A DEGREE CONDITION FOR GRAPHS TO HAVE CONNECTED (g, f)-FACTORS

S. ZHOU*, H. LIU AND Y. XU

Abstract

Let G be a graph of order n, a and b be integers with $1 \leq a<b$ and $b \geq 3, g(x)$ and $f(x)$ be two integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$, for each $x \in V(G)$ and $f(V(G))-V(G)$ even. We prove that G has a connected (g, f) factor if the minimum degree $\delta(G)$ satisfies $\delta(G) \geq \frac{(b-1) n}{a+b-1}$ and $n \geq$ $\frac{(a+b-1)^{2}+1}{a}$.

1. Introduction

We consider only finite undirected graphs without loops and multiple edges. Let G be a graph. We denote by $V(G)$ and $E(G)$, the set of vertices and the set of edges, respectively. For a vertex $x \in V(G)$, we write $N_{G}(x)$ for the set of vertices adjacent to x in $G, N_{G}[x]$ for $N_{G}(x) \cup\{x\}$, and $d_{G}(x)=\left|N_{G}(x)\right|$ for the degree of x in G. The minimum degree of vertices in G is denoted by $\delta(G)$. Let S and T be disjoint subsets of $V(G)$. We denote by $e_{G}(S, T)$, the number of edges joining S and T. For a subset $S \subseteq V(G)$, we denote by $G-S$, the subgraph obtained from G by deleting the vertices in S together with the edges incident to the vertices in S.

[^0]Let $g(x)$ and $f(x)$ be two nonnegative integer-valued functions defined on $V(G)$ such that $g(x) \leq f(x)$, for each $x \in V(G)$. A (g, f)-factor of graph G is a spanning subgraph F of G such that $g(x) \leq d_{F}(x) \leq f(x)$, for each $x \in V(G)$ (where, of course d_{F} denotes the degree in F). If F is connected, then we call it a connected (g, f)-factor. For convenience, we write $d_{G-S}(T)=\sum_{x \in T} d_{G-S}(x), f(S)=\sum_{x \in S} f(x)$ and $f(T)=$ $\sum_{x \in T} f(x)$. Some terminologies and notations not given here can be found in [1].

Many authors have investigated factors [2,6,8,10, 14, 15,16], connected factors [5,11], and factorizations [13]. Here, we study conditions on the minimum degree and the order of a graph G which guarantee the existence of a connected (g, f)-factor in G. We begin with some known results.

Theorem 1.1. [9] A graph G has a (g, f)-factor if and only if

$$
\delta_{G}(S, T)=f(S)+d_{G-S}(T)-g(T)-h_{G}(S, T) \geq 0,
$$

for any disjoint subsets S and T of $V(G)$, where $h_{G}(S, T)$ denotes the number of components C of $G-(S \cup T)$ such that $g(x)=f(x)$, for all $x \in V(C)$ and $e_{G}(T, V(C))+f(V(C))$ is odd. Furthermore, if $g(x)=$ $f(x)$, for each $x \in V(G)$, then $\delta_{G}(S, T)=f(V(G))(\bmod 2)$.

Theorem 1.2. [12] Let G be a graph of order $n \geq 3$. If for each pair of nonadjacent vertices x and y of G,

$$
d_{G}(x)+d_{G}(y) \geq n,
$$

then G has a Hamiltonian cycle.
Theorem 1.3. [7] Let G be a graph, g and f be two positive integervalued functions defined on $V(G)$ such that $g(x) \leq f(x) \leq d_{G}(x)$, for each $x \in V(G)$. If G has both a (g, f)-factor and a Hamiltonian path, then G contains a connected $(g, f+1)$-factor.

Theorem 1.4. [3] Let $k \geq 1$ be an integer, G a graph of order n with $k n$ even and $n \geq 4 k-5$. If

$$
\delta(G) \geq \frac{n}{2}
$$

then G has a k-factor.

Theorem 1.5. [4] Let G be a graph of order n, a and b be integers with $1 \leq a \leq b$. Let f be an integer-valued function defined on $V(G)$ such that $a \leq f(x) \leq b$, for each $x \in V(G)$ and $f(V(G)) \equiv 0(\bmod 2)$. If

$$
n>\frac{(a+b)(a+b-3)}{a}
$$

and

$$
\delta(G) \geq \frac{b n}{a+b}
$$

then G has an f-factor.

We prove the following theorem for the existence of a connected (g, f) factor, which is an extension of Theorem 1.4 and Theorem 1.5.

