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A DEGREE CONDITION FOR GRAPHS TO HAVE
CONNECTED (g, f)-FACTORS

S. ZHOU* H. LIU AND Y. XU

ABSTRACT. Let G be a graph of order n, a and b be integers with
1<a<bandb>3, g(z) and f(z) be two integer-valued functions
defined on V(G) such that a < g(z) < f(z) <, for each z € V(G)
and f(V(G))—V(G) even. We prove that G has a connected (g, f)-
factor if the minimum degree §(G) satisfies 6(G) > g:;z’ll and n >
(a+b—1)2+1

a

1. Introduction

We consider only finite undirected graphs without loops and multiple
edges. Let G be a graph. We denote by V(G) and E(G), the set of
vertices and the set of edges, respectively. For a vertex x € V(G),
we write Ng(z) for the set of vertices adjacent to = in G, Ng[x] for
Ng(z) U{z}, and dg(z) = |Ng(x)| for the degree of x in G. The
minimum degree of vertices in G is denoted by §(G). Let S and T be
disjoint subsets of V(G). We denote by eq(S,T), the number of edges
joining S and 7. For a subset S C V(G), we denote by G — S, the
subgraph obtained from G by deleting the vertices in S together with
the edges incident to the vertices in S.
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Let g(x) and f(x) be two nonnegative integer-valued functions defined
on V(G) such that g(z) < f(x), for each z € V(G). A (g, f)-factor of
graph G is a spanning subgraph F' of G such that g(z) < dp(z) < f(x),
for each z € V(G) (where, of course dr denotes the degree in F'). If '
is connected, then we call it a connected (g, f)-factor. For convenience,
we write dg-s(T) = Y. crda—s(x), f(S) = X ,c5 f(x) and f(T) =
> wer f(x). Some terminologies and notations not given here can be
found in [1].

Many authors have investigated factors [2,6,8,10,14,15,16], connected
factors [5,11], and factorizations [13]. Here, we study conditions on
the minimum degree and the order of a graph G which guarantee the
existence of a connected (g, f)-factor in G. We begin with some known
results.

Theorem 1.1. [9] A graph G has a (g, f)-factor if and only if
0G(5,T) = f(5) +dg—s(T) — g(T) — ha(S,T) = 0,

for any disjoint subsets S and T of V(G), where hg(S,T) denotes the
number of components C of G — (SUT) such that g(x) = f(z), for all
x € V(C) and eq(T,V(C)) + f(V(C)) is odd. Furthermore, if g(x) =
f(z), for each x € V(Q), then é¢(S,T) = f(V(G)) (mod 2).

Theorem 1.2. [12] Let G be a graph of order n > 3. If for each pair of
nonadjacent vertices x and y of G,
da(z) + da(y) = n,

then G has a Hamiltonian cycle.

Theorem 1.3. [7] Let G be a graph, g and f be two positive integer-
valued functions defined on V(G) such that g(z) < f(x) < dg(z), for
each x € V(G). If G has both a (g, f)-factor and a Hamiltonian path,
then G contains a connected (g, f + 1)-factor.

Theorem 1.4. [3] Let k > 1 be an integer, G a graph of order n with
kn even and n > 4k — 5. If
8(G) =

n
2 b
then G has a k-factor.
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Theorem 1.5. [4] Let G be a graph of order n, a and b be integers with
1 <a<b. Letf be an integer-valued function defined on V(G) such
that a < f(x) <b, for each x € V(G) and f(V(G)) =0 (mod 2). If

_ (a+bh)(atb-3)

and

then G has an f-factor.

We prove the following theorem for the existence of a connected (g, f)-
factor, which is an extension of Theorem 1.4 and Theorem 1.5.

Theorem 1.6. Let G be a graph of order n, a and b be two integers
with 1 < a <bandb > 3. Let g and f be two integer-valued functions
defined on V(G) such that a < g(z) < f(z) <b, for each x € V(G) and
f(V(@)) = V(G) even. If

(a+b—1)241

)

n >

a
and ( )
b—1)n
5(G) > ————
(@) a+b—1
then G has a connected (g, f)-factor.

2. Proof of Theorem 1.6

We now prove Theorem 1.6. We assume that G satisfies the conditions

of Theorem 1.6. Since §(G) > S:bl_)qf, then we have,

(b—1)n S (a+b—1)n
a+b—1~" a+b—1
for each pair of nonadjacent vertices z and y of G. By Theorem 1.2, G
has a Hamiltonian cycle. Hence, by Theorem 1.3, to prove Theorem 1.6,
we need only to prove that G has a (g, f — 1)-factor.

