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Abstract. Let p be a prime with p ≥ 7 and q = 2(p− 1). In this
paper we prove the existence of a nontrivial product of filtration
s + 4 in the stable homotopy groups of spheres. This nontrivial
product is shown to be represented up to a nonzero scalar by the

product element γ̃sbn−1g0 ∈ Ext
s+4,(pn+sp2+sp+s)q+s−3
A (Z/p,Z/p)

in the Adams spectral sequence where n ≥ 2 and 3 ≤ s ≤ p− 1.
Keywords: Stable homotopy groups of sphere, Adams spectral
sequence, May spectral sequence.
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1. Introduction

Let p be an odd prime. Let A be the mod p Steenrod algebra and let
S be the sphere spectrum localized at p. Throughout the paper we fix
q = 2(p− 1). To determine the stable homotopy groups of sphere π∗S is
one of the central problems in homotopy theory. One of the main tools
to approach it is the classical Adams spectral sequence (ASS) whose

E2-term is given by Es,t
2 = Exts,tA (Z/p,Z/p) which is the cohomology of

A. The Adams differential is given by

dr : E
s,t
r −→ Es+r,t+r−1

r .

From [6], we know that Ext1,∗A (Z/p,Z/p) has Z/p-basis consisting of a0 ∈
Ext1,1A (Z/p,Z/p), hi ∈ Ext1,p

iq
A (Z/p,Z/p) for all i ≥ 0 and we also know

that Ext2,∗A (Z/p,Z/p) has Z/p-basis consisting of α̃2, a
2
0, a0hi(i > 0),

gi(i ≥ 0), ki(i ≥ 0), bi(i ≥ 0), and hihj(j ≥ i+ 2, i ≥ 0) whose internal
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degrees are 2q + 1, 2, piq + 1, (pi+1 + 2pi)q, (2pi+1 + pi)q, pi+1q and
(pi + pj)q, respectively.

If a family of generators xi ∈ Es,∗
2 converges nontrivially in the ASS,

then we obtain a family of homotopy elements fi in π∗S and we say that
fi has filtration s and is represented by xi ∈ Es,∗

2 in the ASS. So far,
very few families of homotopy elements in π∗S have been detected. The
following are some known results. In [7] M. Mahowald detected an or-

der 2 element ηi ∈2 π
s
∗, which is represented by h1hi ∈ Ext1,∗A (Z/2,Z/2).

By analogous argument at odd primes, R. Cohen [1] detected a fam-
ily of homotopy elements ζn ∈ πpnq+q−3S which has filtration 3 and

is represented by h0bn−1 ∈ Ext3,p
nq+q

A (Z/p,Z/p) in the ASS. In [9] D.

Ravenel proved that bn ∈ Ext2,p
nq

A (Z/p,Z/p) does not converge in the
ASS, which is known to be the odd prime Kervaire invariant element.
Recently, Hill-Hopkins-Ravenel [2] proved that the mod 2 Kervaire in-
variant one elements θj ∈ π2j+2−2S exist only for 0 ≤ j ≤ 6. This
resolves a longstanding problem in algebraic topology.

Among the nontrivial elements of π∗S the periodic elements are es-
pecially important. The existence of the periodic elements is related to
the existence of Toda-Smith spectra. Let BP be the Brown-Peterson
spectrum localized p. It is a p-local ring spectrum with the coefficient
ring

BP∗ = BP∗S = Z(p)[v1, v2, · · · ]
where vi is the i-th Hazewinkel generator with degree 2(pi − 1). If X is
a spectrum, then BP∗X is a comodule over the Hopf algebroid BP∗BP
(refer to [10]). Toda [11] considered the existence of the finite spectra
V (n) with

BP∗V (n) ∼= BP∗/In+1 (as BP∗-module, hence as BP∗BP -comodule)

where In+1 = (p, v1, · · · , vn), the ideal generated by p, v1, · · · , vn. In [11],
Toda showed that V (n) exists for p > 2n with n = 0, 1, 2, 3 and there
exists Greek letter map

vn : Σ
2(pn−1)V (n− 1) −→ V (n− 1)

with vn = p, α, β, γ for n = 0, 1, 2, 3, respectively. Here we write V (−1)
for S. Moreover, the cofibre of vn is V (n) given by the cofibration

Σ2(pn−1)V (n− 1)
vn−→ V (n− 1)

in−→ V (n)
jn−→ Σ2pn−1V (n− 1).

If we write

αs = j0(v
s
1)i0, βs = j0j1(v

s
2)i1i0 and γs = j0j1j2(v

s
3)i2i1i0,
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then αs, βs, γs are the well known first, second and third periodic ele-
ments in π∗S with filtration s (refer to [8]). It was shown in [12] that
when n < p and s ̸≡ 0, 1, · · · , n − 1 mod p, there is a non-zero co-

homology class α̃
(n)
s ∈ Exts,∗A (Z/p,Z/p) which is called the n-th Greek

letter element in Ext. When n = 1, 2, 3, the elements α̃
(n)
s are written

as α̃s, β̃s and γ̃s which represent the homotopy elements αs, βs and γs
respectively.

Given two elements x̃ and ỹ in Ext∗,∗A (Z/p,Z/p), suppose that x̃ and
ỹ converge nontrivially to elements x and y in π∗S, respectively. We are
wondering whether or not the product x̃ · ỹ in the ASS can also converge
nontrivially to the product x ·y in π∗S. In particularly, we are interested

in considering the convergence of the product of β̃s or γ̃s with some other
elements in Ext∗,∗A (Z/p,Z/p). For example, it was shown in [4] that the

product γ̃sh0bn−1 ∈ Exts+3,∗
A (Z/p,Z/p) is nontrivial in the ASS when

p ≥ 7, n ≥ 2 and 3 ≤ s ≤ p − 2. It converges to a nontrivial element
γsζn ∈ π∗S. By a similar method, Liu-Ma [5] verified the convergence

of the product hnhmβ̃s in the ASS when p ≥ 5, n ≥ m + 2 > 5 and
2 ≤ s ≤ p − 1. In this paper, we will improve their method and use it
to show that γ̃sbn−1g0 in the ASS converges to a nontrivial element of
π∗S. The following statements are our main results.

