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Abstract. In the present paper, we propose an iterative algorithm
for solving the generalized (P,Q)-reflexive solution of the quater-

nion matrix equation
u∑

l=1

AlXBl+
v∑

s=1

CsX̃Ds = F . By this iterative

algorithm, the solvability of the problem can be determined auto-
matically. When the matrix equation is consistent over a general-
ized (P,Q)-reflexive matrix X, a generalized (P,Q)-reflexive solu-
tion can be obtained within finite iteration steps in the absence of
roundoff errors, and the least Frobenius norm generalized (P,Q)-
reflexive solution can be obtained by choosing an appropriate initial
iterative matrix. Furthermore, the optimal approximate general-
ized (P,Q)-reflexive solution to a given matrix X0 can be derived
by finding the least Frobenius norm generalized (P,Q)-reflexive so-
lution of a new corresponding quaternion matrix equation. Finally,
two numerical examples are given to illustrate the efficiency of the
proposed methods.
Keywords: Quaternion matrix equation, generalized (P,Q)-reflexive
solution, iterative method, optimal approximate solution.
MSC(2010): Primary: 65F10; Secondary: 15B33, 15A24.

1. Introduction

Throughout the paper, the notations Rm×n and Hm×n represent the
set of all m× n real matrices and the set of all m× n matrices over the

Article electronically published on February 15, 2015.

Received: 13 January 2013, Accepted: 6 August 2013.

c⃝2015 Iranian Mathematical Society

1



Iterative algorithm for a quaternion matrix equation 2

quaternion algebra H = {a1+a2i+a3j+a4k | i2 = j2 = k2 = ijk = −1,
a1, a2, a3, a4 ∈ R}. We denote the identity matrix with the appropriate
size by I. We use E to denote a matrix with the appropriate size whose
elements are all equal to one. We denote the conjugate transpose, the
transpose, the conjugate, the trace, the column space, the real part, the
mn × 1 vector formed by the vertical concatenation of the respective
columns of a matrix A by AH , AT , A, tr(A), R(A), Re(A), vec(A),
respectively. If A ∈ Hm×n, let A = A1 + A2i + A3j + A4k, where At ∈
Rm×n, and define Ã = A1−A2i+A3j−A4k to be the j-conjugate of A.
The Frobenius norm of A is denoted by ∥A∥, that is, ∥A∥ =

√
tr(AHA).

Moreover, A ⊗ B and A ⊙ B stand for the Kronecker matrix product
and Hadmard matrix product of the matrices A and B.

The definition of generalized reflexive matrix can be found in [2].
A complex matrix A is called generalized reflexive (generalized anti-
reflexive) if A = PAQ (A = −PAQ), where P and Q are two gener-
alized reflection matrices, i.e., P = PH = P−1 and Q = QH = Q−1.
The generalized reflexive matrices have been widely used in engineer-
ing and scientific computations [2–4]. Throughout the article, we use
Hm×n

r (P,Q) (Hm×n
a (P,Q)) to denote the set of m×n generalized reflex-

ive (generalized anti-reflexive) quaternion matrices with respect to the
generalized reflection matrix pair (P,Q).

In the field of matrix algebra, quaternion matrix equations have re-
ceived much attention. Wang and Zhang [35] gave the expression of
the reflexive re-nonnegative definite solution of the quaternion matrix
equation AXAH = B. Yuan and Wang [48] derived the expressions of
the least squares η-Hermitian solution with the least norm and the ex-
pressions of the least squares anti-η-Hermitian solution with the least
norm for the quaternion matrix equation AXB+CXD = E. Jiang and
Wei [22] derived the explicit solution of the quaternion matrix equation

X −AX̃B = C. Song, Chen and Wang [33] obtained the expressions of
the explicit solutions of quaternion matrix equations XF − AX = BY

and XF − AX̃ = BY . Song, Chen and Liu [31] gave the solution ex-

pressions of the quaternions X −AXF = C and X −AX̃F = C. Yuan
and Liao [49] derived the expressions of the least squares solution of the

quaternion matrix equation X−AX̃B = C with the least norm. Li and
Wu [23] studied the expressions of symmetric and skew-antisymmetric
solutions to the quaternion matrix equations A1X = C1 and XB3 = C3.
Feng and Cheng [21] gave a clear description of the solution set to the
quaternion matrix equation AX −XB = 0.
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The iterative method is a very important method to solve matrix
equations. Peng, Hu and Zhang [25, 26] constructed iteration meth-
ods to solve the symmetric and reflexive solutions of matrix equations
A1XB1 = C1 and A2XB2 = C2. Ding and Chen proposed the hier-
archical gradient-based iterative (HGI) algorithms [12] and hierarchical
least-squares iterative (HLSI) algorithms [13] for solving general (cou-
pled) matrix equations, based on the hierarchical identification princi-
ple [14]. Peng [28–30] presented several efficient iterative methods to
solve the constrained least squares solutions of linear matrix equations
AXB = C and AXB+CY D = E, by using Paige’s algorithm [24] as the
frame method. Wang, Cheng and Wei [44] proposed iterative algorithms
for solving the matrix equation AXB+CXTD = E. Duan et al. [15–19]
proposed iterative algorithms for the (Hermitian) positive definite solu-
tions of some nonlinear matrix equations. Dehghan and Hajarian con-
structed iterative algorithms to solve several linear matrix equations
over (anti-)reflexive [6, 10], generalized centro-symmetric [5, 9] and gen-
eralized bisymmetric [7, 8] matrices. Zhou et al. [51] reported gradient-
based iterative algorithms for solving the general coupled Sylvester ma-
trix equations with weighted least squares solutions. Wu et al. [45–47]
proposed iterative algorithms for solving various complex matrix equa-
tions. Wang, Wei and Feng [43] derived an iterative method for finding
the minimum-norm solution of the QLS problem in quaternionic quan-
tum theory.

