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A DEGREE CONDITION FOR GRAPHS TO HAVE
CONNECTED (g, f)-FACTORS

S. ZHOU*, H. LIU AND Y. XU

Abstract. Let G be a graph of order n, a and b be integers with
1 ≤ a < b and b ≥ 3, g(x) and f(x) be two integer-valued functions
defined on V (G) such that a ≤ g(x) < f(x) ≤ b, for each x ∈ V (G)
and f(V (G))−V (G) even. We prove that G has a connected (g, f)-

factor if the minimum degree δ(G) satisfies δ(G) ≥ (b−1)n
a+b−1

and n ≥
(a+b−1)2+1

a
.

1. Introduction

We consider only finite undirected graphs without loops and multiple
edges. Let G be a graph. We denote by V (G) and E(G), the set of
vertices and the set of edges, respectively. For a vertex x ∈ V (G),
we write NG(x) for the set of vertices adjacent to x in G, NG[x] for
NG(x) ∪ {x}, and dG(x) = |NG(x)| for the degree of x in G. The
minimum degree of vertices in G is denoted by δ(G). Let S and T be
disjoint subsets of V (G). We denote by eG(S, T ), the number of edges
joining S and T . For a subset S ⊆ V (G), we denote by G − S, the
subgraph obtained from G by deleting the vertices in S together with
the edges incident to the vertices in S.
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Let g(x) and f(x) be two nonnegative integer-valued functions defined
on V (G) such that g(x) ≤ f(x), for each x ∈ V (G). A (g, f)-factor of
graph G is a spanning subgraph F of G such that g(x) ≤ dF (x) ≤ f(x),
for each x ∈ V (G) (where, of course dF denotes the degree in F ). If F
is connected, then we call it a connected (g, f)-factor. For convenience,
we write dG−S(T ) =

∑
x∈T dG−S(x), f(S) =

∑
x∈S f(x) and f(T ) =∑

x∈T f(x). Some terminologies and notations not given here can be
found in [1].

Many authors have investigated factors [2,6,8,10,14,15,16], connected
factors [5,11], and factorizations [13]. Here, we study conditions on
the minimum degree and the order of a graph G which guarantee the
existence of a connected (g, f)-factor in G. We begin with some known
results.

Theorem 1.1. [9] A graph G has a (g, f)-factor if and only if

δG(S, T ) = f(S) + dG−S(T )− g(T )− hG(S, T ) ≥ 0,

for any disjoint subsets S and T of V (G), where hG(S, T ) denotes the
number of components C of G − (S ∪ T ) such that g(x) = f(x), for all
x ∈ V (C) and eG(T, V (C)) + f(V (C)) is odd. Furthermore, if g(x) =
f(x), for each x ∈ V (G), then δG(S, T ) = f(V (G)) (mod 2).

Theorem 1.2. [12] Let G be a graph of order n ≥ 3. If for each pair of
nonadjacent vertices x and y of G,

dG(x) + dG(y) ≥ n,

then G has a Hamiltonian cycle.

Theorem 1.3. [7] Let G be a graph, g and f be two positive integer-
valued functions defined on V (G) such that g(x) ≤ f(x) ≤ dG(x), for
each x ∈ V (G). If G has both a (g, f)-factor and a Hamiltonian path,
then G contains a connected (g, f + 1)-factor.

Theorem 1.4. [3] Let k ≥ 1 be an integer, G a graph of order n with
kn even and n ≥ 4k − 5. If

δ(G) ≥ n

2
,

then G has a k-factor.
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Theorem 1.5. [4] Let G be a graph of order n, a and b be integers with
1 ≤ a ≤ b. Let f be an integer-valued function defined on V (G) such
that a ≤ f(x) ≤ b, for each x ∈ V (G) and f(V (G)) ≡ 0 (mod 2). If

n >
(a + b)(a + b− 3)

a
,

and

δ(G) ≥ bn

a + b
,

then G has an f-factor.

We prove the following theorem for the existence of a connected (g, f)-
factor, which is an extension of Theorem 1.4 and Theorem 1.5.