Theorem 1.1. Let p ≥ 7 and n ≥ 2. If 3 ≤ s ≤ p− 1 then the product

γ̃sbn−1g0 ∈ Ext
s+4,(s+sp+sp2+pn)q+s−3
A (Z/p,Z/p)

is nontrivial in the Adams spectral sequence and converges to a homotopy
nontrivial element ξn ∈ π∗S.

This paper is organized as follows. In Section 2, we will introduce a
method to compute the generators of the E1-term of the May spectral
sequence (MSS). As an application of this method, in Section 3 we do
an explicit computation for the sake of proof of Theorem 1.1. Then in
Section 4, we give the proof of Theorem 1.1.

2. Preliminary knowledge on the May spectral sequence

In this section we will recall some elementary knowledge on the May
spectral sequence (MSS). By reference [10], there is a 3-graded May

spectral sequence {Es,t,∗
r , dr : E

s,t,M
r −→ Es+1,t,M−r

r } which converges
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to Exts,tA (Z/p,Z/p). The E1-term of MSS is given by

E∗,∗,∗
1 = E[hm,i|m > 0, i ≥ 0]⊗ P [bm,i|m > 0, i ≥ 0]⊗ P [an|n ≥ 0]

where E[ ] denotes the exterior algebra and P [ ] denotes the polynomial

algebra. It is known that h1,i ∈ E1,piq,∗
1 converges nontrivially to hi ∈

Ext1,p
iq

A (Z/p,Z/p). Thus dr(h1,i) = 0 for any r ≥ 1. We list the degrees
of the E1-term generators as follows:

hm,i ∈ E
1,2(pm−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm−1)pi+1,(2m−1)p
1 , an ∈ E1,2pn−1,2n+1

1 .

For the r-th May differential dr : E
s,t,M
r −→ Es+1,t,M−r

r with r ≥ 1, if

x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r then

dr(xy) = dr(x)y + (−1)s+txdr(y).

The MSS satisfies the graded commutativity xy = (−1)ss
′+tt′yx for

{x, y} ⊂ {hm,i, bm,i, an}. On each generator the first May differential

d1 : E
s,t,M
1 −→ Es+1,t,M−1

1

has an explicit description as

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0.

Given an element x ∈ Es,t,M
1 , we define dim(x) = s, deg(x) = t and

M(x) = M . Then we have

dim(hi,j) =dim(ai) = 1, dim(bi,j) = 2,
M(hi,j) = M(ai−1) = 2i− 1, M(bi,j) = (2i− 1)p,
deg(hi,j) = 2(pi − 1)pj = (pj + · · ·+ pi+j−1)q,
deg(bi,j) = 2(pi − 1)pj+1 = (pj+1 + · · ·+ pi+j)q,
deg(ai) = 2pi − 1 = (1 + · · ·+ pi−1)q + 1,
deg(a0) = 1

where i ≥ 1 and j ≥ 0.
A method of computing E1-term of the MSS was introduced in [5],

but the computation process in [5] is very obscure. Hence, we are about
to introduce a new computation method and then in Section 3 we show
how to use it in a more effective way for our target.

We denote ai, hi,j and bi,j by x, y and z, respectively. By the graded
commutativity of E∗,∗,∗

1 , we can write a generator as

h = (x1 · · ·xu)(y1 · · · yv)(z1 · · · zl) ∈ Es,t+b,∗
1
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where t = (c̄0 + c̄1p + · · · + c̄np
n)q with 0 ≤ c̄i < p (0 ≤ i < n),

c̄n > 0, s < b + q with 0 < b < q. We claim that u = b. Otherwise, by
the characteristics of deg(ai), deg(hi,j), deg(bi,j) and t, there exists some
w > 0 such that u = b+wq. It follows that dim(h) ≥ b+wq > s =dim(h)
which is a contradiction. Thus

h = (x1 · · ·xb)(y1 · · · yv)(z1 · · · zl) ∈ Eb+v+2l,t+b,∗
1 .

Note that the degrees of xi, yi and zi can be uniquely expressed as

deg(xi) = (xi,0 + xi,1p+ · · ·+ xi,np
n)q + 1,

deg(yi) = (yi,0 + yi,1p+ · · ·+ yi,np
n)q,

deg(zi) = (0 + zi,1p+ · · ·+ zi,np
n)q

where the sequence (xi,0, xi,1, · · · , xi,n) is of the form (1, · · · , 1, 0, · · · , 0),
while (yi,0, yi,1, · · · , yi,n) and (0, zi,1, · · · , zi,n) are both of the form

(0, · · · , 0, 1, · · · , 1, 0, · · · , 0).

According to the graded commutativity of E∗,∗,∗
1 , the generator

h = (x1 · · ·xb)(y1 · · · yv)(z1 · · · zl) ∈ Eb+v+2l,t+b,∗
1

can be arranged in the following way:

(a) if i > j, we put ai on the left side of aj ;
(b) if j < k, we put hi,j on the left side of hw,k;
(c) if i > w, we put hi,j on the left side of hw,j ;
(d) apply the same rules (b) and (c) to bi,j .

Hence the above xi,j , yi,j and zi,j satisfy the following conditions (2.1):

(i) x1,j ≥ x2,j ≥ · · · ≥ xb,j , xi,0 ≥ xi,1 ≥ · · · ≥ xi,n for i ≤ b and
j ≤ n;

(ii) if yi,j−1 = 0 and yi,j = 1, then for all k < j there is yi,k = 0;
(iii) if yi,j = 1 and yi,j+1 = 0, then for all k > j there is yi,k = 0;
(iv) y1,0 ≥ y2,0 ≥ · · · ≥ yv,0;
(v) if yi,0 = yi+1,0, yi,1 = yi+1,1,· · · ,yi,j = yi+1,j , then yi,j+1 ≥

yi+1,j+1;
(vi) apply the same rules (ii)∼(iv) to zi,j .

