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Abstract. In this article, we have characterized ideals in C(X) in
which every ideal is also an ideal (a z-ideal) of C(X). Motivated
by this characterization, we observe that C∞(X) is a regular ring
if and only if every open locally compact σ-compact subset of X
is finite. Concerning prime ideals, it is shown that the sum of ev-
ery two prime (semiprime) ideals of each ideal in C(X) is prime
(semiprime) if and only if X is an F -space. Concerning maximal
ideals of an ideal, we generalize the notion of separability to ideals
and we have proved the coincidence of separability of an ideal with
dense separability of a subspace of βX. Finally, we have shown
that the Goldie dimension of an ideal I in C(X) coincide with the
cellularity of X \∆(I).
Keywords: Dense separable, cellularity, σ-compact, F -space, Goldie
dimension.
MSC(2010): Primary: 54C40; Secondary: 13A30.

1. Introduction

Throughout this paper, we denote we denote a completely regular
Hausdorff space by X. We denote the ring of all real valued continuous
functions on X by C(X) and C∗(X) is the subring of C(X) consisting
of bounded functions.

Whenever I is an ideal of a ring R and J is an ideal of I, then J
is not necessarily an ideal of R, see Section 5 in [12]. But, in this
case, the subset J of R can not be any arbitrary set. In fact, whenever
a subset S of a ring (R,+, .) is an ideal of an ideal in R but not an
ideal of R, then we have: (i) S is a group under +, (ii) for all s ∈ S,
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(s)S ⊆ S, where (s) is the principal ideal in R generated by s and (iii)
S ⫋< S >⫋ R, where < S > is the ideal generated by S. The converse
is also true, i.e., whenever S is a subset of a ring R satisfying the above
three conditions, then S can be an ideal of an ideal in R which is not
necessarily an ideal of R. In fact S is an ideal of < S > and < S > is
the smallest ideal containing S in which S is an ideal. Moreover, if we
take

∏
S = {a ∈ R : (a)S ⊆ S}, then for each a ∈

∏
S , S is an ideal

of < S, a > as well. We note that whenever S is an ideal of an ideal
Iα for each α, then S is also an ideal of

∑
α Iα. This implies that S

is an ideal of
∑

a∈
∏

S
< S, a > and the latter ideal is the largest ideal

containing S in which S is an ideal. Whenever I is an ideal of a ring
R, it is well-known that every prime ideal of I is also an ideal of R,
see Theorem 1.1, below. Now it is natural to ask when every ideal of a
given ideal in C(X) is an ideal (a z-ideal) of C(X). We will answer this
question in Section 2 and it turns out in this section that such ideals
should be pure ideals (P -ideals).

Ideals of ideals in rings and algebras are studied in [18] and [19] and
prime ideals and maximal ideals of any ideal are characterized in the
same references. For prime ideals we have the following result from [12].

Theorem 1.1. Let R be a ring and J be an ideal of R. An ideal P of
J is prime in J if and only if P = J ∩Q for some prime ideal Q in R.
Furthermore, if P is proper, then Q is unique.

But a similar characterization is not true for maximal ideals of an
ideal, i.e., maximal ideals of a given ideal I in a ring R are not necessarily
of the form I ∩ M , where M is a maximal ideal of R. In fact, for
a maximal ideal M in R, I ∩ M may not be a maximal ideal of I,
see Example 3.5 in [18]. We also cite the next result from [18] which
characterizes the maximal ideals of an ideal in a commutative algebra
over the rationals and so in a C(X).

Theorem 1.2. Let A be a commutative algebra over the rationals with
unity and K be an ideal of A. Then an ideal D of K is a maximal ideal
of K if and only if D = M ∩K for some maximal ideal M in A with
K ⊈M .

In C(X) it is well known that the sum of every two prime (semiprime)
ideals in C(X) is a prime (semiprime) z-ideal, see [15]. Prime ideals in
C(X) containing a given prime ideal form a chain, see 14.3(c) in [9].
It is also easy to see that the product of two maximal ideals (z-ideals)
coincide with their intersection, see 2D in [9]. Do these facts hold for
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prime and maximal ideals of ideals in C(X)? We answer this question
in Section 3 and we observe in this section that the sum of every two
prime (semiprime) ideals of each ideal in C(X) is a prime (semiprime)
ideal or all of the ideal if and only if X is an F -space.

In Section 4, we have borrowed the concept of separability from [16]
and we have generalized it to ideals of C(X). Next, we have shown that
the separability of an ideal I of C(X) is equivalent to dense separability
(which is borrowed from [14]) of X \∆(I). The separability of P -ideals
are also investigated in this section and it is shown that every P -ideal
of C(X) is separable if and only if the set I(X) has cardinality less than
or equal to ℵ0 and the set of non-P -points of X is dense in X \ I(X),
where I(X) is the set of all isolated points of X.

Finally, Section 5 is devoted to the Goldie dimension of ideals in C(X).
In this section, the coincidence of the Goldie dimension of an ideal I in
C(X) and the cellularity of X \∆(I) is proved. We also observe in this
section that the Goldie dimension of an ideal in C(X) is finite if and
only if it is a finite direct sum of minimal ideals of that ideal (note, every
minimal ideal of an ideal in C(X) is also a minimal ideal of C(X), see
Lemma 4.1).

In this paper, we denote by βX the Stone-Čech compactification of
a space X. For each f ∈ C(X), Z(f) is the set of zeros of f and for
every ideal I in C(X), ∆(I) =

∩
f∈I Z(f) and θ(I) =

∩
f∈I clβXZ(f).