Theorem 1.6. Let G be a graph of order n, a and b be two integers
with 1 ≤ a < b and b ≥ 3. Let g and f be two integer-valued functions
defined on V (G) such that a ≤ g(x) < f(x) ≤ b, for each x ∈ V (G) and
f(V (G))− V (G) even. If

n ≥ (a + b− 1)2 + 1
a

,

and

δ(G) ≥ (b− 1)n
a + b− 1

,

then G has a connected (g, f)-factor.

2. Proof of Theorem 1.6

We now prove Theorem 1.6. We assume that G satisfies the conditions
of Theorem 1.6. Since δ(G) ≥ (b−1)n

a+b−1 , then we have,

dG(x) + dG(y) ≥ 2
(b− 1)n
a + b− 1

≥ (a + b− 1)n
a + b− 1

= n,

for each pair of nonadjacent vertices x and y of G. By Theorem 1.2, G
has a Hamiltonian cycle. Hence, by Theorem 1.3, to prove Theorem 1.6,
we need only to prove that G has a (g, f − 1)-factor.

We begin to prove that G has a (g, f − 1)-factor. Suppose that G
satisfies the conditions of Theorem 1.6, but it has no (g, f − 1)-factor.
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Then, according to Theorem 1.1, there exist two disjoint subsets S and
T of V (G) such that

(2.1) δG(S, T ) = f(S)− |S|+ dG−S(T )− g(T )− hG(S, T ) ≤ −1.

In view of the conditions of Theorem 1.6 and (2.1), we obtain,

(2.2) a|S|+ dG−S(T )− (b− 1)|T | − ω ≤ δG(S, T ) ≤ −1,

where ω denotes the number of components of G− (S ∪ T ). Clearly,

(2.3) ω ≤ n− |S| − |T |.

Case 1. ω = 0.

In this case, we have n = |S|+ |T |. Obviously, T 6= ∅. Otherwise, by
(2.2) we get a|S| ≤ −1, which is a contradiction.

In view of (2.2), we obtain,

−1 ≥ a|S|+dG−S(T )−(b−1)|T | ≥ a(n−|T |)−(b−1)|T | = an−(a+b−1)|T |,

and so

|T | ≥ an + 1
a + b− 1

.

For each x ∈ T , we get,

dG−S(x) + |S| ≥ δ(G) ≥ (b− 1)n
a + b− 1

.

Thus, we obtain,

(2.4) dG−S(T ) ≥ (b− 1)n
a + b− 1

|T | − |S||T | = (b− 1)n
a + b− 1

|T | − (n− |T |)|T |.

According to (2.2), (2.4) and n = |S|+ |T |, we get,

−1 ≥ δG(S, T ) ≥ a|S|+ dG−S(T )− (b− 1)|T |

≥ a(n− |T |) +
(b− 1)n
a + b− 1

|T | − (n− |T |)|T | − (b− 1)|T |

= |T |2 − (
an

a + b− 1
+ a + b− 1)|T |+ an.

Let f(|T |) = |T |2 − ( an
a+b−1 + a + b− 1)|T |+ an. Since |T | ≥ an+1

a+b−1 and

n ≥ (a+b−1)2+1
a , then f(|T |) attains its minimum value at |T | = an+1

a+b−1 .
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Thus, we have,

−1 ≥ f(|T |) ≥ f(
an + 1

a + b− 1
)

= (
an + 1

a + b− 1
)2 − (

an

a + b− 1
+ a + b− 1)(

an + 1
a + b− 1

) + an

= (
an + 1

a + b− 1
)(

an + 1
a + b− 1

− (
an

a + b− 1
+ a + b− 1)) + an

= (
an + 1

a + b− 1
)(

1
a + b− 1

− (a + b− 1)) + an

=
an + 1

(a + b− 1)2
− (an + 1) + an

=
an + 1

(a + b− 1)2
− 1 ≥ (a + b− 1)2 + 2

(a + b− 1)2
− 1

=
2

(a + b− 1)2
> 0,

a contradiction.