According to the p-adic expression of the coefficient of q in second de-
gree deg(xi), deg(yi) and deg(zi) as above, by the properties of p-adic
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numbers we obtain the following group of equations (2.2)



x1,0 + · · ·+ xb,0 + y1,0 + · · ·+ yv,0 = c̄0 + k1p = c0
x1,1 + · · ·+ xb,1 + y1,1 + · · ·+ yv,1 + z1,1 + · · ·+ zl,1

= c̄1 − k1 + k2p = c1
· · · · · · · · ·
x1,n−1 + · · ·+ xb,n−1 + y1,n−1 + · · ·+ yv,n−1 + z1,n−1 + · · ·+ zl,n−1

= c̄n−1 − kn−1 + knp = cn−1

x1,n + · · ·+ xb,n + y1,n + · · ·+ yv,n + z1,n + · · ·+ zl,n = c̄n − kn = cn.

From the above group of equations, we obtain two integer sequences

K = (k1, · · · , kn) and S = (c0, · · · , cn)

which are determined by (k1, · · · , kn) and (c̄0, · · · , c̄n), respectively. We
say that the group of equations (2.2) has a solution if it has a solution
satisfying the conditions (2.1).

Intuitively the above group of equations has the form of matrix as

A B C
x1,0 · · · xb,0 y1,0 · · · ym,0 0 · · · 0
x1,1 · · · xb,1 y1,1 · · · ym,1 z1,1 · · · zl,1
...

. . .
...

...
. . .

...
...

. . .
...

x1,n · · · xb,n y1,n · · · ym,n z1,n · · · zl,n


c0
c1
...
cn.

(2.1)

According to the conditions (2.1), the section A in the matrix is the
form of trapezoid as


1 · · · 1 · · · · · · 1 · · · 1
1 · · · 1 · · · · · · 1
...

...
...

...
1 · · · 1
1

(2.2)
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where the vacant place denotes zero. The section B has the form as



1 · · · 1 · · · 1 · · · 1

1 · · · 1 · · · 1
. . .

...
...

...
...

. . .

1 · · · 1 1 · · · 1 · · · 1 · · · 1
1 1 · · · 1 · · · 1

...
...

...
1 · · · 1
1


.

(2.3)

The section C has the similar form as B except that the first horizontal
line are all zero.

Each column in section A determines some xi. Each column in section
B or C determines some yi or zi. Recall that each column in the matrix
does not admit the form (· · · , 1, 0, · · · , 0, 1, · · · )T . In summary, for the

Es,t+b,∗
1 -term of MSS where t = (c̄0 + c̄1p+ · · ·+ c̄np

n)q with 0 ≤ c̄i < p

(c̄n > 0), s < b + q with 0 ≤ b < q, the determination of Es,t+b,∗
1 is

reduced to the following steps:

Step 1. List all the possible (b, v, l) such that b+ v + 2l = s.
Step 2. For each (b, v, l), list up all the sequences K = (k1, · · · , kn)

and S = (c0, · · · , cn) such that max{c0, c1, · · · , cn} ≤ b+ v + l.
Step 3. For each (b, v, l) and the sequenceK = (k1, · · · , kn), solve the

corresponding group of equations (2.2). As stated before, the solutions
are of the forms (1, · · · , 1, 0, · · · , 0) or (0, · · · , 0, 1, · · · , 1, 0, · · · , 0) which
uniquely determine xi, yi or zi which correspond to elements of form ai,
hi,j or bi,j respectively.

3. Computation of E1-term of the MSS

In order to prove Theorem 1.1, in this section we will apply the method

in Section 2 to compute the generators of E
s−r+4,tq+(s−r−2),∗
1 for 1 ≤ r ≤

p + 2, where t = s + sp + sp2 + pn. Let Mn
i (i ≥ 1) denote the May

filtration for different n. Our results are stated as follows:

Theorem 3.1. For 1 ≤ r ≤ p+ 2 and n ≥ 2, let t = s+ sp+ sp2 + pn

with 3 ≤ s ≤ p− 1. Then the generators of E
s−r+4,tq+(s−r−2),∗
1 are listed

as follows:
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(1) when 3 ≤ r ≤ p+ 2, there is no generator;
(2) when r = 2, there is a generator as−4

3 h4,0h3,0h2,0h1,0h2,1h1,2 for
n = 3 and no generator for n ̸= 3;

(3) when r = 1, for different n the generators are as follows:
(a) for n = 2, there is no generator.
(b) for n = 3, there are 20 generators as

as−4
3 a1h4,0h3,0h2,0h2,1b1,1, as−3

3 h3,0h2,0h1,0h3,1b1,1,
as−4
3 a2h4,0h3,0h2,0h1,2b1,1, as−3

3 h4,0h2,0h1,0h2,1b1,1,
as−3
3 h4,0h3,0h1,0h1,1b1,1, a4a

s−4
3 h3,0h2,0h1,0h2,1b1,1,

as−3
3 h4,0h3,0h1,0h1,2b1,0,

 (M3
3 = 7s+ p− 8)

as−4
3 a1h4,0h3,0h2,0h1,2b2,0, as−3

3 h4,0h2,0h1,0h1,2b2,0,
as−4
3 a1h4,0h3,0h1,0h2,1b2,0, as−3

3 h3,0h2,0h1,0h2,2b2,0,
as−3
3 h3,0h2,0h1,0h2,1b2,1, a4a

s−4
3 h3,0h2,0h1,0h1,2b2,0,

 (M3
4 = 7s+ 3p− 10)

as−3
3 h3,0h2,0h1,0h1,2b3,0, (M3

5 = 7s+ 5p− 12)
as−4
3 a0h4,0h3,0h2,0h1,0h2,1h1,2, as−4

3 a1h3,0h2,0h1,0h3,1h2,1h1,2,
as−4
3 a1h4,0h3,0h1,0h2,1h1,1h1,2, as−3

3 h3,0h2,0h1,0h2,1h1,2h1,3,
as−3
3 h3,0h2,0h1,0h1,1h2,2h1,2, as−4

3 a2h3,0h2,0h1,0h2,1h2,2h1,2;