However, to our best knowledge, the generalized (P,Q)-reflexive so-
lution of

(1.1)
u∑

l=1

AlXBl +
v∑

s=1

CsX̃Ds = F

over the quaternion algebra H have not been considered so far. More-
over, the matrix equation (1.1) obviously includes the quaternion ma-

trix equations X − AX̃B = C, XF − AX̃ = BY , AXB + CXD =
E and AXB = C as special cases, which have been investigated in
[22,31,33,39,48,49]. Motivated by the work mentioned above and keep-
ing the interests and wide applications of quaternion matrices in view
(e.g. [1,11,20,32,34,36–42,48,50]), we, in this paper, consider an iterative
algorithm for the following two problems:

Problem 1.1. For given matrices Al, Cs ∈ Hp×m, Bl, Ds ∈ Hn×q,
l = 1, 2, . . . , u, s = 1, 2, . . . , v, F ∈ Hp×q and the generalized reflection
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matrices P ∈ Hm×m, Q ∈ Hn×n, find X ∈ Hm×n
r (P,Q), such that

u∑
l=1

AlXBl +

v∑
s=1

CsX̃Ds = F.

Problem 1.2. When Problem 1.1 is consistent, let its solution set be
denoted by SH . For a given matrix X0 ∈ Hm×n , find X̆ ∈ SH , such
that ∥∥∥X̆ −X0

∥∥∥ = min
X∈SH

∥X −X0∥ .

The paper is organized as follows. In Section 2, we give some pre-
liminaries. In Section 3, we introduce an iterative algorithm for solving
Problem 1.1. Then we prove that the given algorithm can be used to
obtain a generalized (P,Q)-reflexive solution for any generalized (P,Q)-
reflexive initial matrix within finite steps in the absence of roundoff
errors. Also, we prove that the least Frobenius norm generalized (P,Q)-
reflexive solution can be obtained by choosing a special kind of initial
matrix. In addition, the solution of Problem 1.2 by finding the least
Frobenius norm generalized (P,Q)-reflexive solution of a new matrix
equation is given. In Section 4, we give two numerical examples to ver-
ify our results. In Section 5, we give some conclusions to end this paper.

2. Preliminaries

In this section, we provide some results which will play important
roles in this paper.

First, we recall some results about quaternion matrix arithmetic. Due
to the non-commutativity of H, some well-known equalities for complex
and real matrices no longer hold for quaternion matrices. The following
theorem gives a list of facts for quaternion matrix arithmetic.

Theorem 2.1. [50]Let A ∈ Hm×n, B ∈ Hn×p. Then

(1) (A)T = (AT );
(2) (AB)H = BHAH ;
(3) AB ̸= AB in general;
(4) (AB)T ̸= BTAT in general;
(5) (AB)−1 = B−1A−1 if A and B are invertible;
(6) (AH)−1 = (A−1)H if A is invertible;

(7) (A)−1 ̸= A−1 in general;
(8) (AT )−1 ̸= (A−1)T in general.
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Moreover, it is easy to verify that for A ∈ Hm×n, B ∈ Hn×p we have

ÃH = (Ã)H and ÃB = ÃB̃.
Then, we introduce a real inner product for the space Hm×n over the

real field R. In [45–47], the following real inner product was presented
to solve some complex matrix equations:

(2.1) ⟨A,B⟩ = Re[tr(BHA)] ,

for A,B ∈ Cm×n. It is easy to verify that if we let A,B ∈ Hm×n, (2.1)
also defines a real inner product in Hm×n over R. We denote this real
inner product space as (Hm×n, R, ⟨·, ·⟩). Let ∥·∥∆ represent the matrix
norm induced by the inner product ⟨·, ·⟩. For an arbitrary quaternion
matrix A ∈ Hm×n, it is obvious that the following equalities hold

∥A∥∆ =
√
⟨A,A⟩ =

√
Re[tr(AHA)] =

√
tr(AHA) = ∥A∥ ,

which reveals that the induced matrix norm is exactly the Frobenius
norm. For convenience, we still use ∥·∥ to denote the induced matrix
norm.

Let Eij denote the m×n matrix whose (i, j) entry is 1, and the other
elements are zeros. In inner product space (Hm×n, R, ⟨·, ·⟩), it is easy
to verify that Eij , Eiji, Eijj, Eijk, i = 1, 2, . . .m, j = 1, 2, . . . n, is an
orthonormal basis, which reveals that the dimension of the inner product
space (Hm×n, R, ⟨·, ·⟩) is 4mn.

