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Abstract. Let G be a finite group. A subset X of G is a set of
pairwise non-commuting elements if any two distinct elements of X
do not commute. In this paper we determine the maximum size of
these subsets in any finite non-abelian metacyclic 2-group and in
any finite non-abelian p-group with an abelian maximal subgroup.
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1. Introduction

Let G be a finite non-abelian group and let X be a subset of pairwise
non-commuting elements of G such that |X| ≥ |Y | for any other set
of pairwise non-commuting elements Y in G. Then X is said to have
the maximum size and the size of such a subset is denoted by ω(G).
Also ω(G) is the maximum clique size in the non-commuting graph of
a finite group G. Let Z(G) be the centre of G. The non-commuting
graph of a group G is defined as a graph whose G\Z(G) is the set of
vertices and two vertices are joined if and only if they do not commute.
Various attempts have been made to find ω(G) for some groups G, see
for example [1–3, 6–8, 13, 14] and [15]. Moreover in [9] for any finite
non-abelian metacyclic p-group G with p > 2, it is proved that ω(G) =
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|G′|
p (1+p) and also it is shown that this equality is not true for finite non-

abelian metacyclic 2-groups. In the present paper continuing the work in
[9], we find ω(G) when G is a finite non-abelian metacyclic 2-group. Also
we show that ω(G) = |G′|+1 for any finite non-abelian p-groupG with an
abelian maximal subgroup, see (Theorem 3.4). Our proofs are based on
maximal subgroups and powerful 2-groups. Following [4], we say that a
2-group G is powerful if G/℧2(G) is abelian, where ℧2(G) = ⟨x4|x ∈ G⟩.
Moreover to prove our main theorem, we use coverings of groups by
abelian subgroups. Following [5, §116], we say that a finite group G is
covered by the proper subgroups A1, . . . , An if G = A1 ∪ · · · ∪ An. As
a matter of fact if G is covered by n proper abelian subgroups, then
ω(G) ≤ n since two elements that do not commute cannot be in the
same abelian subgroup.

In particular for metacyclic 2-groups we prove the following theorem:

Theorem 1.1. Let G be a finite non-abelian metacyclic 2-group with
G = ⟨b, a⟩, b−1ab = ak, 1 < k < |a| and k + 1 = 2nℓ, where n ≥ 1 and ℓ
is an odd number.

(i) If G possesses at least one abelian maximal subgroup, then ω(G) =
|G′|+ 1.

(iii) If G possesses no abelian maximal subgroups, then

ω(G) =

{
|G′|
22n

(22n + 3.2n−1 − 1) |G′| ≥ 22n

|G′|
2n+1 (2

n+1 + 3) |G′| < 22n.

We note that we are able to write k+1 = 2nℓ, where n ≥ 1 and ℓ is an
odd number, by using Lemma 2.1(i). Furthermore the above theorem
coincides with Theorem 1.1 in [9] for a metacyclic p-group with p > 2,
only when G is a powerful metacyclic 2-group with no abelian maximal
subgroups, see Corollary 5.8.

Throughout this paper the following notation is used. All groups are
assumed to be finite. The centralizer of an element a in a group G is
denoted by CG(a). The order of an element a in a group G is denoted
by |a|. The letter p denotes a prime number. In a p-group G, we define

℧i(G) = ⟨xpi |x ∈ G⟩ for i ≥ 1. We write [a, b] for a−1b−1ab. Also a
minimal non-abelian group is a non-abelian group such that all of its
proper subgroups are abelian.



1575 Fouladi

2. Some basic results

In this section we give some basic results for metacyclic p-groups that
are needed for the main results of the paper.

Let G be a finite metacyclic p-group. We know that there exists a
normal cyclic subgroup ⟨a⟩ of G such that G/⟨a⟩ is cyclic. Therefore
we may choose an element b ∈ G and a number 1 ≤ k < |a| such that
G = ⟨b, a⟩ and b−1ab = ak and so any element of G has the form bjai

for j, i ≥ 0.
For the rest of the paper we fix the above notation.