Case 2. ω ≥ 1.
Let m denote the minimum order of components of G−(S∪T ). Then,

(2.5) m ≤ n− |S| − |T |
ω

,

and

(2.6) δ(G) ≤ m− 1 + |S|+ |T |.

Subcase 2.1. T = ∅.

Claim 1. S 6= ∅.

Proof. Assume that S = ∅. Since G has a Hamiltonian cycle and
δG(S, T ) ≤ −1, then hG(S, T ) = 1. Obviously, f(x)− 1 = g(x), for each
x ∈ V (G) by the definition of hG(S, T ). Hence, δG(S, T ) = −1. On the
other hand, since f(V (G))−V (G) is even, then in view of Theorem 1.1,
δG(S, T ) is even, which is a contradiction.

According to (2.2) and (2.3), we obtain,

(2.7) a|S|+ 1 ≤ ω ≤ n− |S|.
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Hence, we have by (2.5), (2.6), (2.7) and δ(G) ≥ (b−1)n
a+b−1 that

(b− 1)n
a + b− 1

≤ δ(G) ≤ m− 1 + |S|

≤ n− |S|
ω

− 1 + |S| ≤ n− |S|
a|S|+ 1

− 1 + |S|

=
n− 1
a + 1

− a(|S| − 1)(n− 1− a|S| − |S|)
(a + 1)(a|S|+ 1)

.

Since n− 1− a|S| − |S| ≥ 0 by (2.7), and |S| − 1 ≥ 0 by Claim 1, then
it follows:

n

2
≤ (b− 1)n

a + b− 1
≤ n− 1

a + 1
.

This is a contradiction, since a ≥ 1.

Subcase 2.2. T 6= ∅.
Let h = min{dG−S(x)|x ∈ T}. Then, obviously,

(2.8) δ(G) ≤ h + |S|.

Subcase 2.2.1. h = 0.
According to (2.2) and (2.3), we have,

−1 ≥ δG(S, T ) ≥ a|S|+ dG−S(T )− (b− 1)|T | − ω

≥ a|S| − (b− 1)|T | − ω

≥ a|S| − (b− 1)|T | − (n− |S| − |T |)
= (a + 1)|S| − (b− 2)|T | − n.

Combining this with (2.3) and ω ≥ 1, we get,

−1 ≥ (a + 1)|S| − (b− 2)|T | − n

≥ (a + 1)|S| − (b− 2)(n− 1− |S|)− n

= (a + b− 1)|S| − (b− 2)(n− 1)− n.

Combining this with (2.8), h = 0 and δ(G) ≥ (b−1)n
a+b−1 , we obtain,

−1 ≥ (a + b− 1)|S| − (b− 2)(n− 1)− n

≥ (a + b− 1)
(b− 1)n
a + b− 1

− (b− 2)(n− 1)− n

= (b− 1)n− (b− 2)(n− 1)− n

= b− 2 > 0,

a contradiction.
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Subcase 2.2.2. 1 ≤ h ≤ b− 2.
In view of (2.2), (2.3), (2.8) and the fact that b− 1− h ≥ 1, we have,

δG(S, T ) ≥ a|S|+ dG−S(T )− (b− 1)|T | − ω

≥ a|S|+ h|T | − (b− 1)|T | − (b− 1− h)(n− |S| − |T |)
= (a + b− 1− h)|S| − (b− 1− h)n
≥ (a + b− 1− h)(δ(G)− h)− (b− 1− h)n

≥ (a + b− 1− h)(
(b− 1)n
a + b− 1

− h)− (b− 1− h)n.

Let g(h) = (a + b− 1− h)( (b−1)n
a+b−1 − h)− (b− 1− h)n. Then, according

to n ≥ (a+b−1)2+1
a and 1 ≤ h ≤ b− 2,

g′(h) = − (b− 1)n
a + b− 1

+ h− (a + b− 1) + h + n

=
an

a + b− 1
+ 2h− (a + b− 1)

≥ (a + b− 1)2 + 1
a + b− 1

+ 2− (a + b− 1)

> a + b− 1 + 2− (a + b− 1) = 2 > 0.