Lemma 2.2. Let P ∈ Hm×m and Q ∈ Hn×n be two generalized reflection
matrices. If A ∈ Hm×n

r (P,Q), B ∈ Hm×n
a (P,Q), then we have ⟨A,B⟩ =

0.

Proof. By the equalities
⟨A,B⟩ = Re[tr(BHA)] = −Re[tr((PBQ)H PAQ)] = −Re[tr(QBHAQ)]
= −Re[tr(BHA)] = −⟨A,B⟩,
the proof is trivial. □

Finally, we introduce a real representation of a quaternion matrix.
For an arbitrary quaternion matrix M = M1+M2i+M3j+M4k, a map
ϕ(·), from Hm×n to R4m×4n, can be defined as

ϕ(M) =


M1 −M2 −M3 −M4

M2 M1 −M4 M3

M3 M4 M1 −M2

M4 −M3 M2 M1

 .
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Let M and N be two arbitrary quaternion matrices with appropriate
size. From [42], we know that ϕ(·) satisfies the following properties:
(1) M = N ⇐⇒ ϕ(M) = ϕ(N);
(2) ϕ(M +N) = ϕ(M)+ϕ(N), ϕ(MN) = ϕ(M)ϕ(N), ϕ(kM) = kϕ(M),
k ∈ R;
(3) ϕ(MH) = ϕT (M);
(4) ϕ(M) = T−1

m ϕ(M)Tn = R−1
m ϕ(M)Rn = S−1

m ϕ(M)Sn, where

Rt =

[
0 −I2t
I2t 0

]
, St =


0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0

 , Tt =


0 −It 0 0
It 0 0 0
0 0 0 It
0 0 −It 0

,
t = m,n.
Through a simple verification, we derive that ϕ(·) also satisfies the fol-
lowing two properties which is useful for some deduction in this paper:
(5) ∥ϕ(M)∥ = 2 ∥M∥ ;
(6) ϕ(M̃) = −ϕ(M) + 2ϕ(M)⊙W , where

W =


E 0 E 0
0 E 0 E
E 0 E 0
0 E 0 E

 .

3. Main results

3.1. The solution of Problem 1.1. In this subsection, we will con-
struct an algorithm for solving Problem 1.1. Then some lemmas will be
given to analyse the properties of the proposed algorithm. Using these
lemmas, we prove that the proposed algorithm is convergent.

Algorithm 1. 1. Choose an initial matrix X(1) ∈ Hm×n
r (P,Q);

2. Calculate

R(1) = F −
u∑

l=1

AlX(1)Bl −
v∑

s=1

CsX̃(1)Ds;

P (1) =
1

2
(

u∑
l=1

AH
l R(1)BH

l +

v∑
s=1

C̃H
s R̃(1)D̃H

s +

u∑
l=1

PAH
l R(1)BH

l Q

+

v∑
s=1

PC̃H
s R̃(1)D̃H

s Q);

k := 1;
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3. If R(k) = 0, or R(k) ̸= 0 and P (k) = 0, stop; else k := k + 1;
4. Calculate

X(k) = X(k − 1) +
∥R(k − 1)∥2

∥P (k − 1)∥2
P (k − 1);

R(k) = R(k − 1)− ∥R(k − 1)∥2

∥P (k − 1)∥2
(

u∑
l=1

AlP (k − 1)Bl +

v∑
s=1

Cs
˜P (k − 1)Ds);

P (k) =
1

2
(

u∑
l=1

AH
l R(k)BH

l +

v∑
s=1

C̃H
s R̃(k)D̃H

s +

u∑
l=1

PAH
l R(k)BH

l Q

+

v∑
s=1

PC̃H
s R̃(k)D̃H

s Q) +
∥R(k)∥2

∥R(k − 1)∥2
P (k − 1);

5. Go to Step 3.

Lemma 3.1. Assume that the sequences {R(i)} and {P (i)} are gener-
ated by Algorithm 1, then

⟨R(i), R(j)⟩ = 0 and ⟨P (i), P (j)⟩ = 0 for i, j = 1, 2, . . . , i ̸= j.

Proof. We only need to prove that ⟨R(i), R(j)⟩ = 0 and ⟨P (i), P (j)⟩ = 0
for 1 ≤ i < j.

Now we prove this conclusion by induction. First, we show that

⟨R(i), R(i+ 1)⟩ = 0 and ⟨P (i), P (i+ 1)⟩ = 0 for i = 1, 2, . . . .(3.1)

When i = 1, from Algorithm 1, we have

⟨R(1), R(2)⟩

= ∥R(1)∥2 − ∥R(1)∥2

∥P (1)∥2
Re{tr[PH(1)(

u∑
l=1

AH
l R(1)BH

l +
v∑

s=1

C̃H
s R̃(1)D̃H

s )]}

= ∥R(1)∥2 − ∥R(1)∥2

∥P (1)∥2
Re{tr[PH(1)

u∑
l=1

AH
l R(1)BH

l +
v∑

s=1
C̃H

s R̃(1)D̃H
s +

u∑
l=1

PAH
l R(1)BH

l Q+
v∑

s=1
PC̃H

s R̃(1)D̃H
s Q

2
]}

= ∥R(1)∥2 − ∥R(1)∥2

∥P (1)∥2
∥P (1)∥2

= 0.
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Also we can write

⟨P (1), P (2)⟩

=
∥R(2)∥2

∥R(1)∥2
∥P (1)∥2 +Re{tr[PH(1)(

u∑
l=1

AH
l R(2)BH

l +

v∑
s=1

C̃H
s R̃(2)D̃H

s )]}

=
∥R(2)∥2

∥R(1)∥2
∥P (1)∥2 − ∥P (1)∥2

∥R(1)∥2
∥R(2)∥2

= 0.