For each prime ideal P in C(X), there exists a unique x ∈ βX such
that Ox ⊆ P ⊆ Mx, see Theorem 7.15 in [9], where Mx = {f ∈ C(X) :
x ∈ clβXZ(f)} and Ox = {f ∈ C(X) : x ∈ intβXclβXZ(f)}. More

generally, for each subset A of βX, we note thatMA = {f ∈ C(X) : A ⊆
clβXZ(f)} =

∩
x∈AM

x and OA = {f ∈ C(X) : A ⊆ intβXclβXZ(f)} =∩
x∈AO

x. Finally {Mx : x ∈ βX} is the collection of all maximal
ideals of C(X) and whenever x ∈ X, then Mx and Ox denote Mx

and Ox respectively. In fact, if Mx = {f ∈ C(X) : f(x) = 0}, then
{Mx : x ∈ X} is the set of all fixed maximal ideals of C(X) (note, an
ideal I in C(X) is called fixed if

∩
f∈I Z(f) ̸= ∅, else free). A point

x ∈ X is said to be a P -point if Mx = Ox and whenever every point of
X is a P -point, then X is called a P - space. It is easy to see that X is
a P -space if and only if the zeroset Z(f) for each f ∈ C(X) is open, see
4J in [9].

If E is an ideal of a ring R, then E is called an essential ideal in R if
E intersects every nonzero ideal of R nontrivially. The socle of R is the
intersection of all essential ideals of R. The socle of C(X) is denoted by
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CF (X) and it is characterized in [11] by the set of all functions in C(X)
vanishing everywhere except on a finite number of points of X. An ideal
I in C(X) is called a z-ideal if Z(f) ⊆ Z(g), f ∈ I and g ∈ C(X) imply
that g ∈ I. The socle of C(X) is an example of a z-ideal in C(X) and
related to this ideal, we have the ideal CK(X) (Cψ(X)) consisting of
all continuous functions with compact (pseudocompact) support. It is

well-known that CK(X) = OβX\X and Cψ(X) = MβX\υX , where υX
is the real compactification of X, see [9] and [10] for more details. The
support of f ∈ C(X) is clX(X \ Z(f) and the reader is referred to [8,9]
and [22] for undefined terms and notations.

2. Ideals in C(X) whose ideals are also ideals of C(X)

Whenever I is an ideal in a ring R and J is an ideal of I, Then J is
not necessarily an ideal of the whole ring R, see an example in Section
5 of [12]. Using Theorems 1.1 and 1.2, we observe that all prime and
all maximal ideals of a given ideal in C(X) are also ideals of C(X).
In [13], it is also shown that for each ideal I of C(X), every ideal of
I is also an ideal of C(X) if and only if X is a P−space. Now it is
natural to ask when every ideal of a given ideal I in C(X) is an ideal
of C(X). First we recall that an ideal I of a ring R is called pure if for
each f ∈ I, there exists g ∈ I such that f = fg. It is proved in [6] that
such ideals are exactly of the form OA, where A is a closed subset of
βX. In the following proposition, we answer our question which is also
a new characterization for pure ideals.

Proposition 2.1. Let I be an ideal in C(X). Then every ideal of I is
an ideal of C(X) if and only if I is a pure ideal.

Proof. Let I be a pure ideal and J be an ideal of I. For g ∈ C(X) and
j ∈ J , it is enough to show that gj ∈ J . By our hypothesis, there exists
i ∈ I such that j = ij. Now we have gj = gij = (gi)j ∈ J . Conversely,
suppose that every ideal of I is an ideal in C(X). Fix p ∈ θ(I), we
are going to show I ⊆ Op. Suppose on the contrary that I ⊈ Op and
take f ∈ (Mp \ Op) ∩ I (if Op = Mp, then I ⊆ Mp = Op). Without
loss of generality, we consider f to be bounded (in fact, whenever f ∈
(Mp \Op) ∩ I, then f 1

1+|f | ∈ (Mp \Op) ∩ I is bounded). Define

J = {fg + nf : g ∈Mp, n ∈ Z}.
Obviously J is an ideal of I and hence it is an ideal of C(X) by our
assumption. Since f ∈ J and J is an ideal of C(X), 1

2f ∈ J and
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therefore there exist n ∈ Z, g ∈Mp such that

1

2
f = fg + nf

and hence f(g + n − 1
2) = 0. Since f ∈ Mp \ Op, we may consider a

net (xλ)λ∈Λ such that f(xλ) ̸= 0, ∀λ ∈ Λ and xλ → p. Hence we have
g(xλ) =

1
2 −n, ∀λ ∈ Λ and therefore g∗(xλ) =

1
2 −n, ∀λ ∈ Λ, where g∗ is

an Stone extension of g to the one-point compactification of R, defined in
7.5 of [9]. This means that g∗(p) ̸= 0 which contradicts g ∈ Mp. Thus,
we have shown that I ⊆ Op, ∀p ∈ θ(I), and by Theorem 1.3 in [7], we

observe that I = Oθ(I), i.e., I is a pure ideal. Theorem 1.3 in [7] is
due to Mc Knight and states that whenever J is an ideal of C(X) and
A =

∩
f∈J clβXZ(f), then O

A ⊆ J ⊆MA. □
The above theorem is not true in arbitrary commutative rings. For

example, if we consider the ring of integers Z, then obviously every ideal
of each ideal in Z is also an ideal of the whole ring Z, but the only pure
ideal of Z is (0).

A nonzero ideal I is said to be a P -ideal, if every proper prime ideal
of I is maximal in I. These ideals are first introduced and studied in
C(X) by D. Rudd in [20]. In Theorem 1.5 of the same reference, it is
shown that an ideal I in C(X) is a P -ideal if and only if Z(f) is open for
each f ∈ I. Using this, it is manifest, to see that an ideal I in C(X) is a
P -ideal if and only if it is pure and every point of X \∆(I) is a P -point.
The following proposition gives a new characterization for P -ideals in
C(X).