Theorem 1.6. Let G be a graph of order n, a and b be two integers with $1 \leq a<b$ and $b \geq 3$. Let g and f be two integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$, for each $x \in V(G)$ and $f(V(G))-V(G)$ even. If

$$
n \geq \frac{(a+b-1)^{2}+1}{a}
$$

and

$$
\delta(G) \geq \frac{(b-1) n}{a+b-1}
$$

then G has a connected (g, f)-factor.

2. Proof of Theorem 1.6

We now prove Theorem 1.6. We assume that G satisfies the conditions of Theorem 1.6. Since $\delta(G) \geq \frac{(b-1) n}{a+b-1}$, then we have,

$$
d_{G}(x)+d_{G}(y) \geq 2 \frac{(b-1) n}{a+b-1} \geq \frac{(a+b-1) n}{a+b-1}=n
$$

for each pair of nonadjacent vertices x and y of G. By Theorem 1.2, G has a Hamiltonian cycle. Hence, by Theorem 1.3, to prove Theorem 1.6, we need only to prove that G has a $(g, f-1)$-factor.

We begin to prove that G has a $(g, f-1)$-factor. Suppose that G satisfies the conditions of Theorem 1.6, but it has no $(g, f-1)$-factor.

Then, according to Theorem 1.1, there exist two disjoint subsets S and T of $V(G)$ such that

$$
\begin{equation*}
\delta_{G}(S, T)=f(S)-|S|+d_{G-S}(T)-g(T)-h_{G}(S, T) \leq-1 \tag{2.1}
\end{equation*}
$$

In view of the conditions of Theorem 1.6 and (2.1), we obtain,

$$
\begin{equation*}
a|S|+d_{G-S}(T)-(b-1)|T|-\omega \leq \delta_{G}(S, T) \leq-1 \tag{2.2}
\end{equation*}
$$

where ω denotes the number of components of $G-(S \cup T)$. Clearly,

$$
\begin{equation*}
\omega \leq n-|S|-|T| \tag{2.3}
\end{equation*}
$$

Case 1. $\omega=0$.
In this case, we have $n=|S|+|T|$. Obviously, $T \neq \varnothing$. Otherwise, by (2.2) we get $a|S| \leq-1$, which is a contradiction.

In view of (2.2), we obtain,
$-1 \geq a|S|+d_{G-S}(T)-(b-1)|T| \geq a(n-|T|)-(b-1)|T|=a n-(a+b-1)|T|$, and so

$$
|T| \geq \frac{a n+1}{a+b-1}
$$

For each $x \in T$, we get,

$$
d_{G-S}(x)+|S| \geq \delta(G) \geq \frac{(b-1) n}{a+b-1}
$$

Thus, we obtain,
(2.4) $\quad d_{G-S}(T) \geq \frac{(b-1) n}{a+b-1}|T|-|S||T|=\frac{(b-1) n}{a+b-1}|T|-(n-|T|)|T|$.

According to (2.2), (2.4) and $n=|S|+|T|$, we get,

$$
\begin{aligned}
-1 & \geq \delta_{G}(S, T) \geq a|S|+d_{G-S}(T)-(b-1)|T| \\
& \geq a(n-|T|)+\frac{(b-1) n}{a+b-1}|T|-(n-|T|)|T|-(b-1)|T| \\
& =|T|^{2}-\left(\frac{a n}{a+b-1}+a+b-1\right)|T|+a n
\end{aligned}
$$

Let $f(|T|)=|T|^{2}-\left(\frac{a n}{a+b-1}+a+b-1\right)|T|+a n$. Since $|T| \geq \frac{a n+1}{a+b-1}$ and $n \geq \frac{(a+b-1)^{2}+1}{a}$, then $f(|T|)$ attains its minimum value at $|T|=\frac{a n+1}{a+b-1}$.

Thus, we have,

$$
\begin{aligned}
-1 & \geq f(|T|) \geq f\left(\frac{a n+1}{a+b-1}\right) \\
& =\left(\frac{a n+1}{a+b-1}\right)^{2}-\left(\frac{a n}{a+b-1}+a+b-1\right)\left(\frac{a n+1}{a+b-1}\right)+a n \\
& =\left(\frac{a n+1}{a+b-1}\right)\left(\frac{a n+1}{a+b-1}-\left(\frac{a n}{a+b-1}+a+b-1\right)\right)+a n \\
& =\left(\frac{a n+1}{a+b-1}\right)\left(\frac{1}{a+b-1}-(a+b-1)\right)+a n \\
& =\frac{a n+1}{(a+b-1)^{2}}-(a n+1)+a n \\
& =\frac{a n+1}{(a+b-1)^{2}}-1 \geq \frac{(a+b-1)^{2}+2}{(a+b-1)^{2}}-1 \\
& =\frac{2}{(a+b-1)^{2}}>0,
\end{aligned}
$$

a contradiction.
Case 2. $\omega \geq 1$.
Let m denote the minimum order of components of $G-(S \cup T)$. Then,

$$
\begin{equation*}
m \leq \frac{n-|S|-|T|}{\omega} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(G) \leq m-1+|S|+|T| . \tag{2.6}
\end{equation*}
$$