We begin to prove that G has a (g, f — 1)-factor. Suppose that G
satisfies the conditions of Theorem 1.6, but it has no (g, f — 1)-factor.

da(x) + dg(y) > 2

)
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Then, according to Theorem 1.1, there exist two disjoint subsets S and
T of V(G) such that

(21)  6a(5,T) = f(S) =[S+ dg-s(T) — g(T) — ha(5,T) < 1.
In view of the conditions of Theorem 1.6 and (2.1), we obtain,

(2.2) alS|+dg-s(T) = (b= DIT| —w < 0a(5,T) < -1,

where w denotes the number of components of G — (SUT). Clearly,
(2.3) w<n-—|S|—|T|.

Case 1. w=0.

In this case, we have n = |S|+ |T'|. Obviously, T' # @. Otherwise, by
(2.2) we get a|S| < —1, which is a contradiction.
In view of (2.2), we obtain,

1> a|$|+dg—s(T)—(b-1)|T| = a(n—|T|)—(b-1)|T] = an—(a+b-1)|T],

and so
an +1

T > o .
| ’_a—f-b—l

For each z € T', we get,
(b—1)n

deg— S| >6G) > ————.

o-s(@) + 5] 2 () = ="
Thus, we obtain,

(b—1)n (b—1)n
24) dg_s(T) > —— S
(24) GS()_a+b—1 a+b—1
According to (2.2), (2.4) and n = |S| + |T|, we get,

T = [SIIT] = T = (n = [TDIT.

-1 = 0a(5,T) =2 alS|+ dg—s(T) — (b—1)[T]
(b—1)n
a+b—1

an
= |T|2—(m+a+b—1)|T|—l—cm

V

a(n —|T1) + 7] = (n = [TDIT| = (b - DT

Let f(IT]) = |T)? = (%5 +a+b—1)|T| + an. Since |T| > 225 and

a+b—1 a+b—1
— 2 . . . .
n > %, then f(|T|) attains its minimum value at |T'| = a“flfl.
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Thus, we have,

an+1
-1 > TH > f(—MmMm——
> F(T) > £
an+1 an an + 1
= (22— b—1)(———
Gt G Tett - UG ton
an+ 1 an+1 an
= — b—1
(a—i—b—l)(a—i—b—l (a+b—1+a+ )) +an
an +1 1
= — b—-1
(a+b_1)(a+b_1 (a+ )) +an
= LH—(@n%—l)%-an
- (a+b—1)?
. _an+l (a+b—1)2+2_1
~ (a+b—1)? ~ (a+b-1)2
2
= agooip Y

a contradiction.

Case 2. w>1.
Let m denote the minimum order of components of G—(SUT'). Then,

. >~ w )
and
(2.6) 0(G)<m—1+|S|+|T].

Subcase 2.1. T = .
Claim 1. S # @.

Proof. Assume that S = @. Since G has a Hamiltonian cycle and
0¢(S,T) < —1, then hg(S,T) = 1. Obviously, f(z) —1 = g(z), for each
x € V(G) by the definition of hg(S,T). Hence, d¢(S,T) = —1. On the
other hand, since f(V(G)) — V(G) is even, then in view of Theorem 1.1,
0¢(S,T) is even, which is a contradiction.

According to (2.2) and (2.3), we obtain,

(2.7) alS|+1<w<n—|S|.
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Hence, we have by (2.5), (2.6), (2.7) and §(G) > &=L that

a+b—1
(b—1)n
RSOV <m—
i1 = (G)<m—1+15|
n— |5 n— |5
< —14+|5 < —1+15
- w +| ’_a|S|+1 + 151
n—1 a(|S|-1)(n—1-alS]|—|5])
a+1 (a+1)(alS|+1)

Since n — 1 — alS| — |S| > 0 by (2.7), and |S| — 1 > 0 by Claim 1, then
it follows:

n _(b-1n n-1

— < <

2 " a+b—1"a+1
This is a contradiction, since a > 1.
Subcase 2.2. T # o.
Let h = min{dg_s(z)|xz € T'}. Then, obviously,

(2.8) 5(G) <h+]S|.