Now, assume that conclusion (3.1) holds for 1 ≤ i ≤ t− 1, then

⟨R(t), R(t+ 1)⟩

= ∥R(t)∥2 − ∥R(t)∥2

∥P (t)∥2
Re{tr[PH(t)(

u∑
l=1

AH
l R(t)BH

l +
v∑

s=1

C̃H
s R̃(t)D̃H

s )]}

= ∥R(t)∥2 − ∥R(t)∥2

∥P (t)∥2
Re{tr[PH(t)(P (t)− ∥R(t)∥2

∥R(t− 1)∥2
P (t− 1))]}

= 0.

And we also have

⟨P (t), P (t+ 1)⟩

=
∥R(t+ 1)∥2

∥R(t)∥2
∥P (t)∥2 +Re{tr[PH(t)(

u∑
l=1

AH
l R(t+ 1)BH

l +

v∑
s=1

C̃H
s

˜R(t+ 1)D̃H
s )]}

=
∥R(t+ 1)∥2

∥R(t)∥2
∥P (t)∥2 + ∥P (t)∥2

∥R(t)∥2
Re{tr[RH(t+ 1)((R(t)−R(t+ 1)))]}

= 0.

Therefore, the conclusion (3.1) holds for i ≥ 1.
Assume that ⟨R(i), R(i+ r)⟩ = 0 and ⟨P (i), P (i+ r)⟩ = 0 for i ≥ 1

and r ≥ 1. We will show that

(3.2) ⟨R(i), R(i+ r + 1)⟩ = 0 and ⟨P (i), P (i+ r + 1)⟩ = 0.
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It follows from Algorithm 1 that

⟨R(1), R(r + 2)⟩
= Re{tr[RH(r + 1)R(1)]}

− ∥R(r + 1)∥2

∥P (r + 1)∥2
Re{tr[PH(r + 1)(

u∑
l=1

AH
l R(1)BH

l +

v∑
s=1

C̃H
s R̃(1)D̃H

s )]}

= Re{tr[RH(r + 1)R(1)]} − ∥R(r + 1)∥2

∥P (r + 1)∥2
Re{tr[PH(r + 1)P (1)]}

= 0,

⟨P (1), P (r + 2)⟩

= Re{tr[RH(r + 2)(
u∑

l=1

AlP (1)Bl

+

v∑
s=1

CsP̃ (1)Ds)]}+
∥R(r + 2)∥2

∥R(r + 1)∥2
Re{tr[PH(r + 1)P (1)]}

=
∥P (1)∥2

∥R(1)∥2
Re{tr[RH(r + 2)(R(1)−R(2))]}

+
∥R(r + 2)∥2

∥R(r + 1)∥2
Re{tr[PH(r + 1)P (1)]}

= 0.(3.3)

Also, we have

⟨R(i), R(i+ r + 1)⟩
= Re{tr[RH(i+ r)R(i)]}

− ∥R(i+ r)∥2

∥P (i+ r)∥2
Re{tr[PH(i+ r)(

u∑
l=1

AH
l R(i)BH

l +
v∑

s=1

C̃H
s R̃(i)D̃H

s ]}

= −∥R(i+ r)∥2

∥P (i+ r)∥2
Re{tr[PH(i+ r)(P (i)− ∥R(i)∥2

∥R(i− 1)∥2
P (i− 1))]}

=
∥R(i+ r)∥2 ∥R(i)∥2

∥P (i+ r)∥2 ∥R(i− 1)∥2
Re{tr[PH(i+ r)P (i− 1)]}(3.4)
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and

⟨P (i), P (i+ r + 1)⟩

= Re{tr[RH(i+ r + 1)(

u∑
l=1

AlP (i)Bl +

v∑
s=1

CsP̃ (i)Ds)]}

=
∥P (i)∥2

∥R(i)∥2
Re{tr[RH(i+ r + 1)(R(i)−R(i+ 1))]}

=
∥P (i)∥2 ∥R(i+ r)∥2 ∥R(i)∥2

∥R(i)∥2 ∥P (i+ r)∥2 ∥R(i− 1)∥2
Re{tr[PH(i+ r)P (i− 1)]}.(3.5)

Repeating the above process (3.4) and (3.5), we obtain

⟨R(i), R(i+ r + 1)⟩ = . . . = αRe{tr[PH(r + 2)P (1)]};
⟨P (i), P (i+ r + 1)⟩ = . . . = βRe{tr[PH(r + 2)P (1)]}.

Combining these two relations with (3.3), implies that (3.2) holds.
So, by the principle of induction, we know that Lemma 3.1 holds. □

Lemma 3.2. Assume that Problem 1.1 is consistent, and let X∗ ∈
Hm×n

r (P,Q) be a solution. Then, for any initial matrix X(1) ∈ Hm×n
r (P,Q),

the sequences {R(i)}, {P (i)} and {X(i)} generated by Algorithm 1 sat-
isfy

(3.6) ⟨P (i), X∗ −X(i)⟩ = ∥R(i)∥2 , i = 1, 2, . . . .