Lemma 2.1. Let G be a non-abelian metacyclic p-group. Then

(i) k ≡ 1 (mod p),

(ii) [ai, bj ] = [a, b]i(1+k+···+kj−1) for i, j ≥ 1,
(iii) G′ = ⟨[a, b]⟩,
(iv) any two arbitrary elements x = bjai and y = bsar in G commute

if and only if (1 + k + · · · + ks−1)i ≡ (1 + k + · · · + kj−1)r
(mod |G′|), where i, j, r, s ≥ 0 and we take 1+k+ · · ·+km−1 = 0
when m = 0,

(v) (bai)n = bnai(1+k+···+kn−1) for i, n ≥ 1,
(vi) Φ(G) = ⟨bp, ap⟩.

Proof. See [9, Lemma 2.1]. □
By Lemma 2.1(i), if p = 2 then we may write k+1 = 2nℓ, where n ≥ 1

and ℓ is an odd number. Throughout this paper we use this notation
everywhere.

Theorem 2.2. Let G be a non-abelian metacyclic 2-group. Then

(i) H1 = ⟨b, a2⟩,H2 = ⟨ba, a2⟩ and H3 = ⟨b2, a⟩ are all distinct
maximal subgroups of G,

(ii) |H ′
1| = |H ′

2| =
|G′|
2 and |H ′

3| =
|G′|
2n when H1, H2 and H3 are not

abelian and so |G′| ∤ k + 1 and 2n+1 | |G′|.

Proof. (i) Obviously G has three maximal subgroups since d(G) = 2.
Moreover Φ(G) < Hi < G for 1 ≤ i ≤ 3 by Lemma 2.1(vi) and (v),
which completes the proof.
(ii) This follows from Lemma 2.1(ii), (iii) and the fact that Hi is meta-
cyclic for 1 ≤ i ≤ 3. □

For the rest of the paper we use the notation of Theorem 2.2.

Lemma 2.3. Let k be an odd number.
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(i) For j ≥ 1 we have 1 + k2
j
= 2u, where u is an odd number.

(ii) If i is an odd number, then 1 + k + · · · + ki−1 is also an odd
number.

(iii) If i = 2su in which s ≥ 1 and u is an odd number, then
1 + k + · · ·+ ki−1 = (1 + k)2s−1u′, where u′ is an odd number.

Proof. (i) We see that 1+ k2
j
= 1+ (k2

j−1
)2 and since k is odd, we may

write k2
j−1

= 2t+ 1 for some t ≥ 0, as desired.
(ii) Since k ≡ 1 (mod 2), we see that 1 + k+ · · ·+ ki−1 ≡ i (mod 2), as
required.
(iii) On setting s(k, i) =

∑i−1
j=0 k

j and by using (i), we prove that s(k, i) =

v
∏s−1

j=0(1 + k2
j
) for any odd number k, where v is an odd number. To

prove this we use induction on s. Now (ii) and the fact that s(k, i) =
(k + 1)s(k2, i/2), complete the proof. □
Lemma 2.4. Let G be a non-abelian metacyclic 2-group. Then |G′| <
|a| and |G′|

2n−1 ≤ |b|.

Proof. First we see that G′ < ⟨a⟩ since G is not cyclic. Hence |G′| < |a|.
Moreover we have [a, b|b|] = 1 and so |G′| divides

∑|b|−1
j=0 kj = (k+1)|b|/2

by Lemma 2.1(ii), (iii) and Lemma 2.3(iii). Now the fact that k+1 = 2nℓ
completes the proof. □
Lemma 2.5. Let G be a metacyclic 2-group and |G′| = 2. Then

(i) G is minimal non-abelian,
(ii) ω(G) = 3.

Proof. (i) See [9, Corollary 3.2].
(ii) See [5, Lemma 116.1(a)]. □

For the rest of the paper we assume that |G′| > 2.

Lemma 2.6. Let G be a non-abelian metacyclic p-group. Then
{a, b, ba, ba2, . . . , ba|G′|−1} is a subset of pairwise non-commuting ele-
ments in G. Therefore |G′|+ 1 ≤ ω(G).

Proof. This follows from Lemma 2.1(iv). □
Note. In the following lemmas we use the fact that the congruence
ax ≡ b (mod m) has a solution c, 0 ≤ c < m when (a,m) = 1, see for
example [12, Proposition 3.3.1].