Subcase 2.2.1. h=0.
According to (2.2) and (2.3), we have,
-1 > 6¢(5,T) > alS|+dg-s(T) = (b= DT —w

alS|—(b—-1)|T| —w
alS| = (b =D|T| = (n —|S] = [T])

= (a+1)|S]—(b—2)|T| —n.
Combining this with (2.3) and w > 1, we get,

-1 > (a+D|S|=b-2)|T|—n
> (a+1)S|-(b—-2)(n—1—15|) —n

= (a+b-1|S|—-(b—-2)(n—1) —n.
Combining this with (2.8), h = 0 and §(G) > (b=1n " we obtain,

>
>

a+b—17
1> (@tb-1)[S|—(b-2(n—-1)—n
> <a+b—1)m_(b_2)(n—1)—n
= b-1n—-0b-2)(n—-1)—n

b—2>0,

a contradiction.
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Subcase 2.2.2. <h<b-

In view of (2.2), (2. ) (2.8) and the fact that b —1 — h > 1, we have,

56(S,T) > alS|+da_s(T) — (b—1)|T| - w
= alS[+ AT = (b-D|T| = (b—1=h)(n—|S|—[T])
= (a+b—1-h)|S|—(b—1—h)n
> (a+b—1—=h)(6(G)—h)—(b—1—h)n
> (a+b—1 mU bfﬁ h) —(b—1—h)n.
Let g(h):(a+b—1—h)(gb+b) —h) — (b—1— h)n. Then, according
(a+b—1)2+1
ton> ———and 1 <h<b-2,
, B _(b—l)n _ _
g(h) = 7a—|—b—1+h (a+b—1)+h+n
an
= m‘l‘Qh—(a—Fb—l)
(a+b—-1)2+1
2 — —1
> P + (a+b—-1)

> a+b—-142—-(a+b—-1)=2>0.
Hence, g(h) attains its minimum value at h = 1. Thus, we get,

0c(5,T) = g(h) = g(1)

B (b—1)n
= (a+b—2)(m71)7(b72)n
- b-1)(a+b—-2)n—(b—2)(a+b—1)n
- a+b—1 —(a+b-2)
= Sip_1 @Fi-2
atb—1)2
> ( Zibl_)l+1—(a+b—2)
a+b
- a+b—1>0'

This contradicts (2.1).

Subcase 2.2.3. h=0b-1.
By (2.2), we get,

(2.9) w>alS|+ 1.
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According to (2.5) and (2.9), we obtain,
n—|S|-|T| _n—|S[-1
<

(2.10) 1<m<

w ~ alS|+1 7
and so,
n—2
2.11 S| < .
(211) s1< 2
By §(G) > s:bli)? and (2.8), we have,
(b—1)n
- < < =b—-1
a+b_1_5(G)_h+|S| b—1+|5],
and so,
(b—1)n
2.12 > — — 1.
(2.12) Sz o= b

Claim 2. %07 —pyp1> 20 o

Proof. By n > % and b > 3, we have,

(b—1)n 2n 5 (b—1)n 2n

—bh+1— _
a+b—1 + (a+2 ) a+b—-—1 a-+2

Zhou, Liu and Xu

(b—3)

(a+2)(b—1)n—2(a+b—1)n

(a+2)(a+b—-1)

—(b=3)
(b —3)an
(a+2)(a+b—-1)

(b—3)(a+b—1)2+1]

—(b-3)

2 T+ dato-n 7Y
> Gt -9
_ (b_?’L(T;b_l) —(b-3)>0.
From Claim 2 and (2.12), we get,
(2.13) S| > 2 o

T a+2
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In view of (2.11) and (2.13), we have,
n—2 2n
>
a+1 " a+2

_27

which implies,

(2.14) n < 2(a+2).

On the other hand, we obtain by b > 3 and b — 1 > a so that

(a+b—1)241 - (a+b—1)2
a a

which contradicts (2.14).

Subcase 2.2.4. h >b.
According to (2.2), we get,

n >

> 2(a+2),

(2.15) alS|+(h—b+1)|T| —w < —1,
and so,
(2.16) w>alS|+|T|+1>|S|+|T|+1.

Suppose that m > 2. Then, in view of (2.5), (2.6), (2.16) and T # @,
we have,

IN

4(G) m—1+[S|+|T|<m+w-2

IN

1 1
m+w—2+§(m—2)(w—2) = 5w
1 n
Sn—|S|—|T]) < 2.
18| |7 < !

This contradicts 6(G) > fll:blzrll > 5. Thus, we may assume that m = 1.
Then, from (2.3) and (2.16), we obtain,

S|+ T|+1<w<n—|[S|-|T|

IN

Thus, we have,

-1
S]+ 7] < “—.
From (2.6), we get,
n _ (b—1)n n—1 n
— < ———<HA) <5+ T < —— < =
5 S aypoq =@ =ISI+ITI < 5

which is a contradiction, completing the proof of Theorem 1.6.
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Remark 2.1. In the proof of Theorem 1.6, it is required that §(G) >
(b—1)n
a+b—1

. We do not know whether the condition can be improved.
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