Subcase 2.1. $T=\varnothing$.
Claim 1. $S \neq \varnothing$.
Proof. Assume that $S=\varnothing$. Since G has a Hamiltonian cycle and $\delta_{G}(S, T) \leq-1$, then $h_{G}(S, T)=1$. Obviously, $f(x)-1=g(x)$, for each $x \in V(G)$ by the definition of $h_{G}(S, T)$. Hence, $\delta_{G}(S, T)=-1$. On the other hand, since $f(V(G))-V(G)$ is even, then in view of Theorem 1.1, $\delta_{G}(S, T)$ is even, which is a contradiction.

According to (2.2) and (2.3), we obtain,

$$
\begin{equation*}
a|S|+1 \leq \omega \leq n-|S| . \tag{2.7}
\end{equation*}
$$

Hence, we have by $(2.5),(2.6),(2.7)$ and $\delta(G) \geq \frac{(b-1) n}{a+b-1}$ that

$$
\begin{aligned}
\frac{(b-1) n}{a+b-1} & \leq \delta(G) \leq m-1+|S| \\
& \leq \frac{n-|S|}{\omega}-1+|S| \leq \frac{n-|S|}{a|S|+1}-1+|S| \\
& =\frac{n-1}{a+1}-\frac{a(|S|-1)(n-1-a|S|-|S|)}{(a+1)(a|S|+1)}
\end{aligned}
$$

Since $n-1-a|S|-|S| \geq 0$ by (2.7), and $|S|-1 \geq 0$ by Claim 1 , then it follows:

$$
\frac{n}{2} \leq \frac{(b-1) n}{a+b-1} \leq \frac{n-1}{a+1}
$$

This is a contradiction, since $a \geq 1$.
Subcase 2.2. $T \neq \varnothing$.
Let $h=\min \left\{d_{G-S}(x) \mid x \in T\right\}$. Then, obviously,

$$
\begin{equation*}
\delta(G) \leq h+|S| \tag{2.8}
\end{equation*}
$$

Subcase 2.2.1. $\quad h=0$.
According to (2.2) and (2.3), we have,

$$
\begin{aligned}
-1 & \geq \delta_{G}(S, T) \geq a|S|+d_{G-S}(T)-(b-1)|T|-\omega \\
& \geq a|S|-(b-1)|T|-\omega \\
& \geq a|S|-(b-1)|T|-(n-|S|-|T|) \\
& =(a+1)|S|-(b-2)|T|-n
\end{aligned}
$$

Combining this with (2.3) and $\omega \geq 1$, we get,

$$
\begin{aligned}
-1 & \geq(a+1)|S|-(b-2)|T|-n \\
& \geq(a+1)|S|-(b-2)(n-1-|S|)-n \\
& =(a+b-1)|S|-(b-2)(n-1)-n
\end{aligned}
$$

Combining this with $(2.8), h=0$ and $\delta(G) \geq \frac{(b-1) n}{a+b-1}$, we obtain,

$$
\begin{aligned}
-1 & \geq(a+b-1)|S|-(b-2)(n-1)-n \\
& \geq(a+b-1) \frac{(b-1) n}{a+b-1}-(b-2)(n-1)-n \\
& =(b-1) n-(b-2)(n-1)-n \\
& =b-2>0
\end{aligned}
$$

a contradiction.