Lemma 2.7. Let G be a non-abelian metacyclic 2-group. Then
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(i) CG(a), CG(b) and CG(bai) for i ≥ 0 are abelian subgroups of G,
(ii) CG(ba2i) = CH1(ba

2i) and CG(ba2i+1) = CH2(ba
2i+1) for i ≥ 0,

(iii) H1 =
∪ |G′|

2
−1

i=0 CG(ba2i) ∪ Φ(G),

(iv) H2 =
∪ |G′|

2
−1

i=0 CG(ba2i+1) ∪ Φ(G).

Proof. (i) If bjai ∈ CG(a), then bj ∈ Z(G) and so CG(a) is abelian.
Similarly CG(b) is abelian. Now by the above argument we deduce that
CG(bai) is abelian for i ≥ 0 since G = ⟨a, bai⟩.
(ii) First we see that CH1(ba

2i) ≤ CG(ba2i) and if bras ∈ CG(ba2i), then
2i

∑r−1
t=0 k

t ≡ s (mod |G′|) by Lemma 2.1(iv). Therefore 2 | s since 2
divides |G′|, as desired. Now to prove the second equation, we see that
bras ∈ H2 if and only if either both r and s are odd or both r and s are
even by the fact that Φ(G) ≤ H2. Therefore we can complete the proof
by using Lemma 2.1(iv) and Lemma 2.3(ii).

(iii) If bra2s ∈ H1 \ Φ(G), then r is odd. Hence there exists 0 ≤ i < |G′|
2

such that i
∑r−1

t=0 k
t ≡ s (mod |G′|

2 ) since
∑r−1

t=0 k
t and |G′|

2 are coprime.

Hence bra2s ∈ CG(ba2i) by Lemma 2.1(iv), as required.
(iv) By the argument in the proof of (ii), if bras ∈ H2 \Φ(G), then both

r and s are odd. Hence there exists 0 ≤ j < |G′| such that j
∑r−1

t=0 k
t ≡ s

(mod |G′|). Moreover we may write j = 2i + 1 since s is odd and so
bras ∈ CG(baj), as desired. □

3. Non-abelian p-groups with an abelian maximal subgroup

In this section we consider a general case. Let G be a finite non-
abelian p-group with an abelian maximal subgroup. Then we show that
ω(G) = |G′| + 1. First we give the following definition. A group G is
called an AC-group if the centralizer of every non-central element of G
is abelian.

Lemma 3.1. [8, Lemma 2.2] Let G be an AC-group.

(i) If a, b ∈ G\Z(G) with different centralizers, then CG(a)∩CG(b) =
Z(G).

(ii) If G = ∪k
i=1CG(ai), where CG(ai) and CG(aj) are distinct for

1 ≤ i < j ≤ k, then {a1 . . . ak} is a maximal set of pairwise
non-commuting elements in G.

Lemma 3.2. Let G be a finite non-abelian p-group with an abelian max-
imal subgroup A and let x ∈ G \A. Then
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(i) Z(G) ≤ A, A ∩ CG(x) = Z(G) and |CG(x) : Z(G)| = p,
(ii) G is an AC-group.

Proof. (i) We see that A ≤ AZ(G) < G since G is not abelian and
so Z(G) ≤ A. Therefore A ∩ CG(x) = Z(G) since G = A⟨x⟩. Hence
|CG(x) : Z(G)| = p by the fact that G = ACG(x).
(ii) If a ∈ A \ Z(G), then CG(a) = A and if x ∈ G \ A, then |CG(x) :
Z(G)| = p by (i), as desired. □

Lemma 3.3. If G is a finite group with A ⊴ G and G/A is cyclic,
then |A| = |G′||A ∩ Z(G)|.

Proof. See [11, Aufgabe III. 1.2]. □

Theorem 3.4. Let G be a finite non-abelian p-group with an abelian
maximal subgroup A. Then ω(G) = |G′|+ 1.