Proposition 2.2. Let I be an ideal in C(X). Then every ideal of I is
a z-ideal of C(X) if and only if I is a P -ideal.

Proof. If I is a P -ideal, then it is pure and by Proposition 2.1, every
ideal of I is an ideal of C(X). Now, suppose that J is an ideal of I,
f ∈ J , g ∈ C(X) and Z(f) ⊆ Z(g). Since Z(f) is open, g is a multiple
of f by 1D in [9], hence g ∈ J , i.e., J is a z-ideal of C(X). Conversely,
let every ideal of I be a z-ideal of C(X) and f ∈ I. We show that Z(f)
is open. By Proposition 2.1, I should be a pure ideal, i.e., there exists
i ∈ I such that f = if . This shows that f ∈ fI. Since fI is an ideal

of I, it is a z-ideal in C(X), by our hypothesis. Now Z(f
1
3 ) = Z(f)

implies that f
1
3 = fj for some j ∈ I. Thus f

1
3 (1 − f

2
3 j) = 0, hence

Z(f) ∪ Z(1− f
2
3 j) = X. But Z(f) ∩ Z(1− f

2
3 j) = ∅ implies that Z(f)

is open. □
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Remark 2.3. Whenever x ∈ βX and P is a prime ideal in C(X) con-
taining Ox, then by Proposition 2.1, every ideal of P is an ideal of C(X)
if and only if P is a pure ideal, i.e., if and only if Ox = P or equiva-
lently x is an F -point. This implies that every ideal of each prime ideal
of C(X) is an ideal of C(X) if and only if X is an F -space. Using
Proposition 2.2, if M is a maximal ideal of C(X) whose every ideal is
a z-ideal of C(X), then M is a P -ideal. It is easy to see that whenever
C(X) has a maximal P -ideal, then X is a P -space. So, there exists a
maximal ideal in C(X) whose every ideal is a z-ideal of C(X) if and
only if X is a P -space.

Since Z(f), for each f ∈ CF (X) is open, by its characterization in [11],
the socle CF (X) of C(X) is a P -ideal, see Theorem 1.5 in [20]. But
what about the other familiar ideals such as CK(X) and Cψ(X) which
are intersections of a set of pure ideals and a set of maximal ideals
respectively? Next, we answer these questions, but first we give the
following lemma which is needed in the sequel.

Lemma 2.4. Let I(X) be the set of isolated points of X, then CF (X) =

OβX\I(X).

Proof. Since CF (X) is a P -ideal, it is pure and hence CF (X) = OA

for some closed subset A of βX. But A is compact, then θ(OA) = A,
and it is enough to show that A = βX \ I(X). If f ∈ CF (X), then
Z(f) = X \ {x1, ..., xn}, where x1, ..., xn ∈ I(X). Hence clβXZ(f) =
βX \ {x1, ..., xn} and consequently

A = θ(CF (X)) =
∩

f∈CF (X)

clβXZ(f) = βX \ I(X).

Therefore CF (X) = OβX\I(X). □

The ideals CK(X) and Cψ(X) may be P -ideals. The following propo-
sition states that every ideal of Cψ(X) is a z-ideal of C(X) if and only
if X is pseudodiscrete, ψ−compact. We recall that a space X is said to
be pseudodiscrete if every compact subset of X has finite interior and X
is ψ−compact if CK(X) = Cψ(X). These concepts are first introduced
in [3] and [10] respectively.

Proposition 2.5. (i) CK(X) is a P -ideal if and only if X is pseudodis-
crete.
(ii) Cψ(X) is a P -ideal if and only if X is pseudodiscrete, ψ−compact.
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Moreover, if CK(X)(Cψ(X)) is a P -ideal, then CK(X)(Cψ(X)) and
CF (X) coincide.

Proof. (i) In Theorem 4.5 in [3], it is shown that X is pseudodiscrete if
and only if CK(X) = CF (X). Hence it is sufficient to show that CK(X)
is a P -ideal if and only if CK(X) = CF (X). Clearly the coincidence of
CK(X) and CF (X) implies that CK(X) is a P -ideal. Now suppose that
CK(X) is a P -ideal. Then for each f ∈ CK(X), we have clX(X\Z(f)) ⊆
X \∆(CK(X)), by purity of CK(X). Since all points of X \∆(CK(X))
are P -points, clX(X \ Z(f)) is a compact P -space and hence X \ Z(f)
is finite by 4k in [9]. Thus CK(X) ⊆ CF (X) and we are done.

(ii) By part (i) and the definition of a ψ−compact space, whenever
X is pseudodiscrete and ψ−compact, then Cψ(X) = CF (X) is a P -
ideal. Conversely, suppose that Cψ(X) is a P -ideal. Using a similar
argument and by purity of Cψ(X), for each f ∈ Cψ(X), clX(X \ Z(f))
is contained in X \ ∆(Cψ(X)) which should be a pseudocompact P -
space and hence it is finite, again by 4k in [9]. We have thus shown
that Cψ(X) ⊆ CF (X), which implies that CK(X) = CF (X), i.e., X is
pseudodiscrete ψ−compact. □

Since Cψ(X) is the intersection of all hyper-real maximal ideals and
every isomorphism takes hyper-real maximal ideals to hyper-real maxi-
mal ideals, the following result is an immediate corollary of Proposition
2.5.

Corollary 2.6. (i) If C(X) ∼= C(Y ) and X is a pseudodiscrete, ψ-
compact space, then Y is too.
(ii) υX is pseudodiscrete if and only if X is ψ−compact, pseudodiscrete.

In the second part of the above corollary, ψ−compactness of X is
needed. For an example of a pseudodiscrete space X such that υX is
not pseudodiscrete, see example 2 in [21].