Proof. We prove this conclusion by induction.
When i = 1, it follows from Algorithm 1 that

⟨P (1), X∗ −X(1)⟩

= Re{tr[(X∗ −X(1))H(
u∑

l=1

AH
l R(1)BH

l +
v∑

s=1

C̃H
s R̃(1)D̃H

s )]}

= Re{tr[RH(1)(

u∑
l=1

Al(X
∗ −X(1))Bl +

v∑
s=1

Cs(X̃∗ − X̃(1))Ds)]}

= ∥R(1)∥2 .

This implies that (3.6) holds for i = 1.
Now it is assumed that (3.6) holds for i = t, that is

⟨P (t), X∗ −X(t)⟩ = ∥R(t)∥2 .
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Then, when i = t+ 1

⟨P (t+ 1), X∗ −X(t+ 1)⟩

= Re{tr[RH(t+ 1)(
u∑

l=1

Al(X
∗ −X(t+ 1))Bl +

v∑
s=1

Cs(X̃∗ − ˜X(t+ 1))Ds)]}+

∥R(t+ 1)∥2

∥R(t)∥2
{Re{tr[(X∗ −X(t))HP (t)]} − Re{tr[(X(t+ 1)−X(t))HP (t)]}}

= ∥R(t+ 1)∥2 + ∥R(t+ 1)∥2

∥R(t)∥2
{∥R(t)∥2 − ∥R(t)∥2

∥P (t)∥2
Re{tr[PH(t)P (t)]}}

= ∥R(t+ 1)∥2 .

Therefore, Lemma 3.2 holds by the principle of induction. □

From the above two lemmas, we have the following conclusions.

Remark 3.3. If there exists a positive number i such that R(i) ̸= 0 and
P (i) = 0, then by Lemma 3.2 Problem 1.1 is not consistent. Hence, the
solvability of Problem 1.1 can be determined by Algorithm 1 automati-
cally in the absence of roundoff errors.

Theorem 3.4. Suppose that Problem 1.1 is consistent. Then for any
initial matrix X(1) ∈ Hm×n

r (P,Q), a solution of Problem 1.1 can be
obtained within finite iteration steps in the absence of roundoff errors.

Proof. It is known that the inner product space
(Hp×q, R, ⟨·, ·⟩) is 4pq-dimensional. According to Lemma 3.2, if R(i) ̸=
0, i = 1, 2, . . . , 4pq, then we have P (i) ̸= 0, i = 1, 2, . . . , 4pq. Hence
R(4pq+1) and P (4pq+1) can be computed. From Lemma 3.1, it is not
difficult to get

⟨R(i), R(j)⟩ = 0 for i, j = 1, 2, . . . , 4pq, i ̸= j.

Then R(1), R(2), . . . , R(4pq) is an orthogonal basis of the inner product
space (Hp×q, R, ⟨·, ·⟩). In addition, we can get from Lemma 3.1 that

⟨R(i), R(4pq + 1)⟩ = 0 for i = 1, 2, . . . , 4pq.

It follows that R(4pq+1) = 0, which implies that X(4pq+1) is a solution
of Problem 1.1. □
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3.2. The solution of Problem 1.2. In this subsection, firstly we intro-
duce some lemmas. Then, we will prove that the least Frobenius norm
generalized (P,Q)-reflexive solution of (1.1) can be derived by choosing
a suitable initial iterative matrix. Finally, we solve Problem 1.2 by com-
puting the least Frobenius norm generalized (P,Q)-reflexive solution of
a new-constructed quaternion matrix equation.

Lemma 3.5. [27] Assume that the consistent system of linear equa-
tions My = b has a solution y0 ∈ R(MT ). Then y0 is the unique least
Frobenius norm solution of the system of linear equations.

Lemma 3.6. If Problem 1.1 is consistent, then the following system of
real linear equations is consistent




u∑

l=1

ϕT (Bl)⊗ ϕ(Al)−
v∑

s=1

ϕT (Ds)⊗ ϕ(Cs)

+2
v∑

s=1

(ϕT (Ds)⊗ ϕ(Cs)) diag(vec(W ))




u∑
l=1

ϕT (Bl)ϕ(Q)⊗ ϕ(Al)ϕ(P )−
v∑

s=1

ϕT (Ds)ϕ(Q)⊗ ϕ(Cs)ϕ(P )

+2
v∑

s=1

(ϕT (Ds)⊗ ϕ(Cs)) diag(vec(W ))(ϕ(Q)⊗ ϕ(P ))




Y

=

[
vec(ϕ(F ))
vec(ϕ(F ))

]
.(3.7)

Furthermore, if the solution sets of Problem 1.1 and (3.7) are denoted
by SX and SY respectively, then,

(3.8) vec(ϕ(SX)) ⊆ SY .