Proof. First by Lemma 3.2(ii), G is an AC-group. Now since G is finite
and CG(a) = A for any a ∈ A\Z(G), we may write G = CG(x1)∪CG(x2)∪
· · · ∪ CG(xm) ∪ CG(a) for some m, where a ∈ A \ Z(G), xi ∈ G \ A
for 1 ≤ i ≤ m and all elements of the union are distinct. Moreover
the intersection of any two elements of the union is Z(G) by Lemma
3.1(i). Hence by Lemma 3.2(i), |G| = m(p|Z(G)| − |Z(G)|) + |A| and
so m = |A|/|Z(G)| = |G′| by Lemma 3.3. This completes the proof by
using Lemma 3.1(ii). □

4. Powerful metacyclic 2-groups

In this section we give some results for powerful metacyclic 2-groups
that will be used in the sequel. In fact we prove that H3 is powerful and
we use it to prove our main theorem in the next section. Following [4],
a 2-group G is said to be powerful if G/℧2(G) is abelian. We note that
if G is a 2-group, then Φ(G) = ℧1(G). Next two lemmas show that
most results about powerful p-groups with p > 2 are true for powerful
2-groups as well.

Lemma 4.1. Let G be a powerful 2-group and G = ⟨a1, a2, . . . , ad⟩.
Then

(i) Φ(G) = ⟨a21, a22, . . . , a2d⟩,
(ii) G = ⟨a1⟩⟨a2⟩ . . . ⟨ad⟩,
(iii) ℧i(G) = {x2i |x ∈ G} for i ≥ 1.
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Proof. (i) See [4, Lemma 26.24].
(ii) See [4, Corollary 26.25].
(iii) See [4, Proposition 26.23]. □
Lemma 4.2. Let G be a powerful 2-group and G = M1∪· · ·∪Mt∪Φ(G),
where Mi’s subgroups of G. Then G = M1 ∪ · · · ∪Mt.

Proof. The proof is the same as [9, Lemma 4.1]. □
Following [4, §26], a metacyclic 2-group G is called ordinary meta-

cyclic if G has a cyclic normal subgroup A such that G/A is cyclic and
[G,A] ≤ ℧2(A).

Theorem 4.3. [4, Proposition 26.27] A two generator 2-group is pow-
erful if and only if it is ordinary metacyclic.

Lemma 4.4. Let G be a non-abelian metacyclic 2-group. Then G is

powerful if and only if n = 1. Moreover in this case |H ′
3| =

|G′|
2 .

Proof. First recall that k+1 = 2nℓ, b−1ab = ak and k > 1 since G is not
abelian. If G is powerful, then we have ak−1 = [a, b] ∈ ℧2(⟨a⟩) = ⟨a4⟩ by
Theorem 4.3. Hence we deduce that |a| | k−1−4t for some t. Moreover
[a, b] ∈ ⟨a4⟩ shows that a4 ̸= 1 or equivalently 4 | |a|. Therefore 4 | k−1,
as desired. Now if n = 1, then 4 | k − 1, completing the proof. The rest
follows from Theorem 2.2(ii) when H3 is not abelian. Moreover if H3

is abelian, then [a, b2] = 1. This yields that |G′| = 2 by Lemma 2.1(ii),
(iii), as required. □
Lemma 4.5. Let G be a non-abelian metacyclic 2-group. Then H3 is
powerful.

Proof. We see that H ′
3 = ⟨ak2−1⟩ ≤ ⟨a4⟩ ≤ ℧2(H3) by Lemma 2.1(i),(ii)

which completes the proof. □
Lemma 4.6. If G is a powerful metacyclic 2-group with |G′| = 2m,
where m ≥ 2, then H3 is covered by 2m−1 abelian subgroups and Φ(G).

Proof. We use induction on m. For m = 2, we see that H3 is minimal
non-abelian by Lemma 4.4 and Lemma 2.5. Obviously H3 is covered
by its three abelian maximal subgroups in which Φ(G) is one of them
by Theorem 2.2(i). Now suppose that m ≥ 3, |G′| = 2m and the result
holds for all powerful metacyclic 2-groups in which the order of the
derived subgroup is 2m−1. We see that H3 is powerful and |H ′

3| = 2m−1

by Lemmas 4.5, 4.4. Also by Theorem 2.2, M1 = ⟨b2, a2⟩ = Φ(G),
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M2 = ⟨b2a, a2⟩ and M3 = ⟨b4, a⟩ are all distinct maximal subgroups of
H3. Hence by the induction hypothesis, M3 is covered by 2m−2 abelian
subgroups and Φ(H3). Moreover by Lemma 2.7, we see that M2 is
covered by Φ(H3) and 2m−2 abelian subgroups of H3. Therefore we can
complete the proof by the fact that Φ(H3) ≤ Φ(G) and H3 = M1∪M2∪
M3. □
Lemma 4.7. Let G be a non-abelian metacyclic 2-group. Then

(i) CH3(b
2ia) = CG(b2ia) for i ≥ 0,

(ii) CG(b2ia) is abelian for i ≥ 0,

(iii) H3 =
∪ |G′|

2
−1

i=0 CG(b2ia) ∪ Φ(G) when G is powerful and |G′| > 2.