The following proposition characterizes cluCF (X), the closure of CF (X)

with respect to the uniform norm topology on C∗(X), see [8,22] and Ex-
ercise 2M in [9] for definition and properties of the uniform norm topol-
ogy on C∗(X). First for each f ∈ C(X) and each ϵ > 0, we consider
Aϵf = {x ∈ X : |f(x)| > ϵ} and define

C∞
F (X) = {f ∈ C(X) : Aϵf is finite, ∀ϵ > 0}.

Corollary 2.7. cluCF (X) =M∗βX\I(X) = C∞
F (X).
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Proof. The first equality is evident. For the second equality, let f ∈
C∞
F (X) ⊆ C∗(X). Hence, for each ϵ > 0, Aϵf is finite set consisting

entirely of isolated points, say {x1, ..., xn}. Hence for all x ∈ βX \
{x1, ..., xn}, we have |fβ(x)| ≤ ϵ. This implies that fβ(βX \ I(X)) =

0, i.e., f ∈ M∗βX\I(X). For the reverse inclusion, suppose that f ∈
M∗βX\I(X), i.e., βX \ I(X) ⊆ Z(fβ). If Aϵf is infinite for some ϵ > 0,

then Aϵf has a cluster point x in βX\I(X) which implies that |fβ(x)| ≥ ϵ

and this contradicts fβ(x) = 0. □
In [1], the concept of a P∞-space is defined as a space X in which Z(f)

is open for each f ∈ C∞(X). C∞(X) is the subring of C(X) consisting
of all continuous functions that vanish at infinity, i.e., consisting of all
f ∈ C(X) such that the set {x ∈ X : |f(x)| ≥ 1

n} is compact in X,
∀n ∈ N. In that article, the regularity of C∞(X) is investigated as a ring
and it is shown that C∞(X) is regular if and only if every open locally
compact σ-compact subset of X is compact. Using our Corollary 2.7,
we conclude this section by the fact that C∞(X) is regular if and only
if every open locally compact σ-compact subset of X is (in fact) finite.
First we need the following result which gives another characterization
for P∞-spaces.

Proposition 2.8. A space X is a P∞-space if and only if X is pseu-
dodiscrete and every countable subset of X consisting entirely of isolated
points is closed.

Proof. Let X be a P∞-space, i.e., Z(f) is open for each f ∈ C∞(X).
Since CK(X) ⊆ C∞(X), CK(X) should be a P -ideal and Proposition
2.5(i) yields that X is pseudodiscrete, i.e., CK(X) = CF (X). Now,
suppose that {p1, . . . , pn, . . . } is a sequence of isolated points and define

f(x) =

{
1
n x = pn, n ∈ N,
0 x ̸= pn.

Clearly f is continuous, in fact f ∈ C∞(X). But X is a P∞-space, then
Z(f) = X \ {p1, . . . , pn, . . . } is open and therefore {p1, . . . , pn, . . . } is
closed. Conversely, suppose that X is pseudodiscrete and every count-
able set of isolated points in X is closed. Hence we have CK(X) =
CF (X) and by Corollary 2.7 and Exercise 24A(2) in [22], C∞(X) =
C∞
F (X). So it suffices to show that Z(f) is open for each f ∈ C∞

F (X).
By definition of C∞

F (X), for each ϵ > 0, Aϵf is a finite set of isolated

points and hence X \ Z(f) =
∪∞
n=1A

1
n
f is a countable set of isolated



31 Azarpanah and Olfati

points which should be closed by our hypothesis. Hence Z(f) is open
and we are through. □

We recall that∞-compact spaces are those spacesX for which C∞(X) =
CK(X). In [1], it is shown that C∞(X) is a regular ring if and only if
X is an ∞-compact, P∞-space.

Corollary 2.9. The following statements are equivalent.
(i) C∞(X) is a regular ring.
(ii) Every open locally compact σ-compact subset of X is finite.
(iii) C∞(X) is finite direct sum of minimal ideals of C(X).

Proof. (i)⇒(ii) By Theorem 4.1 in [1], whenever C∞(X) is regular, then
every open locally compact σ-compact subset of X is compact and by
the same theorem, X is also a P∞-space. Now using our Proposition
2.8, every open locally compact σ-compact subset of X is finite.

(ii)⇒(iii) By Theorem 4.1 in [1], part (ii) implies thatX is∞-compact,
i.e., CK(X) = C∞(X) and X is also a P∞-space which implies that X
is pseudodiscrete by our Proposition 2.8, i.e., CK(X) = CF (X). There-
fore, it is enough to show that I(X) is finite. If I(X) is infinite, then
every countable subset of I(X) is an open locally compact σ-compact
set and hence it must be finite by (ii), a contradiction. This implies that
CF (X) = C∞(X) is a finite direct sum of minimal ideals of C(X).

(iii)⇒(i) Part (iii) implies that C∞(X) = CK(X) = CF (X), i.e., X is
an ∞-compact pseudodiscrete space. On the other hand, Since CF (X)
is finite direct sum of minimal ideals of C(X), the set of isolated points
of X is finite and hence X should be a P∞-space by Proposition 2.8.
Now Theorem 4.1 in [1] implies that C∞(X) is a regular ring. We note
that Theorem 4.1 in [1] states that C∞(X) is a regular ring if and only
Xis an ∞-compact P∞-space. □

3. z-ideals, prime ideals and semiprime ideals of ideals

It is well-known that the sum of every two prime (semiprime) ideals
of C(X) is either a prime (semiprime) ideal or all of C(X), see [15].
This fact may not happen for prime ideals of an ideal. In this section we
show that in each ideal of C(X), the sum of every two prime (semiprime)
ideals is a prime (semiprime) ideal if and only if X is an F -space. First
we need the following lemma.