Subcase 2.2.2. $1 \leq h \leq b-2$.
In view of (2.2), (2.3), (2.8) and the fact that $b-1-h \geq 1$, we have,

$$
\begin{aligned}
\delta_{G}(S, T) & \geq a|S|+d_{G-S}(T)-(b-1)|T|-\omega \\
& \geq a|S|+h|T|-(b-1)|T|-(b-1-h)(n-|S|-|T|) \\
& =(a+b-1-h)|S|-(b-1-h) n \\
& \geq(a+b-1-h)(\delta(G)-h)-(b-1-h) n \\
& \geq(a+b-1-h)\left(\frac{(b-1) n}{a+b-1}-h\right)-(b-1-h) n .
\end{aligned}
$$

Let $g(h)=(a+b-1-h)\left(\frac{(b-1) n}{a+b-1}-h\right)-(b-1-h) n$. Then, according to $n \geq \frac{(a+b-1)^{2}+1}{a}$ and $1 \leq h \leq b-2$,

$$
\begin{aligned}
g^{\prime}(h) & =-\frac{(b-1) n}{a+b-1}+h-(a+b-1)+h+n \\
& =\frac{a n}{a+b-1}+2 h-(a+b-1) \\
& \geq \frac{(a+b-1)^{2}+1}{a+b-1}+2-(a+b-1) \\
& >a+b-1+2-(a+b-1)=2>0 .
\end{aligned}
$$

Hence, $g(h)$ attains its minimum value at $h=1$. Thus, we get,

$$
\begin{aligned}
\delta_{G}(S, T) & \geq g(h) \geq g(1) \\
& =(a+b-2)\left(\frac{(b-1) n}{a+b-1}-1\right)-(b-2) n \\
& =\frac{(b-1)(a+b-2) n-(b-2)(a+b-1) n}{a+b-1}-(a+b-2) \\
& =\frac{a n}{a+b-1}-(a+b-2) \\
& \geq \frac{(a+b-1)^{2}+1}{a+b-1}-(a+b-2) \\
& =\frac{a+b}{a+b-1}>0 .
\end{aligned}
$$

This contradicts (2.1).
Subcase 2.2.3. $h=b-1$.
By (2.2), we get,

$$
\begin{equation*}
\omega \geq a|S|+1 \tag{2.9}
\end{equation*}
$$

According to (2.5) and (2.9), we obtain,

$$
\begin{equation*}
1 \leq m \leq \frac{n-|S|-|T|}{\omega} \leq \frac{n-|S|-1}{a|S|+1} \tag{2.10}
\end{equation*}
$$

and so,

$$
\begin{equation*}
|S| \leq \frac{n-2}{a+1} \tag{2.11}
\end{equation*}
$$

By $\delta(G) \geq \frac{(b-1) n}{a+b-1}$ and (2.8), we have,

$$
\frac{(b-1) n}{a+b-1} \leq \delta(G) \leq h+|S|=b-1+|S|
$$

and so,

$$
\begin{equation*}
|S| \geq \frac{(b-1) n}{a+b-1}-b+1 \tag{2.12}
\end{equation*}
$$

Claim 2. $\frac{(b-1) n}{a+b-1}-b+1 \geq \frac{2 n}{a+2}-2$.
Proof. By $n \geq \frac{(a+b-1)^{2}+1}{a}$ and $b \geq 3$, we have,

$$
\begin{aligned}
\frac{(b-1) n}{a+b-1}-b+1-\left(\frac{2 n}{a+2}-2\right)= & \frac{(b-1) n}{a+b-1}-\frac{2 n}{a+2}-(b-3) \\
= & \frac{(a+2)(b-1) n-2(a+b-1) n}{(a+2)(a+b-1)} \\
& -(b-3) \\
= & \frac{(b-3) a n}{(a+2)(a+b-1)}-(b-3) \\
\geq & \frac{(b-3)\left[(a+b-1)^{2}+1\right]}{(a+2)(a+b-1)}-(b-3) \\
\geq & \frac{(b-3)(a+b-1)^{2}}{(a+2)(a+b-1)}-(b-3) \\
= & \frac{(b-3)(a+b-1)}{a+2}-(b-3) \geq 0
\end{aligned}
$$

From Claim 2 and (2.12), we get,

$$
\begin{equation*}
|S| \geq \frac{2 n}{a+2}-2 \tag{2.13}
\end{equation*}
$$

In view of (2.11) and (2.13), we have,

$$
\frac{n-2}{a+1} \geq \frac{2 n}{a+2}-2
$$

which implies,

$$
\begin{equation*}
n \leq 2(a+2) \tag{2.14}
\end{equation*}
$$

On the other hand, we obtain by $b \geq 3$ and $b-1 \geq a$ so that

$$
n \geq \frac{(a+b-1)^{2}+1}{a}>\frac{(a+b-1)^{2}}{a} \geq 2(a+2)
$$

which contradicts (2.14).
Subcase 2.2.4. $h \geq b$.
According to (2.2), we get,

$$
\begin{equation*}
a|S|+(h-b+1)|T|-\omega \leq-1 \tag{2.15}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\omega \geq a|S|+|T|+1 \geq|S|+|T|+1 \tag{2.16}
\end{equation*}
$$