Proof. (i) This follows from Lemma 2.1(iv) and Lemma 2.3(ii).

(ii) Assume that bras, br
′
as

′ ∈ CG(b2ia). Thus by Lemma 2.1(iv),∑r−1
t=0 k

t ≡ s
∑2i−1

t=0 kt (mod |G′|) and
∑r′−1

t=0 kt ≡ s′
∑2i−1

t=0 kt (mod |G′|).
Therefore
s′
∑r−1

t=0 k
t ≡ s

∑r′−1
t=0 kt (mod |G′|), as desired.

(iii) By Lemma 4.6, we may write H3 =
∪ |G′|

2
−1

t=0 Mt ∪ Φ(G), where Mt

is abelian for 0 ≤ t ≤ |G′|
2 − 1. Moreover |G′| ≤ |b| by Lemma 2.4 and

Lemma 4.4 and so we see that {a, b2a, b4a, b6a, . . . , b|G′|−2a} is a sub-
set of pairwise non-commuting elements of H3 \ Φ(G). For otherwise if

[b2ia, b2ja] = 1 for 0 ≤ j < i < |G′|
2 , then |G′| divides

∑2(i−j)−1
t=0 kt by

Lemma 2.1(iv). Hence |G′|
2 | i − j by Lemma 2.3(iii) and the fact that

n = 1, which is impossible. Therefore we may assume that b2ia ∈ Mi

for 0 ≤ i ≤ |G′|
2 − 1. Thus Mi ≤ CH3(b

2ia) which completes the proof by
(i). □
Theorem 4.8. Let G be a powerful metacyclic 2-group with |G′| > 2.

Then G = (
∪|G′|−1

i=0 CG(bai)) ∪ (
∪ |G′|

2
−1

t=0 CG(b2ta)), where the elements of
the union are abelian subgroups of G.

Proof. This follows from Lemmas 2.7, 4.7 and 4.2. □
Corollary 4.9. Let G be a metacyclic 2-group with |H ′

3| > 2. Then

H3 = (
∪|H′

3|−1
i=0 CH3(b

2ai)) ∪ (
∪ |H′

3|
2

−1

t=0 CH3(b
4ta)), where the elements of

the union are abelian subgroups of H3.

Proof. This is a consequence of Lemma 4.5, Theorem 4.8 and the fact
that H3 = ⟨a, b2⟩. □
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By the above argument in this section, we may deduce the following
corollary, however this result can be obtained directly from the main
theorem of this paper, see Corollary 5.8. We note that a powerful meta-
cyclic 2-groupG has no abelian maximal subgroups if and only if |G′| > 2
by using Lemma 4.4.

Corollary 4.10. Let G be a powerful metacyclic 2-group with |G′| > 2,
then ω(G) = 3

2 |G
′|.

Proof. This follows from Theorem 4.8 and the fact that {bai|0 ≤ i ≤
|G′| − 1}∪ {b2ta|0 ≤ t ≤ |G′|

2 − 1} is a subset of pairwise non-commuting
elements in G. □

5. Metacyclic 2-groups with no abelian maximal subgroups

In this section we determine ω(G) when G is a metacyclic 2-group
with no abelian maximal subgroups. Recall that G = ⟨b, a⟩, ⟨a⟩ ⊴ G,
b−1ab = ak, 1 < k < |a| and k + 1 = 2nℓ, where n ≥ 1 and ℓ is an
odd number. Moreover by Theorem 2.2(ii), |G′| ≥ 2n+1 since G has no

abelian maximal subgroups. Also |a| > |G′| and |b| ≥ |G′|
2n−1 by Theorem

2.2(ii) and Lemma 2.4.