Lemma 3.1. Let P,Q, T and I be ideals in C(X). If P,Q and T are
prime ideals in C(X) and P ∩I+Q∩I = T ∩I, then T ∩I = (P+Q)∩I.
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Proof. Clearly P ∩ I +Q ∩ I ⊆ (P +Q) ∩ I. For the reverse inclusion,
first suppose that I ⊆ T , then I = P ∩ I +Q ∩ I ⊆ P +Q and trivially
(P +Q)∩I = I = P ∩I+Q∩I. Next suppose that I ⊈ T . Pick i ∈ I \T
and p ∈ P . Hence pi ∈ I ∩ P ⊆ I ∩ T implies that p ∈ T , i.e., P ⊆ T .
Similarly we have Q ⊆ T , hence P +Q ⊆ T and we are through. □
Theorem 3.2. The following statements are equivalent.
(i) X is an F -space.
(ii) In each ideal of C(X), the sum of every two semiprime ideals is a
semiprime ideal or all of the ideal.
(iii) In each ideal of C(X), the sum of every two prime ideals is a prime
ideal or all of the ideal.

Proof. If X is an F -space, then every ideal in C(X) is absolutely convex
and the equality I ∩ (J + K) = I ∩ J + I ∩ K holds for every ideals
I, J and K in C(X). Hence, it is enough to show that part (iii) implies
part (i). To see this, it suffices to show that given p ∈ βX, prime ideals
containing Op form a chain, see Theorem 14.25 in [9]. Let P and Q be
two prime ideals in C(X) containing Op, and neither contains the other.
Take f ∈ P + Q, but f /∈ P and f /∈ Q. Now by our hypothesis and
Lemma 3.1, we have (f)∩P + (f)∩Q = (f)∩ (P +Q). But f ∈ P +Q
implies that (f) ∩ P + (f) ∩Q = (f). Hence f ∈ (f) ∩ P + (f) ∩Q, i.e.,
f = uf + vf for some u ∈ P and v ∈ Q. Now f(1− u− v) = 0 implies
that 1− u− v ∈ P , so 1− v ∈ P and hence 1 ∈ P +Q, a contradiction,
for P +Q ⊆Mp is a proper ideal. □

It is also well-known that prime ideals in C(X) containing a given
prime ideal form a chain. In the following proposition we observe that
prime ideals of an ideal in C(X) also have this property.

Proposition 3.3. Let P,Q and T be prime ideals of an ideal I in C(X).
If T ⊆ P and T ⊆ Q, then P and Q are comparable.

Proof. By Theorem 5.1 of [12], there are prime ideals P ∗, Q∗ and T ∗ in
C(X) such that P = I ∩P ∗, Q = I ∩Q∗ and T = I ∩T ∗. There are only
four cases:

Case 1. I ⊆ P ∗ or I ⊆ Q∗.
Case 2. T ∗ ⊆ P ∗ and T ∗ ⊆ Q∗.
Case 3. I ⊈ P ∗, I ⊈ Q∗ and T ∗ ⊈ P ∗.
Case 4. I ⊈ P ∗, I ⊈ Q∗ and T ∗ ⊈ Q∗.
Case 3 does not happen, for we can take a ∈ T ∗ \ P ∗ and b ∈ I \ P ∗.

Therefore ab ∈ T ∗ ∩ I ⊆ P ∗ ∩ I implies that ab ∈ P ∗, a contradiction.
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Similarly case 4 also does not happen. Hence we have only cases 1 and
2. In case 1, clearly P and Q are comparable and in case 2, P ∗ and Q∗,
and consequently P and Q are comparable. □

Whenever I and J are two semiprime ideals in C(X), then we have
IJ = I ∩ J . The following proposition shows that this is not true even
for two maximal ideals of an ideal in C(X).

Proposition 3.4. For each ideal I in C(X) and every two maximal
ideals M1 and M2 of I, we have M1 ∩M2 = M1M2 if and only if X is
a P -space.

Proof. Let f ∈ C(X), we will show that Z(f) is an open set. If X \Z(f)
is empty or singleton, then clearly Z(f) is open. Now suppose that x, y ∈
X \Z(f), consider g ∈ C(X) such that Z(f)∩Z(g) = ∅ and x, y ∈ Z(g).
Since x, y /∈ Z(f), (f) ∩Mx and (f) ∩My are two maximal ideals in
(f), by Theorem 1.2. Now by our hypothesis, ((f) ∩Mx)((f) ∩My) =
(f) ∩Mx ∩My. But fg ∈ (f) ∩Mx ∩My = ((f) ∩Mx)((f) ∩My), then
fg = f2ts for some t ∈Mx and s ∈My. Now we have f(g−fts) = 0 and
hence Z(f)∪Z(g−fts) = X. Moreover, if f(u) = 0, then (g−fts)(u) =
g(u) ̸= 0, for Z(f) ∩ Z(g) = ∅. This means that Z(f) ∩ Z(g − fts) = ∅
and therefore Z(f) is open. Whenever X is a P -space, the proof is
clear. □

Motivated by the definition of z-ideals in C(X), whenever J is an ideal
of C(X) and I is an ideal of J , we call I a z-ideal of J if Z(f) ⊆ Z(g),
f ∈ I and g ∈ J imply that g ∈ I. If for each f ∈ C(X), we denote the
intersection of all maximal ideals of C(X) containing f , by Mf , then we
have Mf = {g ∈ C(X) : Z(f) ⊆ Z(g)}, see [6]. Using this notation, it
is evident that I is a z-ideal of J if and only if Mf ∩ J ⊆ I, ∀f ∈ I.
Whenever I is an ideal of an ideal J in C(X) and I is also a z-ideal
of J , then I is also an ideal of C(X). In fact, if f ∈ I and g ∈ C(X),
then fg ∈ J and Z(f) ⊆ Z(fg) implies that fg ∈ I, i.e., I is an ideal
of C(X). Hence our definition coincides with the definition mentioned
in [7], i.e., if I is an ideal of J , then I is a z-ideal of J if and only if
I is a zJ -ideal, see [7] for definition of zJ -ideal and some properties of
such ideals. Now by this coincidence, we immediately have the following
result from [7].