 (M3
6 = 7s− 8)

(c) for n > 3, there are eleven families of generators as

as−3
3 h3,0h2,0h1,0h2,1h1,2h1,n (Mn

7 = 7s− 8)

h
(i)
1 = as−3

n hn,0hi,0h4,0hn−3,3bn−i,i−1 (0 < i < n; i ̸= 4); (Mn
8 )

h
(i)
2 = as−3

n hn,0hi,0hn−i,ih4,0bn−3,2 (0 < i < n; i ̸= 4); (Mn
9 )

h
(i)
3 = as−4

n a4hn,0hj,0hn−j,jhi,0hn−i,ihn−3,3(0 < i, j < n; i ̸= j; i, j ̸= 3)

h
(i)
4 = as−4

n ajhn,0h4,0hi,0hn−i,ihn−j,jhn−3,3(0 < i, j < n; i ̸= j; i ̸= 3, 4; j ̸= 3)

}
(Mn

10)

h
(i)
5 = as−3

n hn,0hj,0hi,0hn−j,jhn−i,ih1,3(0 < i, j < n; i ̸= j)

h
(i)
6 = as−3

n hj,0hi,0h4,0hn−i,ihn−j,jhn−3,3(0 < i, j < n; i ̸= j; i ̸= 3, 4; j ̸= 3)

h
(i)
7 = as−3

n hn,0hj,0hi−j,jh4,0hn−i,ihn−3,3(0 < i, j < n; i > j; j ̸= 4; i ̸= 3)

h
(i)
8 = as−3

n hn,0hi,0hj,0h4−j,jhn−i,ihn−3,3(0 < i < n; 0 < j < 4; i ̸= j; i ̸= 3)

h
(i)
9 = as−3

n hn,0hi,0h4,0hn−i−j,ihj,n−jhn−3,3(0 < i < n; j < n− i; i ̸= 4)

h
(i)
10 = as−3

n hn,0hi,0h4,0hn−i,ihn−3−j,3hj,n−j(0 < i < n; j < n− 3; i ̸= 4)


(Mn

11)

where s = p−1 for h
(i)
1 ,· · · ,h(i)

10 and Mn
8 = (4n−2i+1)(p−1)−5,

Mn
9 = 2np − 2n + p − 5, Mn

10 = 2np − 4n + p − 8, Mn
11 =

2np− 2n+ p− 8.

Proof. For n ≤ 3, we have

S =

{
(s, s, s+ 1) n = 2,
(s, s, s, 1) n = 3.
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For n > 3, we have

S =

{
S1 = (s, s, s, 0, · · · , 0, 1),
Si = (s, s, s, 0, · · · , 0, p(i), p− 1, · · · , p− 1, 0), i ≥ 4.

By the reason of dimension, all the possibilities of h are listed as
x1 · · ·xs−r−2z1z2z3
x1 · · ·xs−r−2y1y2z1z2
x1 · · ·xs−r−2y1y2y3y4z1
x1 · · ·xs−r−2y1y2y3y4y5y6.

Let us consider the generators h ∈ Exts−r+4,tq+s−r−2
r (Z/p,Z/p) case

by case.
Case 1. h = x1 · · ·xs−r−2z1z2z3.

Note that s ≤ p− 1 and r ≥ 1. Since
s−r−2∑
i=1

xi,0 = s− r − 2 < s = c̄0,

the first equation of (2.2) has no solution. It follows that such h is
impossible to exist.

Case 2. h = x1 · · ·xs−r−2y1y2z1z2.
Note that s ≤ p− 1 and r ≥ 1. Since

s−r−2∑
i=1

xi,0 + y1,0 + y2,0 = s− r − 2 + y1,0 + y2,0 < s = c̄0,

the first equation of (2.2) has no solution. It follows that such h is
impossible to exist.

Case 3. h = x1 · · ·xs−r+1y1y2y3y4z1.
Subcase 3.1. s ≤ p− 1, n ≥ 2, r > 2.

Since
s−r−2∑
i=1

xi,0 +
4∑

i=1
yi,0 ≤ s − r − 2 + 4 < s = c̄0, the first equation

of (2.2) has no solution. It follows that such h is impossible to exist.
Subcase 3.2. s ≤ p− 1, n ≥ 2, r = 2.
For S = (s, s, s+1), solve the corresponding group of equations (2.2)

by virtue of (2.1), we get the generators which are all zero since they
are all contain h23,0 = 0.

Subcase 3.3. s ≤ p− 1, r = 1.
Subcase 3.3.1. s ≤ p− 1, n = 2, r = 1.
For S = (s, s, s+1), solve the corresponding group of equations (2.2)

by virtue of (2.1), we get the generators

as−3
3 h23,0h2,0h1,2b1,1, as−3

3 h23,0h1,0h1,2b2,0, as−3
3 h23,0h1,0h2,1b1,1
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which are all zero due to h23,0 = 0.
Subcase 3.3.2. s ≤ p− 1, n = 3, r = 1.
This will be a hard case. Our strategy of computation is as follows.