On setting A = {a, b, ba, ba2, . . . , ba|G′|−1}, we know that A is a subset
of pairwise non-commuting elements in any metacyclic 2-group G by
Lemma 2.6. Now in the two following lemmas we add more pairwise
non-commuting elements to this subset.

Lemma 5.1. Let G be a metacyclic 2-group with no abelian maximal

subgroups. Then on setting B = {b2ar | 1 ≤ r ≤ |G′|
2n , 2n ∤ r}, we have

A ∪B is a subset of pairwise non-commuting elements in G. Moreover

|B| =

{
|G′|
2n − |G′|

22n
|G′| ≥ 22n

|G′|
2n |G′| < 22n.

Proof. First we see that the elements of B are pairwise non-commuting.

For otherwise if [b2ar, b2ar
′
] = 1, then |G′|

2n | r − r′ by Lemma 2.1(iv),
which is a contradiction. Also the elements of A and B do not commute
since 2n ∤ r. Now we see that the number of r in B such that 2n|r is
|G′|/2n

2n when |G′| ≥ 22n and is 0 when |G′|
2n < 2n, which completes the

proof. □
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Lemma 5.2. Let G be as in Lemma 5.1. Then on setting

C = {b4ta | 1 ≤ t < |G′|
2n+1 }, we have that A ∪ B ∪ C is a subset of

pairwise non-commuting elements in G. Moreover |C| = |G′|
2n+1 − 1.

Proof. First we see that if |G′| = 2n+1, then |C| = 0 and A ∪B ∪C is a
subset of pairwise non-commuting elements. Therefore we assume that
|G′| > 2n+1. Suppose to the contrary that two elements of C commute.

For example if [b4ta, b4t
′
a] = 1 with 1 ≤ t′ < t < |G′|

2n+1 , then |G′| divides∑4(t−t′)−1
i=0 ki by Lemma 2.1(iv). On setting t − t′ = 2su, where s ≥ 0

and u is odd, we see that
∑4(t−t′)−1

i=0 ki = 2s+1u′(1 + k), where u′ is odd

by Lemma 2.3(iii). Therefore |G′|
2n+1 | t− t′ which is a contradiction. Now

we prove that the elements of A and C do not commute. For otherwise
if [b4ta, bai] = 1 for 0 ≤ i ≤ |G′| − 1, then i

∑4t−1
j=0 kj ≡ 1 (mod |G′|).

This yields that 4ti ≡ 1 (mod 2) by Lemma 2.1(i), a contradiction. Also

if [b4ta, a] = 1, then by Lemmas 2.1(ii) and 2.3(iii), we see that |G′|
2n+1 | t

which is impossible. Moreover the elements of B and C do not commute.
For otherwise if [b4ta, b2ar] = 1, where t = 2su in which s ≥ 0 and u is

odd, then r
∑4t−1

i=0 ki ≡ 1 + k (mod |G′|). Therefore by Lemma 2.3(iii),

r2s+1u′ ≡ 1 (mod |G′|
2n ), where u′ is odd, which is a contradiction, since

2 | |G′|
2n and ℓ is odd. The rest is clear. □

Corollary 5.3. Let G be as in Lemma 5.1. Then ω(G) ≥ λ, where

λ =

{
|G′|
22n

(22n + 3.2n−1 − 1) |G′| ≥ 22n

|G′|
2n+1 (2

n+1 + 3) |G′| < 22n.

Proof. This is an immediate consequence of Lemmas 5.1, 5.2 and 2.6. □

Lemma 5.4. Let G be as in Lemma 5.1 and |H ′
3| = 2.

(i) If n > 1, then ω(G) = |G′|+ 3.
(ii) If n = 1, then ω(G) = 6.

Proof. (i) By Lemma 2.5, we see that H3 is covered by three abelian
maximal subgroups in which Φ(G) is one of them. Hence G is covered
by |G′|+ 3 abelian subgroups by Lemma 2.7. Moreover |G′| = 2n+1 by
Theorem 2.2(ii) and so |G′| < 22n. Therefore Corollary 5.3 completes
the proof.
(ii) We see that G is powerful and |G′| = 4 by Lemma 4.4. Then
ω(G) = 6 by Corollary 4.10. □
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Lemma 5.5. Let G be as in Lemma 5.1 with |G′| ≥ 22n, 0 ≤ r < |G′|
2n ,

2n | r and b2jas ∈ CH3(b
2ar). Then

(i) 2n | s,
(ii) if j is odd, then there exists 0 ≤ i < |G′| such that b2jas ∈

CG(bai),
(iii) if j is even, then b2jas ∈ Φ(H3).