Proposition 3.5. For each ideal J of C(X), the sum of every two z-
ideals of J is a z-ideal of J if and only if X is an F -space.
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It is well-known that every z-ideal in C(X) containing a prime ideal is
prime, see Theorem 2.9 in [9]. This fact is also true if we consider an ideal
of C(X) instead of C(X). The following proposition is a counterpart
of Theorem 2.9 in [9] and its proof is more or less the same as that of
Theorem 2.9 in [9].

Proposition 3.6. Let J be an ideal of C(X) and I be a z-ideal of J .
Then, the following statements are equivalent.
(a) I is a prime ideal of J .
(b) I contains a prime ideal of J .
(c) For all g, h ∈ J , if gh = 0, then g ∈ I or h ∈ I.
(d) For each f ∈ J , there is a zero-set in Z[I] on which f does not
change sign.

Proof. Clearly part (a) implies part (b). If (b) holds, then there exists
a prime ideal P in C(X) such that P ∩ J ⊆ I. Now if gh = 0 and
g, h ∈ J , then g ∈ P ∩ J or h ∈ P ∩ J and hence (c) holds. Part (c) also
implies part (d), in fact f ∈ J implies that f(f ∨ 0), f(f ∧ 0) ∈ J and
f2(f∨0)(f∧0) = 0. Hence, either g = f(f∨0) ∈ I or h = f(f∧0) ∈ I, so
f does not change sign on Z(g) or on Z(h). Finally, to prove (d) implies
(a), let g, h ∈ J and gh ∈ I. Consider the function g2 − h2 ∈ J . By
hypothesis, there is a zero-set Z(i), i ∈ I on which g2−h2 is nonnegative,
say. Then Z(g)∩Z(i) ⊆ Z(h) and hence Z(h) ⊇ Z(g)∩Z(i) = Z(gh)∩
Z(i) = Z(g2h2 + i2), so that h ∈ I, for g2h2 + i2 ∈ I and I is a z-ideal
of J . Thus I is a prime ideal of J . □
Corollary 3.7. Let J be an ideal of C(X) and I be a z-ideal of J . If P
is a prime ideal in C(X) and P ∩ J ⊆ I, then there exists a prime ideal
Q in C(X) such that I = Q ∩ J .

4. Separability of ideals in C(X) vs. dense separability of
subspaces of X

An ideal I of a ring R is called separable if for each family {Ms}s∈S of
maximal ideals of I with

∩
s∈SMs = (0), there exists a countable subset

F of S such that
∩
s∈F Ms = (0). This concept is first introduced and

studied in [16]. An ideal I is said to be strongly separable if for each
family {Is}s∈S of ideals of I with

∩
s∈S Is = (0), there is a countable

subset F of S such that
∩
s∈F Is = (0). Clearly every strongly separable

ideal is separable but not conversely, see the introduction of [16]. In the
following proposition, we show that these two concepts for an ideal I of
C(X) coincide with dense separability of βX \ θ(I).
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By a dense separable space, we call a space in which every dense
subset is separable. Dense separable spaces are introduced and studied
in [14]. It is clear that every dense separable space is separable, but not
conversely, see [14]. The sorgenfery line, βQ and βQ \ Q are examples
of dense separable spaces, see also [14]. Before giving the proposition,
we need the following lemma which states that every ideal of an ideal in
C(X) contains an ideal of C(X).

Lemma 4.1. Let J be an ideal of C(X). For each ideal I of J , we have
OA ⊆ I ⊆MA ∩ J , where A =

∩
f∈I clβXZ(f).

Proof. Suppose that g ∈ OA, i.e., A ⊆ intβXclβXZ(g). The compactness
of A in βX implies that there are f1, ..., fn ∈ I such that

n∩
k=1

clβXZ(fi) ⊆ intβXclβXZ(g).

Now using 7.14 in [9], there exists h ∈ C(X) such that

Z(f21 + ...+ f2n) ⊆ X \ Z(h) ⊆ Z(g).

This implies that g is a multiple of f21 + ...+ f2n, by 1D in [9], i.e., there
exists k ∈ C(X) such that g = k(f21 + ... + f2n). For each i = 1, 2, ..., n,
we have kf2i = (kfi)fi ∈ I, for kfi ∈ J . Therefore g ∈ I, i.e., OA ⊆ I.
The inclusion I ⊆MA ∩ J is evident by Theorem 1.3 in [7]. □
Proposition 4.2. Let I be an ideal of C(X). Then the following state-
ments are equivalent.
(i) I is a separable ideal.
(ii) I is a strongly separable ideal.
(iii) βX \ θ(I) is a dense separable subspace of βX

Proof. (i)⇒(ii) Let {Is}s∈S be an arbitrary family of ideals of I with∩
s∈S Is = (0). By Lemma 4.1, for each s ∈ S, OAs ⊆ Is ⊆ MAs ∩ I,

where As =
∩
f∈Is clβXZ(f). Hence we have∩

s∈S
OAs ⊆

∩
s∈S

Is ⊆
∩
s∈S

(MAs ∩ I).

Now
∩
s∈S Is = (0) implies that

∩
s∈S O

As = (0) and hence O∪s∈SAs =

(0). This means that ∪s∈SAs is dense in βX, so M∪s∈SAs = (0) and
therefore ∩

a∈∪s∈SAs

(Ma ∩ I) =
∩
s∈S

(MAs ∩ I) =M∪s∈SAs ∩ I = (0).
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Now by part (i), there exists a countable set F ⊆
∪
s∈S As such that∩

a∈F M
a ∩ I = (0). Letting F = {a1, ..., an, ...}, for each n ∈ N, there

exists sn ∈ S such that an ∈ Asn . Hence Isn ⊆ MAsn ∩ I ⊆ Man ∩ I
which implies that

∩∞
n=1 Isn =

∩∞
n=1(M

an ∩ I) = (0), i.e., I is strongly
separable.