Proof. If Problem 1.1 is consistent, let X be a solution of Problem 1.1,

then we have
u∑

l=1

AlXBl+
v∑

s=1
CsX̃Ds = F and PXQ = X, which implies

that X is a solution of quaternion matrix equations

(3.9)


u∑

l=1

AlXBl +
v∑

s=1
CsX̃Ds = F,

u∑
l=1

AlPXQBl +
v∑

s=1
CsP̃ X̃Q̃Ds = F.
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From properties (1), (2) and (6) of ϕ(·), we derive that the quaternion
matrix equations (3.9) is equivalent to the following real matrix equa-
tions


u∑

l=1

ϕT (Bl)⊗ ϕ(Al)−
v∑

s=1

ϕT (Ds)⊗ ϕ(Cs)

+2
v∑

s=1

(ϕT (Ds)⊗ ϕ(Cs)) diag(vec(W ))




u∑
l=1

ϕT (Bl)ϕ(Q)⊗ ϕ(Al)ϕ(P )−
v∑

s=1

ϕT (Ds)ϕ(Q)⊗ ϕ(Cs)ϕ(P )

+2
v∑

s=1

(ϕT (Ds)⊗ ϕ(Cs)) diag(vec(W ))(ϕ(Q)⊗ ϕ(P ))




vec(ϕ(X))

=

[
vec(ϕ(F ))
vec(ϕ(F ))

]
.

which implies that vec(ϕ(X)) is a solution of (3.7). So system of real
linear equations (3.7) is consistent.

From the above procedure, the proof of (3.8) is trivial. □

Theorem 3.7. If X̊ is a solution of Problem 1.1, and X̊ can be expressed
as

X̊ =

u∑
l=1

AH
l GBH

l +

v∑
s=1

C̃H
s G̃D̃H

s +

u∑
l=1

PAH
l GBH

l Q+

v∑
s=1

PC̃H
s G̃D̃H

s Q,

G ∈ Hp×q,

then, X̊ is the least Frobenius norm solution of Problem 1.1.

Proof. By properties (1), (2), (3) and (6) of ϕ(·), we have

vec(ϕ(X̊))

= vec(

u∑
l=1

ϕT (Al)ϕ(G)ϕT (Bl)−
v∑

s=1

ϕT (Cs)ϕ(G)ϕT (Ds)

+ 2

v∑
s=1

(ϕT (Cs)ϕ(G)ϕT (Ds))⊙W +

u∑
l=1

ϕ(P )ϕT (Al)ϕ(G)ϕT (Bl)ϕ(Q)

−
v∑

s=1

ϕ(P )ϕT (Cs)ϕ(G)ϕT (Ds)ϕ(Q) + 2
v∑

s=1

ϕ(P )((ϕT (Cs)ϕ(G)ϕT (Ds))⊙W )ϕ(Q))

= [

u∑
l=1

ϕ(Bl)⊗ ϕT (Al)−
v∑

s=1

ϕ(Ds)⊗ ϕT (Cs) + 2

v∑
s=1

diag(vec(W ))(ϕ(Ds)⊗ ϕT (Cs)),

u∑
l=1

ϕ(Q)ϕ(Bl)⊗ ϕ(P )ϕT (Al)−
v∑

s=1

ϕ(Q)ϕ(Ds)⊗ ϕ(P )ϕT (Cs)

+ 2
v∑

s=1

(ϕ(Q)⊗ ϕ(P )) diag(vec(W ))(ϕ(Ds)⊗ ϕT (Cs))]

[
vec(ϕ(G))
vec(ϕ(G))

]
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=




u∑

l=1

ϕT (Bl) ⊗ ϕ(Al) −
v∑

s=1
ϕT (Ds) ⊗ ϕ(Cs)

+2
v∑

s=1
(ϕT (Ds) ⊗ ϕ(Cs)) diag(vec(W ))




u∑
l=1

ϕT (Bl)ϕ(Q) ⊗ ϕ(Al)ϕ(P ) −
v∑

s=1
ϕT (Ds)ϕ(Q) ⊗ ϕ(Cs)ϕ(P )

+2
v∑

s=1
(ϕT (Ds) ⊗ ϕ(Cs)) diag(vec(W )(ϕ(Q) ⊗ ϕ(P )))





T

[
vec(ϕ(G))
vec(ϕ(G))

]

By Lemma 3.5, ϕ(X̊) is the least Frobenius norm solution of matrix
equations (3.7). By property (5) of ϕ(·), we derive from Lemma 3.6 that

X̊ is the least Frobenius norm solution of Problem 1.1. □

From Algorithm 1, it is obvious that, if we consider

X(1) =
u∑

l=1

AH
l GBH

l +
v∑

s=1

C̃H
s G̃D̃H

s +
u∑

l=1

PAH
l GBH

l Q+
v∑

s=1

PC̃H
s G̃D̃H

s Q,

G ∈ Hp×q,

then all X(k) generated by Algorithm 1 can be expressed as

X(k) =
u∑

l=1

AH
l GkB

H
l +

v∑
s=1

C̃H
s G̃kD̃H

s +
u∑

l=1

PAH
l GkB

H
l Q+

v∑
s=1

PC̃H
s G̃kD̃H

s Q,

Gk ∈ Hp×q.

Using the above conclusion and considering Theorem 3.7, we propose
the following theorem.