Proof. (i) This follows from Lemmas 2.1(iv) and 2.3(iii).
(ii) By Lemma 2.3(iii), we have 1 + k + · · ·+ k2j−1 = (1 + k)u, where u
is an odd number. Recall that (k+1) = 2nℓ, where ℓ is an odd number.

Therefore there exists 0 ≤ i < |G′|
2n such that ℓui ≡ s

2n (mod |G′|
2n ) since

ℓu and |G′|
2n are coprime by the note in page 4. Thus (1+k+· · ·+k2j−1)i ≡

s (mod |G′|) which completes the proof by using Lemma 2.1(iv).
(iii) This is evident from (i). □

Lemma 5.6. Let G be as in Lemma 5.1. Then ω(G) ≤ λ, where

λ =

{
|G′|
22n

(22n + 3.2n−1 − 1) |G′| ≥ 22n

|G′|
2n+1 (2

n+1 + 3) |G′| < 22n.

Proof. By Lemma 5.4, we may assume that |H ′
3| ≥ 4. Therefore we may

write G =
∪|G′|−1

i=0 CG(bai)
∪|H′

3|−1
r=0 CH3(b

2ar)
∪ |H′

3|
2

−1

t=0 CH3(b
4ta) by Corol-

lary 4.9, Lemma 2.7 and the fact that Φ(G) ≤ H3, where the elements of
the union are all abelian subgroups of G. First suppose that 22n ≤ |G′|,
then by Lemma 5.5, we see that CH3(b

2ar) ⊆
∪|G′|−1

i=0 CG(bai) ∪ Φ(H3)
for any r with 2n|r. This yields that

G =

|G′|−1∪
i=0

CG(bai)
|H′

3|−1∪
r=0
2n∤r

CH3(b
2ar)

|H′
3|
2

−1∪
t=0

CH3(b
4ta) ∪ Φ(H3).

Hence

H3 = G ∩H3 =

|G′|−1∪
i=0

CH3(ba
i)

|H′
3|−1∪
r=0
2n∤r

CH3(b
2ar)

|H′
3|
2

−1∪
t=0

CH3(b
4ta)
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by Lemmas 4.2 and 4.5. Also G =
∪|G′|−1

i=0 CG(bai) ∪H3 by Lemma 2.7.
This implies that

G =

|G′|−1∪
i=0

CG(bai)
|H′

3|−1∪
r=0
2n∤r

CH3(b
2ar)

|H′
3|
2

−1∪
t=0

CH3(b
4ta).

and so G is covered with |G′| + ( |G
′|

2n −
|G′|
2n

2n ) +
|G′|
2n

2 abelian subgroups

since |H ′
3| =

|G′|
2n , as desired. Now suppose that |G′| < 22n, then 2n ∤ r

for 0 ≤ r < |H ′
3| since |H ′

3| =
|G′|
2n by Theorem 2.2(ii). Thus by using

the first union, G is covered with |G′|+ |G′|
2n +

|G′|
2n

2 abelian subgroups, as
desired. □

Corollary 5.7. Let G be a metacyclic 2-group with no abelian maximal
subgroups. Then

ω(G) =

{
|G′|
22n

(22n + 3.2n−1 − 1) |G′| ≥ 22n

|G′|
2n+1 (2

n+1 + 3) |G′| < 22n.

Proof. This follows from Corollary 5.3 and Lemma 5.6. □

Corollary 5.8. Let G be a powerful metacyclic 2-group with no abelian
maximal subgroups, then ω(G) = 3

2 |G
′|.

Proof. We see that n = 1 and |G′| > 2 by Lemma 4.4. Therefore the
first part of Corollary 5.7 completes the proof. □

Proof of Theorem 1.1. This is an immediate consequence of Theo-
rem 3.4 and Corollary 5.7. □
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