(ii)⇒(i) Evident.
(i)⇒(iii) Let A be dense in βX\θ(I). We show that A has a countable

subset which is dense in βX \ θ(I). Since S = A ∪ θ(I) is dense in βX,
we have MS = (0) and hence MS ∩ I = (0). But I is separable, hence
there exists a countable subset F of S such that MF ∩ I = (0). Now

OF∪θ(I) ⊆MF∩I = (0) implies that F∪θ(I) is dense in βX. This means
that F is dense in βX \ θ(I), for βX \ θ(I) is open in βX. Therefore
βX \ θ(I) is dense separable.

(iii)⇒(i) Let MA ∩ I = (0), where A ⊆ βX \ θ(I). It follows that
A∪ θ(I) is dense in βX and A will be dense in βX \ θ(I), for βX \ θ(I)
is open in βX. Now using dense separability of βX \ θ(I), there is a

countable subset F of A which is dense in βX \ θ(I). Hence MF∪θ(I) =
(0) implies that MF ∩ I = (0), i.e., I is separable. □
Corollary 4.3. C(X) has a separable non maximal prime ideal if and
only if X is not a countable discrete space and βX is dense separable.

Proof. If P is a separable non-maximal prime ideal, then P ⊆ Mx for
some non isolated point x. This implies that X is not a countable
discrete space. Now by Proposition 4.2, P is separable if and only if
βX \ {x} is dense separable and this is equivalent to saying that βX is
dense separable. The converse is obvious by Proposition 4.2. □

For an ideal I in C(X), we have ∆(I) = θ(I) ∩ X and hence X \
∆(I) = (βX \ θ(I)) ∩ X. Since X is dense and βX \ θ(I) is open in
βX, clβX(βX \ θ(I)) = clβX(X \ ∆(I)). This immediately shows that
whenever βX \ θ(I) is dense separable, then X \∆(I) is too. Now using
this argument, we prove the following result.

Proposition 4.4. A P -ideal I in C(X) is separable if and only if X \
∆(I) is a countable set consisting entirely of isolated points.

Proof. Let I be a separable P -ideal in C(X). By the argument above,
X \∆(I) is dense in βX \θ(I) and by Proposition 4.2, βX \θ(I) is dense
separable. This yields that X \∆(I) has a countable dense subset. But
I is a P -ideal, hence X \ ∆(I) is a P -space. Since countable subsets
of a P -space are closed and discrete, see 4K in [9], X \ ∆(I) will be a
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countable discrete subspace. On the other hand, X \ ∆(I) is open, so
every point of X \ ∆(I) is an isolated point. Conversely, let X \ ∆(I)
be a countable set consisting entirely of isolated points. If A is a dense
subset of βX \ θ(I), then it must contain X \ ∆(I), i.e., βX \ θ(I) is
dense separable. Now by Proposition 4.2. I is separable. □

Using Proposition 2.1 in [2] and our Proposition 4.4, the following
result is evident.

Corollary 4.5. C(X) has an essential separable P -ideal if and only if
X contains a countable set of isolated points dense in X.

Proposition 4.6. Every ideal of C(X) is a separable P -ideal if and only
if X is a countable discrete space.

Proof. If X is a countable discrete space and I is an ideal of C(X), then
X \ ∆(I) is a countable set consisting entirely of isolated points and
hence I is a separable P -ideal, by Proposition 4.4. Conversely, suppose
that x ∈ X. By our hypothesis, Mx is a separable P -ideal and hence
X \ ∆(I) = X \ {x} is countable and consisting entirely of isolated
points, by Proposition 4.4. This implies that {x} is a zero set in Z[Mx].
Similarly, since My for y ̸= x is also a P -ideal, X \ {y} is a P -space.
But {x} ⊆ X \ {y} is a zeroset, then {x} is open, i.e., x should be an
isolated point. Therefore X is a countable discrete space. □

We know that CF (X) is a P -ideal and X \∆(CF (X)) = I(X). Thus,
using Proposition 4.4, CF (X) is separable if and only if |I(X)| ≤ ℵ0.
This proves the first part of the following result.

Proposition 4.7. Every P -ideal of C(X) is separable if and only if
|I(X)| ≤ ℵ0 and the set of non-P -points of X is dense in X \ I(X).

Proof. Let every P -ideal of C(X) be separable. Then CF (X) is separable
and hence |I(X)| ≤ ℵ0 by the preceding argument. Now suppose that
U is an open set in X all of whose elements are P -points and contains
at least one non-isolated point. Hence clβX(X \ U) ̸= βX, so the ideal

I = OclβX(X\U) is a proper P -ideal. In fact I is pure and X \∆(I) = U
is a P -space. This contradicts Proposition 4.4. Conversely suppose that
|I(X)| ≤ ℵ0 and the set of non-P -points of X is dense in X \ I(X). Let I
be a P -ideal in C(X). Since X \∆(I) is an open set consisting entirely
of P -points, then (X \∆(I)) ∩ (X \ I(X)) = ∅, by our hypothesis. This
implies that X \∆(I) ⊆ I(X) and hence I is separable by Proposition
4.4. □
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The following corollary is an immediate consequence of Proposition
4.7.

Corollary 4.8. Let X be a space without any isolated point. Then every
P -ideal of C(X) is separable if and only if the set of non-P -points of X
is dense in X.

To prove the final result of this section which topologically charac-
terizes the separability of the ideals CK(X) and Cψ(X), we need the
following lemmas. First we denote L(X) by the set of all points of X
which have compact neighborhoods.