For the unique sequence in this case S = (s, s, s, 1), we see that the max-
imal number in S is s. This leads us to first compute all the generators

(may be zero) of E
s,tq+(s−3),∗
1 with the form x1 · · ·xs−3y1y2y3. For each

ai and hi,j in x1 · · ·xp−4y1y2y3, we resolve

hi,j → hk,jhi−k,j+k or ai → ajhi−j,j

and then repeat this step once. Finally we do the replacement hi,j →
bi,j−1. If the obtained elements are nonzero, then we get all of the desired

generators of E
s+3,tq+(s−3),∗
1 with the form x1 · · ·xp−4y1y2y3z1. We do

this computation by the following steps:
Step 1. For S = (s, s, s, 1), solve the corresponding group of equations

(2.2) by virtue of (2.1), we obtain two generators of Es,tq+s−3,∗
1

as−3
3 h4,0h3,0h3,0, a4a

s−4
3 h3,0h3,0h3,0

Step 2. Resolve ai or hi,j .

as−3
3 h4,0h3,0h3,0

h3,0−→
{

as−3
3 h4,0h3,0h2,0h1,2

as−3
3 h4,0h3,0h1,0h2,1

a4a
s−4
3 h3,0h3,0h3,0

h3,0−→

{
a4a

s−4
3 h3,0h3,0h2,0h1,2

a4a
s−4
3 h3,0h3,0h1,0h2,1

Step 3. Repeat the Step 2 and replace some hi′,j′ by bi′,j′−1. Since
there are many identical generators appearing in the obtained first May
differentials, we will only write out the different nonzero generators for
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simplicity.
(3.1)

as−3
3 h4,0h3,0h2,0h1,2

one by one−→



as−4
3 a1h4,0h3,0h2,0h2,1h1,2

h2,1 or h1,2−→{
as−4
3 a1h4,0h3,0h2,0h2,1b1,1

as−4
3 a1h4,0h3,0h2,0h1,2b2,0

as−4
3 a2h4,0h3,0h2,0h1,2h1,2

h1,2−→
as−4
3 a2h4,0h3,0h2,0h1,2b1,1

as−3
3 h3,0h2,0h1,0h3,1h1,2

h1,2 or h3,1−→{
as−3
3 h3,0h2,0h1,0h3,1b1,1

as−3
3 h3,0h2,0h1,0h1,2b3,0

as−3
3 h4,0h2,0h1,0h2,1h1,2

h1,2 or h2,1−→{
as−3
3 h4,0h2,0h1,0h2,1b1,1

as−3
3 h4,0h2,0h1,0h1,2b2,0

as−3
3 h4,0h3,0h1,0h1,1h1,2

h1,1 or h1,2−→{
as−3
3 h4,0h3,0h1,0h1,1b1,1

as−3
3 h4,0h3,0h1,0h1,2b1,0

(3.2)

as−3
3 h4,0h3,0h1,0h2,1

a3 or h4,0−→



as−4
3 a1h4,0h3,0h1,0h2,1h2,1

h2,1−→
as−4
3 a1h4,0h3,0h1,0h2,1b2,0

as−3
3 h3,0h2,0h1,0h2,2h2,1

h2,1 or h2,2−→{
as−3
3 h3,0h2,0h1,0h2,2b2,0

as−3
3 h3,0h2,0h1,0h2,1b2,1

(3.3) a4a
s−4
3 h3,0h3,0h2,0h1,2

h3,0−→ a4a
s−4
3 h3,0h2,0h1,0h2,1h1,2

h2,1 or h1,2−→{
a4a

s−4
3 h3,0h2,0h1,0h2,1b1,1

a4a
s−4
3 h3,0h2,0h1,0h1,2b2,0

In the above diagrams the elements over the first left arrow and the
second right arrow mean their resolution and replacement, respectively.

Subcase 3.3.3. s > p− 2, n > 3, r = 1.

Since
s−r−2∑
j=1

xj,i +
4∑

k=1

yk,i + z1,i ≤ s+ 2 < p = c̄i, the i-th equation of

(2.2) has no solution. It follows that such h is impossible to exist.
Subcase 3.3.4. s = p− 2, n > 3, r = 1.
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For S1, solve the corresponding group of equations (2.2) by virtue of
(2.1), we get the generators listed as

ap−5
3 h23,0h2,0h1,2b1,n, ap−5

3 h23,0h1,0h2,1b1,n,

ap−5
3 h23,0h2,0h1,n+1b1,1, ap−5

3 h23,0h1,0h1,n+1b2,0

which are all zero due to h23,0 = 0.

For S4 = (s, s, s, p, p− 1, · · · , p− 1, 0), solve the corresponding group
of equations (2.2) by virtue of (2.1), we get the generators listed as
following

ap−6
n a4h

3
n,0hn−3,3bn−3,2, ap−5

n h2n,0h4,0hn−3,3bn−3,2,

ap−5
n h3n,0hn−3,3b1,2, ap−5

n h3n,0h1,3bn−3,2

which are all zero due to h2n,0 = 0.

For Si(i ≥ 5), there is no solution.
Subcase 3.3.5. s = p− 1, n > 3, r = 1.
For S1, we get the similar generators as Subcase 3.3.4 which are all

zero.
For S4 = (p− 1, p− 1, p− 1, p, p− 1, · · · , p− 1, 0), we obtain a set of

generators

(3.4) ap−4
n h2n,0h4,0hn−3,3

hn,0−→ ap−4
n hn,0hi,0hn−i,ih4,0hn−3,3

hn−3,3 or hn−i,i−→
{

ap−4
n hn,0hi,0h4,0hn−3,3bn−i,i−1

ap−4
n hn,0hi,0hn−i,ih4,0bn−3,2

where 0 < i < n and i ̸= 4.
For Si (i ≥ 5), there is no solution.

Case 4. h = x1 · · ·xs−r−2y1y2y3y4y5y6.
Subcase 4.1. s ≤ p− 1, n ≥ 2, r > 4.
There is no solution since

s−r−2∑
i=1

xi,0 +
6∑

j=1

yj,0 ≤ s− r + 4 < s = c̄0.