Theorem 3.8. Suppose that Problem 1.1 is consistent. Let the initial
iteration matrix be

X(1) =
u∑

l=1

AH
l GBH

l +
v∑

s=1

C̃H
s G̃D̃H

s +
u∑

l=1

PAH
l GBH

l Q+
v∑

s=1

PC̃H
s G̃D̃H

s Q,

where G is an arbitrary quaternion matrix, or especially, X(1) = 0, then
the solution X∗, generated by Algorithm 1, is the least Frobenius norm
solution of Problem 1.1.

Now, we study Problem 1.2. When Problem 1.1 is consistent, the
solution set of Problem 1.1 denoted by SH is not empty. For a given
matrix X0 ∈ Hm×n and X ∈ SH , it is easy to verify that X−X0+PX0Q

2 ∈
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Hm×n
r (P,Q) and X0−PX0Q

2 ∈ Hm×n
a (P,Q). By Lemma 2.2, we have

∥X −X0∥2 =
∥∥∥∥X − X0 + PX0Q

2
− X0 − PX0Q

2

∥∥∥∥2
=

∥∥∥∥X − X0 + PX0Q

2

∥∥∥∥2 + ∥∥∥∥X0 − PX0Q

2

∥∥∥∥2 .
Hence, Problem 1.2 is equivalent to finding X̆ ∈ SH , such that∥∥∥X̆ − X0+PX0Q

2

∥∥∥ = min
X∈SH

∥∥∥X − X0+PX0Q
2

∥∥∥. Let Ẋ = X − X0+PX0Q
2 ,

Ḟ = F −
u∑

l=1

Al
X0+PX0Q

2 Bl −
v∑

s=1
Cs

X̃0+P̃ X̃0Q̃
2 Ds, we have

u∑
l=1

AlXBl +

v∑
s=1

CsX̃Ds = F ⇐⇒
u∑

l=1

AlẊBl +

v∑
s=1

Cs
˜̇XDs = Ḟ .

Therefore, Problem 1.2 is equivalent to finding the least Frobenius norm
generalized (P,Q)-reflexive solution of the quaternion matrix equation

u∑
l=1

AlẊBl +
v∑

s=1

Cs
˜̇XDs = Ḟ .(3.10)

By using Algorithm 1, let the initial iteration matrix Ẋ(1)

=
u∑

l=1

AH
l GBH

l +
v∑

s=1
C̃H
s G̃D̃H

s +
u∑

l=1

PAH
l GBH

l Q+
v∑

s=1
PC̃H

s G̃D̃H
s Q, where

G is an arbitrary quaternion matrix in Hp×q, or especially, Ẋ(1) = 0, we
can obtain the least Frobenius norm generalized (P,Q)-reflexive solution

Ẋ∗ of (3.10). Then we can obtain the solution of Problem 1.2, which is

X̆ = Ẋ∗ +
X0 + PX0Q

2
.

4. Examples

In this section, we give two examples to illustrate the efficiency of the
theoretical results.

Example 4.1. Consider the quaternion matrix equation

(4.1) A1XB1 + C1X̃D1 +A2XB2 + C2X̃D2 = F,

with

A1 =

[
19− 5 i+ j + 6 k 10 4 + 4 i+ j + 3 k
−9 + 3 i+ 2 j + k 2− i− j 3 + 3 i+ 3 j − 7 k

]
,



Iterative algorithm for a quaternion matrix equation 16

A2 =

[
−2 + i+ j 1 + i+ k 3 + 2 i+ 7 j

1− 5 i− 4 j + k 2 j + k 5− i+ 6 j + 8 k

]
,

B1 =


2 j −2 + 9 i+ 12 j + k

−5 + 5 i+ 5 j − k 7 + 11 k
1 + 2 i− j − 8 k 5 + i+ 4 j + 4 k
3 + 4 i+ j + k 2 i− 2 j + 4 k

 ,

B2 =


5 + 2 i+ j + 4 k i+ 2 j − 9 k
−i+ 3 j + k 2 + 7 i+ 2 k

3 + 3 i− 6 j + 3 k −2 + 2 i+ 2 j + k
i+ j 13 + 2 i+ 2 j + 7 k

 ,

C1 =

[
2 j + k 1 + 2 i+ j − 2 k 9 + 3 j + 5 k

3 + i+ 2 j + 2 k −2 + 2 i+ k 2 + 4 i+ 3 j + 3 k

]
,

C2 =

[
1 + 3 i+ 10 j −3 + i+ 3 j + 13 k i− 5 j + 2 k

1 + 2 i+ 2 j + 3 k −2− i− 7 j + 2 k 3 i+ 3 j + 2 k

]
,

D1 =


1 + 3 i+ 4 j + k i+ 3 j + 4 k
i− 3 j + 6 k 2− 4 j + 8 k

4 + i− 5 j + k 5 + 2 i+ 4 j
1− i+ 2 j + 2 k 1 + i− j + 8 k

 ,

D2 =


1 + i+ j + k 2 + 6 i+ 4 j + k
12 + i+ 13 j 1 + 6 j + 2 k

4− 16 i+ 8 j + 19 k 2− 2 i+ 7 j + 2 k
−1− i+ 5 j + k 12 + i− 2 j

 ,

and

F =

[
3 + 4 i− j + 3 k 3 j + 8 k
6− 8 i+ 4 j + k 1 + 2 i+ j − 5 k

]
.