Lemma 4.9. Let I be an ideal of C(X). Whenever X \ ∆(I) is lo-
cally compact dense separable, then βX \ θ(I) is also dense separable.
Note that the dense separability of βX \ θ(I) always implies the dense
separability of X \∆(I).

Proof. By the comment preceding Proposition 4.4, we have clβX(X \
∆(I)) = clβX(βX\θ(I)). Now ifA is dense in βX\θ(I), then clβX\θ(I)A =
βX \θ(I). Since X \∆(I) is open in βX \θ(I), clX\∆(I)(A∩(X \∆(I)) =
X \ ∆(I), hence there exists a countable subset F of A such that
clX\∆(I)F = X \∆(I). Therefore clβX\θ(I)F = βX \ θ(I), i.e., βX \ θ(I)
is dense separable. □
Lemma 4.10. For a space X, βX \ clβX(βX \ X) = L(X) = X \
∆(CK(X)).

Proof. The second equality is obvious and hence we need to show the
first one. Since βX \ clβX(βX \ X) ⊆ X is open in βX, it is locally
compact and evidently it is a subset of L(X). Conversely suppose that
x ∈ L(X), hence there exists an open subset U ⊆ X such that x ∈ U and
clXU is compact. Now take an open subset V ⊆ βX with V ∩X = U . By
density of X, we have clβXV = clXU . This shows that V ∩(βX \X) = ∅
and so x /∈ clβX(βX \X). This ends our proof. □
Proposition 4.11. (i) CK(X) is separable if and only if L(X) is dense
separable.

(ii) Cψ(X) is separable if and only if L(υX) is dense separable.

5. Goldie dimension of ideals

In this section we generalize the notion of Goldie dimension to an
arbitrary ideal. A collection {Iα}α∈S of nonzero subideals (ideals) of
an ideal I is said to be independent if Iβ ∩

∑
β ̸=α∈S Iα = (0), i.e.,
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α∈S Iα =

⊕
α∈S Iα. We denote the Goldie dimension (generalized

Goldie dimension) of I by GdimI (GgdimI) and define it to be the
smallest cardinal number a such that every independent set of nonzero
subideals (ideals) of I has cardinality less than or equal to a. It is clear
that GdimI ≤ GgdimI.

In C(X) we observe that GdimI = GgdimI for each ideal I of C(X)
and they coincide with the cellularity of X \∆(I). The smallest cardinal
number b such that every family of pairwise disjoint nonempty open
subsets of a space Y has cardinality less than or equal to b is called the
cellularity or souslin number of Y and is denoted by c(Y ) or S(Y ), see
[22] and [8] for more details. It is well-known that GdimC(X) = c(X),
see [2].

Theorem 5.1. Let I be an ideal of C(X). Then GdimI = GgdimI =
c(X \∆(I)).

Proof. To prove the first equality, it is enough to show that GdimI ≥
GgdimI. Let {Iα}α∈S be an independent collection of nonzero ideals of
I, then by Lemma 4.1, we have OAα ⊆ Iα, where Aα = θ(Iα). Clearly
{OAα}α∈S is also an independent set of subideals of I which means that
GdimI ≥ GgdimI.

Now suppose that GdimI = a and {Gα : α ∈ S} is a family of
pairwise disjoint open subsets of X \∆(I). For each α ∈ S, there exists
0 ̸= fα ∈ C(X) such that f(X \ Gα) = {0}. Note that each Gα is also
open in X. It is easy to see that (fα) ∩ (fβ) = (0) for all α, β ∈ S with
α ̸= β. {(fα)I : α ∈ S} is an independent collection of nonzero subideals
of I which means that GdimI ≥ c(X \∆(I)).

Conversely suppose that c(X \ ∆(I)) = a and {Iα : α ∈ S} is an
independent collection of nonzero subideals of I. For each α ∈ S, take
0 ̸= fα ∈ Iα. Clearly X \ Z(fα) ⊆ X \∆(I), hence {X \ Z(fα) : α ∈ S}
is a collection of pairwise disjoint open subsets of X \∆(I) which means
that c(X \∆(I)) ≥ GdimI. □

Theorem 5.2. Let I be an ideal of C(X). Then GdimI is finite if and
only if I is a finite direct sum of minimal ideals of I.

Proof. By Theorem 5.1, c(X \∆(I)) is finite and since X \∆(I) is open,
X \∆(I) = {x1, ..., xn}, where each xi is an isolated point. This implies

that I is a P -ideal and so I = OβX\{x1,...,xn} or I =
∑n

i=1O
βX\{xi}. It

is not hard to see that each OβX\{xi} is a minimal ideal of C(X) and
also a minimal ideal of I. The converse is obvious. □



On ideals of ideals in C(X) 40

As a final consequence of Theorem 5.1, we need the following lemma
which is Exercise 6L.8 of [17].

Lemma 5.3. If c(X) = ℵ0, then X is an F -space if and only if X is
extremally disconnected.

Now using this lemma, together with Propositions 4.2 and 4.4, the
equivalence of parts (ii) and (iii) of the following corollary is evident.

Corollary 5.4. Let X be a space with nonmeasurable cardinal and I be
a P -ideal of C(X). Then the following statements are equivalent.

(i) GdimI = ℵ0.
(ii) X \∆(I) is countable and it consists entirely of isolated points.
(iii) I is separable.

Proof. It is enough to show that parts (i) and (ii) are equivalent. Clearly
part (ii) implies part (i), so it suffices to prove that (i) implies (ii).
By Lemma 5.3, X \ ∆(I) is an extremally disconnected P -space with
nonmeasurable cardinal. But using 12G(6) in [9], X \ ∆(I) should be
discrete and hence it must be countable by (i). Since X \∆(I) is open,
then its points are isolated. □
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