Subcase 4.2. s ≤ p− 1, r = 4.
Subcase 4.2.1. s ≤ p− 1, r = 4, n = 2.
There is no solution since

s−r−2∑
i=1

xi,0 +
6∑

j=1

yj,0 ≤ s− r + 4 < s+ 1 = c̄2.
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Subcase 4.2.2. s ≤ p− 1, r = 4, n = 3.
Solve the corresponding group of equations (2.2) by virtue of (2.1),

we get two generators as−3
3 h4,0h

5
3,0 and a4a

s−4
3 h63,0 which are both zero

due to h23,0 = 0.
Subcase 4.2.3. s ≤ p− 1, r = 4, n > 3.
For S1 = (s, s, s, 0, · · · , 0, 1), there is no solution.

For Si(i ≥ 4), S = (s, s, s, 0, · · · , 0, p(i), p− 1, · · · , p− 1, 0), there is no
solution due to

s−r−2∑
j=1

xj,i +
6∑

k=1

yk,i < s+ 1 ≤ p = c̄i.

Subcase 4.3. s ≤ p− 1, r = 3.
Subcase 4.3.1. s ≤ p− 1, 2 ≤ n ≤ 3, r = 3.
Solve the corresponding group of equations (2.2) by virtue of (2.1),

we see that all the generators are zero since they all contain h23,0 = 0.
Subcase 4.3.2. s ≤ p− 1, n > 3, r = 3.
For S1, we get one generator as−5

3 h53,0h1,n which is zero as h23,0 = 0.

For Si(i ≥ 4), S = (s, s, s, 0, · · · , 0, p(i), p− 1, · · · , p− 1, 0), there is no
solution since

s−r−2∑
j=1

xj,i +

6∑
k=1

yk,i < s+ 1 < p = c̄i.

Subcase 4.4. s ≤ p− 1, r = 2.
Subcase 4.4.1. s ≤ p− 1, n = 2, r = 2.
Solve the corresponding group of equations (2.2) by virtue of (2.1),

we get one generator
as−3
3 h33,0h1,0h2,1h1,2 which is zero due to h33,0 = 0.
Subcase 4.4.2. s ≤ p− 1, n = 3, r = 2.
There is one nonzero generator

(3.5) as−4
3 h4,0h3,0h2,0h1,0h2,1h1,2.

Subcase 4.4.3. s < p− 2, n > 3, r = 2.
For S1, solve the corresponding group of equations (2.2) by virtue of

(2.1), we get two generators

as−4
3 h33,0h2,0h1,2h1,n and as−4

3 h33,0h1,0h2,1h1,n

which are both zero since h23,0 = 0.
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For Si(i ≥ 4), S = (s, s, s, 0, · · · , 0, p(i), p− 1, · · · , p− 1, 0), there is no
solution since

s−r−2∑
j=1

xj,i +

6∑
k=1

yk,i < s+ 2 < p = c̄i.

Subcase 4.4.4. s = p− 2, n > 3, r = 2.
For S1, we get two similar generators as Subcase 4.4.3 by replacing s

with p− 2.
For S4, we get two generators

as−4
n h3n,0h4,0h

2
n−3,3 and as−4

n h4n,0hn−3,3h1,3

which are both zero since h2n,0 = 0.

For Si(i ≥ 5), there is no solution.
Subcase 4.4.5. s = p− 1, n > 3, r = 2.
For S1, we get two similar generators as Subcase 4.4.3 by replacing s

with p− 1.
For S4, solve the corresponding group of equations (2.2) by virtue of

(2.1), we get the generators they are all zero because they all contain
h2n,0 = 0.

For Si(i ≥ 5), there is no solution.
Subcase 4.5. s ≤ p− 1, r = 1.
Subcase 4.5.1. s ≤ p− 1, n = 2, r = 1.
Solve the corresponding group of equations (2.2) by virtue of (2.1),

we get the generators listed as

as−3
3 h3,0h2,0h1,0h2,1h

2
1,2, as−3

3 h3,0h
2
2,0h

3
1,2,

as−3
3 h23,0h1,0h1,1h

2
1,2, as−3

3 h3,0h
2
1,0h

2
2,1h1,2.

They are all zero due to h21,2 = 0 or h21,0 = 0.
Subcase 4.5.3. s ≤ p− 1, n = 3, r = 1.
We adopt the methods similar to Subcase 3.3.2. We still compute all

the generators (may be zero) of Es,tq+s−3,∗
1 with the form x1 · · ·xs−3y1y2y3.

First we resolve ai or hi,j in x1 · · ·xs−3y1y2y3, and then for the ob-
tained elements we repeat the first step twice. If the obtained element
is nonzero, then it is our desired generator of Es+3,t+s−3,∗

1 .

Step 1. For S = (s, s, s, 1) = (3, 3, 3, 1), solve the corresponding
group of equations (2.2) by virtue of (2.1), we obtain two generators of

Es,t+s−3,∗
1 as

as−3
3 h4,0h3,0h3,0 and a4a

s−4
3 h3,0h3,0h3,0
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Step 2. Resolve ai or hi,j .

as−3
3 h4,0h3,0h3,0

h3,0−→
{

as−3
3 h4,0h3,0h2,0h1,2,

as−3
3 h4,0h3,0h1,0h2,1

a4a
s−4
3 h3,0h3,0h3,0

h3,0−→

{
a4a

s−4
3 h3,0h3,0h2,0h1,2,

a4a
s−4
3 h3,0h3,0h1,0h2,1

Step 3. Repeat the Step 2 twice. We still only write out the different
nonzero generators for simplicity.
(3.6)

as−3
3 h4,0h3,0h2,0h1,2

one by one−→



as−4
3 a0h4,0h3,0h3,0h2,0h1,2

h3,0−→
as−4
3 a0h4,0h3,0h2,0h1,0h2,1h1,2

as−4
3 a1h4,0h3,0h2,0h2,1h1,2

h4,0 or h2,0−→{
as−4
3 a1h3,0h2,0h1,0h3,1h2,1h1,2

as−4
3 a1h4,0h3,0h1,0h2,1h1,1h1,2

as−3
3 h3,0h3,0h2,0h1,2h1,3

h3,0−→
as−3
3 h3,0h2,0h1,0h2,1h1,2h1,3

as−3
3 h3,0h2,0h2,0h2,2h1,2

h2,0−→
as−3
3 h3,0h2,0h1,0h1,1h2,2h1,2

(3.7) as−3
3 h4,0h3,0h1,0h2,1

a3−→ as−4
3 a2h4,0h3,0h1,0h2,1h1,2

h4,0−→ as−4
3 a2h3,0h2,0h1,0h2,1h2,2h1,2

Subcase 4.5.3. s < p− 3, n > 3, r = 1.
For S1, we get one generator as follows:

(3.8) as−3
3 h3,0h3,0h3,0h1,n

h3,0−→

{
as−3
3 h3,0h3,0h2,0h1,2h1,n

as−3
3 h3,0h3,0h1,0h2,1h1,n

}
−→

h3,0−→ as−3
3 h3,0h2,0h1,0h2,1h1,2h1,n.

For Si, (i ≥ 4), there is no solution since
s−3∑
j=1

xj,i +
6∑

k=1

yk,i ≤ s + 3 <

p = c̄i.
Subcase 4.5.4. s = p− 3, n > 3, r = 1.
For S1, we get the similar generator as Subcase 4.5.3 by replacing s

with p− 3.
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For S4, solve the corresponding group of equations (2.2) by virtue of
(2.1), the generators we get are all zero since they all contain h2n,0 = 0.

For Si(i > 4), there is no solution.
Subcase 4.5.5. s = p− 2, n > 3, r = 1.
For S1, we get the similar generator as Subcase 4.5.3 by replacing s

with p− 2.
For S4, solve the corresponding group of equations (2.2) by virtue of

(2.1), we find that all the generators are zero.
For Si(i > 4), there is no solution.
Subcase 4.5.6. s = p− 1, n > 3, r = 1.
For S1, we get the similar generator as Subcase 4.5.3 by replacing s

with p− 1.
For S4, solve the corresponding group of equations (2.2) by virtue of

(2.1), we get the generators as follows.
(3.9)
ap−4
n h3

n,0h1,3
hn,0−→ ap−4

n h2
n,0hi,0hn−i,ih1,3

hn,0−→ ap−4
n hn,0hj,0hi,0hn−j,jhn−i,ih1,3

(0 < i; j < n; i ̸= j)

ap−5
n a4h

3
n,0hn−3,3

hn,0−→ ap−5
n a4h

2
n,0hi,0hn−i,ihn−3,3

hn,0−→
ap−5
n a4hn,0hj,0hn−j,jhi,0hn−i,ihn−3,3(0 < i, j < n; i ̸= j; i, j ̸= 3)

(3.10) ap−4
n h2n,0h4,0hn−3,3

hn,0−→ ap−4
n hn,0hi,0h4,0hn−i,ihn−3,3

one by one−→



ap−5
n ajhn,0h4,0hi,0hn−i,ihn−j,jhn−3,3 (0 < i, j < n; i ̸= j; i ̸= 3, 4; j ̸= 3)

ap−4
n hj,0hi,0h4,0hn−i,ihn−j,jhn−3,3 (0 < i, j < n; i ̸= j; i ̸= 3, 4; j ̸= 3)

ap−4
n hn,0hj,0hi−j,jh4,0hn−i,ihn−3,3 (0 < i; j < n, i > j; j ̸= 4; i ̸= 3)

ap−4
n hn,0hi,0hj,0h4−j,jhn−i,ihn−3,3 (0 < i < n; 0 < j < 4; i ̸= j; i ̸= 3)

ap−4
n hn,0hi,0h4,0hn−i−j,ihj,n−jhn−3,3 (0 < i < n, j < n− i, i ̸= 4)

ap−4
n hn,0hi,0h4,0hn−i,ihn−3−j,3hj,n−j (0 < i < n; j < n− 3; i ̸= 4)

For Si (i ≥ 5), there is no solution. □

4. Proof of Theorem 1.1.

In this section we will give the proof of Theorem 1.1. First we need
the following lemma:

Lemma 4.1. Let p ≥ 7 and n ≥ 2. Let t = s+ sp+ sp2 + pn. Then the
following two properties hold:

(a) for 2 ≤ r ≤ s+ 4, Exts−r+4,tq+s−r−2
A (Z/p,Z/p) = 0.

(b) the product γ̃sbn−1g0 ∈ Exts+4,tq+s−3
A (Z/p,Z/p) is non-

zero.
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Proof. Since the elements b1,n−1, h1,0h2,0, a
s−3
3 h3,0h2,1h1,2 ∈ E∗,∗,∗

1 are
all permanent cycles in the MSS and converge nontrivially to bn−1, g0,
γ̃s ∈ Ext∗,∗A (Z/p,Z/p) respectively, it follows that the product element

γ̃sbn−1g0 ∈ Exts+4,tq+s−3
A (Z/p,Z/p) is represented by

as−3
3 h3,0h2,1h1,2h2,0h1,0b1,n−1 ∈ Es+4,tq+s−3,7s+p−8

1

in the MSS.

(a) According to Theorem 3.1(1)(2), Es−r+4,tq+s−r−2,∗
1 = 0 for r ≥ 2

and n ̸= 3. The only nontrivial case is

Es−r+4,tq+s−r−2,∗
1 = Z/p{as−4

3 h3,0h2,1h1,2h4,0h2,0h1,0}

for r = 2 and n = 3. Since d1(h4,0) = h1,0h3,1 + h2,0h2,2 + h3,0h1,3 ̸= 0,
then h4,0 becomes zero in E∗,∗,∗

k for k ≥ 2. According to the above state-

ment as−4
3 h3,0h2,1h1,2 and h2,0h1,0 are permanent cycles in the May spec-

tral sequence, thus they are always nontrivial in E∗,∗,∗
k for any k ≥ 1. It

follows that as−4
3 h3,0h2,1h1,2h4,0h2,0h1,0 becomes trivial in Es+2,tq+s−4,∗

k

for k ≥ 2.
Since

Es−r+4,tq+s−r−2,∗
k =⇒ Exts−r+4,tq+s−r−2

A (Z/p,Z/p)

for k ≥ 2, it follows that Exts−r+4,tq+s−r−2,
A (Z/p,Z/p) = 0 for r ≥ 2.