We apply Algorithm 1 to find the generalized (P,Q)-reflexive solution of
(4.1), where

P =

 0.28 0 0.96 k
0 1 0

−0.96 k 0 −0.28

 and Q =


−0.28 0 −0.96 k 0

0 0.28 0 −0.96 j
0.96 k 0 0.28 0
0 0.96 j 0 −0.28


are two generalized reflection matrices. For the initial matrix X(1) = 0 0 0 0

0 0.64 0 −0.48 j
0 0 0 0

 ∈ H3×4
r (P,Q), we obtain a solution, that is

X∗ = X(21) =
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Figure 1. The convergence curve for the Frobenius norm of

the residuals from Example 4.1.

 −0.06834 + 0.1187 i + 0.04175 j − 0.05065 k −0.04482 + 0.01410 i − 0.04205 j + 0.01970 k
0.1035 − 0.004782 i − 0.01668 j − 0.04294 k 0.3454 − 0.2330 i + 0.02003 j − 0.1233 k
0.1207 + 0.1768 i + 0.05934 j − 0.1828 k 0.05732 − 0.04482 i + 0.07723 j − 0.02195 k

0.09114 − 0.2012 i + 0.009891 j − 0.1429 k −0.04482 + 0.05732 i − 0.02195 j + 0.07723 k
−0.05725 + 0.02224 i − 0.006376 j − 0.1380 k 0.01502 − 0.09249 i − 0.2591 j + 0.1748 k
0.06834 + 0.1187 i + 0.04175 j + 0.05065 k −0.05915 + 0.05762 i + 0.01373 j + 0.01590 k


with corresponding residual ∥R(21)∥ = 7.6047×10−13. The convergence
curve for the Frobenius norm of the residuals R(k) is given in Figure 1,
where r(k) = ∥R(k)∥.

Example 4.2. In this example, we choose the matrices A1, A2, B1, B2,
C1, C2, D1, D2, F , P and Q the same as in Example 4.1. Let

X0 =

 1 i j k
i j k 1
j k 1 i

 .

In order to find the optimal approximation generalized (P,Q)-reflexive

solution to the given matrix X0, let Ẋ = X − X0+PX0Q
2 and Ḟ = F −

A1
X0+PX0Q

2 B1−A2
X0+PX0Q

2 B2−C1
X̃0+P̃ X̃0Q̃

2 D1−C2
X̃0+P̃ X̃0Q̃

2 D2. We

obtain the least Frobenius norm generalized (P,Q)-reflexive solution Ẋ∗

of the quaternion matrix equation A1ẊB1+C1
˜̇XD1+A2ẊB2+C2

˜̇XD2 =
Ḟ , after 23 steps, by choosing the initial matrix Ẋ(1) = 0, with corre-

sponding residual
∥∥∥Ṙ(23)

∥∥∥ = 7.718× 10−14. The convergence curve for
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Figure 2. The convergence curve for the Frobenius norm of

the residuals from Example 4.2.

the Frobenius norm of the residuals Ṙ(k) is given in Figure 2, where

r(k) =
∥∥∥Ṙ(k)

∥∥∥.
Therefore, the optimal approximation generalized (P,Q)-reflexive so-

lution to the given matrix X0 is

X̆ = Ẋ∗ +
X0 + PX0Q

2
=

 −0.007483 + 0.1251 i − 0.004042 j + 0.04138 k 0.06469 + 0.1681 i − 0.2289 j + 0.05607 k
−0.01278 − 0.01532 i + 0.09021 j − 0.1126 k −0.06220 + 0.1145 i + 0.3711 j − 0.3495 k

0.1265 + 0.1148 i + 0.1222 j + 0.03131 k 0.02879 − 0.02258 i + 0.07145 j − 0.1985 k

0.1507 − 0.1124 i − 0.04924 j + 0.03568 k −0.02258 + 0.02879 i − 0.1985 j + 0.07145 k
−0.1501 − 0.1203 i − 0.02042 j + 0.01703 k 0.2783 − 0.2621 i + 0.04665 j − 0.08584 k
0.007483 + 0.1251 i − 0.004042 j − 0.04138 k −0.2098 + 0.05112 i − 0.03928 j + 0.2157 k

 .

The results show that Algorithm 1 is quite efficient.

5. Conclusions

In this paper, an algorithm has been presented for solving the general-

ized (P,Q)-reflexive solution of quaternion matrix equation
u∑

l=1

AlXBl+

v∑
s=1

CsX̃Ds = F . By this algorithm, the solvability of the problem can

be determined automatically. Also, when the problem is consistent, for
any generalized (P,Q)-reflexive initial iterative matrix, a generalized
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(P,Q)-reflexive solution can be obtained within finite iteration steps in
the absence of roundoff errors. It has been proven that by choosing a
suitable initial iterative matrix, we can derive the least Frobenius norm
generalized (P,Q)-reflexive solution of the quaternion matrix equation
u∑

l=1

AlXBl +
v∑

s=1
CsX̃Ds = F through Algorithm 1. And then, by using

Algorithm 1, we solved Problem 1.2. Finally, two numerical examples
were given to show the efficiency of the presented algorithm.
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