,d) denoted by clcoH, , ((n, €, A, a1;7,9).

P.4q,s

Theorem 3.1. Let f, = h+3g,,, where h and g, are of the form (1.8).
Then f,, € clocH,, , ((n, €, \,a1;7,0) if and only if

P,q,s

P:q,s
o0
=[x he(2) + yrgr(2)],
k=p

where hy(z) = 2P,

hi(z) = 2P — p=9 n 2 k=p+1,p+2,..),
(2) [(k—=p)y-+p] [ZEEAG2 ] Do) (k=p+Lp )
and
gk(Z) :Zp_(_l)n ol n ?k (k:pap+17)7

i = W

Tk, Y, k>0 Z'p—l— Z mk—Zyk

k=p+1
In particular, the extreme points of the class H, S(n,ﬁ, A, ag;7,9) are
{hx} and {gi}.
Proof. Suppose that
o0
Fa(z) = > (wk hel2) + ykgr(2))
k=p
o0 oo
—0 k
= T+ yk)2’ — =k Tk 2
,;J( ) kzil [(k—p)y+p) [ G2 T ()
o
n p—9 —k
" z¢ .
kz_;) |(k+p)y—pl %ﬁ] T (a1) v
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Then

o

S (1= p)y+p) [PEEED] Iy (o)
k=p+1

p—0
‘ ([(kp>w+p][””;1<f”>]”|rk<m>| x’“)

+Z[ (6 = p)y — pl [EEEG=2 ) 1y ()
k=

p—0

' ((kp>wp|[””;1<;“’>]”|rk<a1>| y’“)
= (p—9) Z T + Zyk (p—6) (1 — )

k=p+1

IA

p—0.

and so fy, € clcoM,, S
Conversely, if f, € clcoH

n, b, \, a1;7,0).
(n, 0, \,a1;7,9). Set

P,4q,s

[(k—p)y+p] [ P52 ry ()|
p—0

xR = lax| (k=p+1,p+2,...),

and

|(k+p)y—pl [P Dy ()|

p—o b (k=p,p+1,...).

Yk =

Then note that by Theorem 2.2, 0 <z, <1, (k=p+1,p+2,...), and
o0

o0
0<yr <1, (k=pp+1,..). Letx,=1— > xp— > yrand x, > 0.
k=p+1 k=p
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Consequently, we obtain the required representation, since

falz) = 2= 3 JalF = (1" ol 2
k=p

k=p+1
= 2= p+f_+i(k )" st
kSt [0k = )y + ] | PGB Iy (o))
> )
EDY b yi Z°

= 10k =p)y = pl [ 252 T )]

= = Y (P -m(2)mt =Y (P —gk(2) m
k=p+1 k=p
= Z T — Zyk 2P + Z Ry (2) 22"
k=p+1 k=p+1
+ng )y 2
= D A{arhi(z) + vk gx(2)} -
k=p
This completes the proof of Theorem 3.1. U

The following theorem gives the distortion bounds for functions in the

class H,, , (n, £, A, a1;7, ) which yields a covering result for this class.

Theorem 3.2. Let f, € H,,
Then for |z| =1 < 1, we have

n, 0\, a;v,08) with %W < 1.

_ p—§ _ p(2y—1) p+1
(1 |bp|) [ N ][p+£+>\] ICpr1(an)| (1 p—0 |bp|> T
E) 2v—1
= |fn(2)| = (1 * ‘bp‘)rp [v+ ]|:p+[+p)\} ITp+1(a)l <1 - p(]lé | |bp|> "

Proof. We only prove the right-hand inequality. The proof for the left-
hand inequality is similar and will be omitted.
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Let fn € Hpqs(n, 0 A a157,6). Taking the absolute value of f, we
have
()] < (U410 rP+ > (lak] + [bi]) r*
k=p+1
< (L [bp)r? + PN (lak] + (i)
k=p+1
-
= (LB + i
[+ 9] [2552] " Iy (o)
'y+p p+l+ A"
LAk Z [ "y ] Cpt1 ()] (k| + [br])
k= p+1 p
-
< (LI + i rrtl
v+ 9] [2552 ] Iy (o)
k— HAk—p) 1"
Z [ p}?g-&-p] [p-i- —;-i-(f p)} Ty (1) a|
k=p+1
|(k HAk=—p) 1"
+ Z +p)’Y p| [PJr ;+(Z P)} Ty (1) by
k=p+1
< (14 1b))r? + =5 (1—73(27_1) b )rP“.
> ( ’p’) [V'H’][p;fl;k] ITpt1(a1)] p—0 ’p’
This completes the proof of Theorem 3.2. U

Remark 3.3. The bounds given in Theorem 3.2 for functions f, = h+
Gy, where h and g, are given by (1.8), also hold for functions of the form
f=h+g, where h and g are given by (1.2) if the coefficient condition

2.1) is satisfied. The upper bound given for f € H . .(n, €, A\, a1;7,d
( pp g s ¥
is sharp and the equality occurs for the functions
2) =2+ |b)| ZF — P9 1— 2=y, 2P
I bl el [ 2555 | Iy (o) (155 )
and
=P 4|y | 2P — p—d (1 27 D > il
A e (25 oy ool 2

showing that the bounds given in Theorem 3.2 are sharp.
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Remark 3.4. Puttingqg=s+1,a; =1 (i=1,...,s+1),8,=1( =
1,...,8) and n = 0 in the above results, we obtain the results of Ahuja
and Jahangiri [1, Theorems 1,2,3 and 7 and Corollary 3, respectively].

Remark 3.5. Puttingg=2,s=1,p=1,as = f1,01 = m+1(m > —1)
and l = 0 in the above results, we improve the results obtained by Darus
and Sangle [11, Theorems 1,2,4 and 3 and Corollary 1, respectively].

Remark 3.6. Pultingq=2,s = 1,00 = 51,00 = m+p(m > —p,p € N)
and I = 0 in the above results, we improve the results of Atshan et al.
[5, Theorems 1, 2, 4 and 3 and Corollary 1, respectively].

Remark 3.7. For special choices of o; (i = 1,2,...,q) and B; (j =
1,2,...,8),n,¢ and X\ in the above results, we get new results of novel
subclasses of our class Hpqs(n,l, N, 01;7,0) as stated in the introduc-
tion.
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