Hence, g(h) attains its minimum value at h = 1. Thus, we get,

δG(S, T ) ≥ g(h) ≥ g(1)

= (a + b− 2)(
(b− 1)n
a + b− 1

− 1)− (b− 2)n

=
(b− 1)(a + b− 2)n− (b− 2)(a + b− 1)n

a + b− 1
− (a + b− 2)

=
an

a + b− 1
− (a + b− 2)

≥ (a + b− 1)2 + 1
a + b− 1

− (a + b− 2)

=
a + b

a + b− 1
> 0.

This contradicts (2.1).

Subcase 2.2.3. h = b− 1.
By (2.2), we get,

(2.9) ω ≥ a|S|+ 1.
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According to (2.5) and (2.9), we obtain,

(2.10) 1 ≤ m ≤ n− |S| − |T |
ω

≤ n− |S| − 1
a|S|+ 1

,

and so,

(2.11) |S| ≤ n− 2
a + 1

.

By δ(G) ≥ (b−1)n
a+b−1 and (2.8), we have,

(b− 1)n
a + b− 1

≤ δ(G) ≤ h + |S| = b− 1 + |S|,

and so,

(2.12) |S| ≥ (b− 1)n
a + b− 1

− b + 1.

Claim 2. (b−1)n
a+b−1 − b + 1 ≥ 2n

a+2 − 2.

Proof. By n ≥ (a+b−1)2+1
a and b ≥ 3, we have,

(b− 1)n
a + b− 1

− b + 1− (
2n

a + 2
− 2) =

(b− 1)n
a + b− 1

− 2n

a + 2
− (b− 3)

=
(a + 2)(b− 1)n− 2(a + b− 1)n

(a + 2)(a + b− 1)
−(b− 3)

=
(b− 3)an

(a + 2)(a + b− 1)
− (b− 3)

≥ (b− 3)[(a + b− 1)2 + 1]
(a + 2)(a + b− 1)

− (b− 3)

≥ (b− 3)(a + b− 1)2

(a + 2)(a + b− 1)
− (b− 3)

=
(b− 3)(a + b− 1)

a + 2
− (b− 3) ≥ 0.

From Claim 2 and (2.12), we get,

(2.13) |S| ≥ 2n

a + 2
− 2.



connected (g, f)-factors 207

In view of (2.11) and (2.13), we have,

n− 2
a + 1

≥ 2n

a + 2
− 2,

which implies,

(2.14) n ≤ 2(a + 2).

On the other hand, we obtain by b ≥ 3 and b− 1 ≥ a so that

n ≥ (a + b− 1)2 + 1
a

>
(a + b− 1)2

a
≥ 2(a + 2),

which contradicts (2.14).

Subcase 2.2.4. h ≥ b.
According to (2.2), we get,

(2.15) a|S|+ (h− b + 1)|T | − ω ≤ −1,

and so,

(2.16) ω ≥ a|S|+ |T |+ 1 ≥ |S|+ |T |+ 1.

Suppose that m ≥ 2. Then, in view of (2.5), (2.6), (2.16) and T 6= ∅,
we have,

δ(G) ≤ m− 1 + |S|+ |T | ≤ m + ω − 2

≤ m + ω − 2 +
1
2
(m− 2)(ω − 2) =

1
2
mω

≤ 1
2
(n− |S| − |T |) <

n

2
.

This contradicts δ(G) ≥ (b−1)n
a+b−1 ≥

n
2 . Thus, we may assume that m = 1.

Then, from (2.3) and (2.16), we obtain,

|S|+ |T |+ 1 ≤ ω ≤ n− |S| − |T |.

Thus, we have,

|S|+ |T | ≤ n− 1
2

.

From (2.6), we get,

n

2
≤ (b− 1)n

a + b− 1
≤ δ(G) ≤ |S|+ |T | ≤ n− 1

2
<

n

2
,

which is a contradiction, completing the proof of Theorem 1.6.
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Remark 2.1. In the proof of Theorem 1.6, it is required that δ(G) ≥
(b−1)n
a+b−1 . We do not know whether the condition can be improved.
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