Suppose that $m \geq 2$. Then, in view of (2.5), (2.6), (2.16) and $T \neq \varnothing$, we have,

$$
\begin{aligned}
\delta(G) & \leq m-1+|S|+|T| \leq m+\omega-2 \\
& \leq m+\omega-2+\frac{1}{2}(m-2)(\omega-2)=\frac{1}{2} m \omega \\
& \leq \frac{1}{2}(n-|S|-|T|)<\frac{n}{2}
\end{aligned}
$$

This contradicts $\delta(G) \geq \frac{(b-1) n}{a+b-1} \geq \frac{n}{2}$. Thus, we may assume that $m=1$. Then, from (2.3) and (2.16), we obtain,

$$
|S|+|T|+1 \leq \omega \leq n-|S|-|T|
$$

Thus, we have,

$$
|S|+|T| \leq \frac{n-1}{2}
$$

From (2.6), we get,

$$
\frac{n}{2} \leq \frac{(b-1) n}{a+b-1} \leq \delta(G) \leq|S|+|T| \leq \frac{n-1}{2}<\frac{n}{2}
$$

which is a contradiction, completing the proof of Theorem 1.6.

Remark 2.1. In the proof of Theorem 1.6, it is required that $\delta(G) \geq$ $\frac{(b-1) n}{a+b-1}$. We do not know whether the condition can be improved.

Acknowledgments

The authors express their gratitudes to the referees for their very helpful and detailed comments resulting in improving the paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London, The Macmillan Press, 1976.
[2] M. Kano and H. Matsuda, A neighborhood condition for graphs to have [$a, b]-$ factors, Lecture Notes in Computer Science 4381 (2007), 70-78.
[3] P. Katerinis, Minimum degree of a graph and the existence of k-factors, Proc. Indian Acad. Sci. Math. Sci. 94 (1985), 123-127.
[4] P. Katerinis, N. Tsikopoulos, Minimum degree and F-factors in graphs, New Zealand J. Math. 29 (2000), 33-40.
[5] M. Kouider and P. D. Vestergaard, Connected factors in graphs - a survey, Graphs and Combinatorics 21 (2005), 1-26.
[6] J. Li, A new degree condition for graphs to have [a,b]-factor, Discrete Math. 290 (2005), 99-103.
[7] G. Li, Y. Xu, C. Chen and Z. Liu, On connected ($g, f+1$)-factors in graphs, Combinatorica 25(4) (2005), 393-405.
[8] G. Liu and W. Zang, f-Factors in bipartite $m f$-graphs, Discrete Applied Mathematics 136 (2004), 45-54.
[9] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970), 391-416.
[10] H. Matsuda, Fan-type results for the existence of [a,b]-factors, Discrete Math. 306 (2006), 688-693.
[11] H. Matsuda, On 2-edge-connected $[a, b]$-factors of graphs with Ore-type condition, Discrete Math. 296 (2005), 225-234.
[12] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
[13] M. D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Math. 307 (2007), 791-821.
[14] S. Zhou, Some sufficient conditions for graphs to have (g, f)-factors, Bulletin of the Australian Mathematical Society 75 (2007), 447-452.
[15] S. Zhou and J. Jiang, A new sufficient condition for graphs to have (g, f)-factors, Ars Combinatoria, to appear.
[16] S. Zhou and J. Jiang, Notes on the binding numbers for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 76 (2007), 307-314.

Sizhong Zhou

School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China
Email:zsz_cumt@163.com

Hongxia Liu

School of Mathematics, Shandong University, Jinan, Shandong 250100, P. R. China. and
School of Mathematics and Informational Science, Yantai University, Yantai, Shandong 264005, P. R. China.Email:mqy7174@sina.com

Yang Xu

Department of Mathematics, Qingdao Agricultural University, Qingdao, Shandong 266109, P. R. China.
Email: xuyang825@126.com

[^0]: MSC(2000): Primary: 05C70.
 Keywords: graph, (g, f)-factor, connected (g, f)-factor, minimum degree.
 This research was supported by Jiangsu Provincial Educational Department (07KJD110048) and was sponsored by Qing Lan Project of Jiangsu Province" to the note of this paper. Received: 14 December 2007, Accepted: 12 September 2008
 *Corresponding author
 (c) 2009 Iranian Mathematical Society.