Thus we have proven part (a).

(b) In what follows we need to show that as−3
3 h3,0h2,1h1,2h2,0h1,0b1,n−1

can not be hit by the May differential dr : E
s+3,tq+s−3,7s+p+r−8
r −→

Es+4,tq+s−3,7s+p−8
r for any r ≥ 1.
According to the above analysis we only need to consider the genera-

tors of Es+3,tq+s−3,M
1 with M > 7s+p−8. Hence by Theorem 3.1 we do

not need to consider the generators with May filtrations M3
3 , M

3
6 , M

n
7

as their May differentials will not touch as−3
3 h3,0h2,1h1,2h1,0h2,0b1,n−1.

For other generators we list them up with their first May differentials in
the following table:
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E
s+3,tq+s−3,Mn

i
1 Mn

i first May differential

1st as−4
3 a1h4,0h3,0h2,0h1,2b2,0 M3

4 as−4
3 a1h1,0h3,1h3,0h2,0h1,2b2,0 + · · ·

2nd as−3
3 h4,0h2,0h1,0h1,2b2,0 M3

4 as−3
3 h3,0h1,3h2,0h1,0h1,2b2,0 + · · ·

3rd as−4
3 a1h4,0h3,0h1,0h2,1b2,0 M3

4 as−4
3 a1h2,0h2,2h3,0h1,0h2,1b2,0 + · · ·

4th as−3
3 h3,0h2,0h1,0h2,2b2,0 M3

4 as−3
3 h3,0h2,0h1,0h1,2h1,3b2,0 + · · ·

5th as−3
3 h3,0h2,0h1,0h2,1b2,1 M3

4 as−3
3 h3,0h2,0h1,0h1,1h1,2b2,1 + · · ·

6th a4a
s−4
3 h3,0h2,0h1,0h1,2b2,0 M3

4 a1h3,1a
s−4
3 h3,0h2,0h1,0h1,2b2,0 + · · ·

7th as−3
3 h3,0h2,0h1,0h1,2b3,0 M3

5 zero

8th h
(i)
1 (s = p− 1) Mn

8 as−3
n hj,0hn−j,jhi,0h4,0hn−3,3bn−i,i−1 + · · ·

(0 < i < n, i ̸= 4) (j ̸= i, 3, 4)

9th h
(i)
2 (s = p− 1) Mn

9 as−3
n hj,0hn−j,jhi,0hn−i,ih4,0bn−3,2+ · · ·

(0 < i < n, i ̸= 4) (j ̸= i, 4)

10th h
(i)
3 (s = p− 1) Mn

10 a
s−4
n a4hk,0hn−k,khj,0hn−j,jhi,0hn−i,ihn−3,3+ · · ·

(0 < i, j < n; i ̸= j; i, j ̸= 3) (k ̸= i, j, 3)

11th h
(i)
4 (s = p− 1) Mn

10 a
s−4
n ajhk,0hn−k,kh4,0hi,0hn−i,ihn−j,jhn−3,3+ · · ·

(0 < i, j < n; i ̸= j; i ̸= 3, 4; j ̸= 3) (k ̸= i, j, 3, 4)

12th h
(i)
5 (s = p− 1) Mn

11 a
s−3
n hk,0hn−k,khi,0hn−i,ihj,0hn−j,jh1,3+ · · ·

(0 < i, j < n; i ̸= j) (k ̸= i, j)

13th h
(i)
6 (s = p− 1) Mn

11 a
s−4
n akhn−k,kh4,0hi,0hn−i,ihj,0hn−j,jhn−3,3+ · · ·

(0 < i, j < n; i ̸= j; i ̸= 3, 4; j ̸= 3) (k ̸= i, j, 3)

14th h
(i)
7 (s = p− 1) Mn

11 a
s−4
n akhn−k,khn,0hj,0hi−j,jhn−i,ih4,0hn−3,3+ · · ·

(0 < i, j < n; i > j; j ̸= 4; i ̸= 3) (k ̸= 0, 3)

15th h
(i)
8 (s = p− 1) Mn

11a
s−4
n akhn−k,khn,0hi,0hn−i,ihj,0h4−j,jhn−3,3+ · · ·

(0 < i < n; 0 < j < 4; i ̸= j; i ̸= 3) (k ̸= 0, i, 3)

16th h
(i)
9 (s = p− 1) Mn

11 a
s−4
n akhn−k,khi,0hn−i−j,ihj,n−jh4,0hn−3,3 + · · ·

(0 < i < n; j < n− i; i ̸= 4) (k ̸= 3)

17th h
(i)
10 (s = p− 1) Mn

11 a
s−4
n akhn−k,kh4,0hi,0hn−i,ihn−3−j,3hj,n−j + · · ·

(0 < i < n; j < n− 3; i ̸= 4) (k ̸= i)

In the above diagram the first May differential of the seventh generator
is zero since the first May differentials of as−3

3 h3,0h2,0h1,0, h1,2 and b3,0
are all zero. For the first six generators with May filtration M3

4 , we
see that the first May differential of each generator contains at least a
term which is not in the first May differential of the other generators.
It follows that the first May differentials of the generators are linearly

independent and thus the cycle of E
s+3,tq+s−3,M3

4
1 must be zero. This

implies that E
s+3,tq+s−3,M3

4
r = 0 for r ≥ 2 and hence

as−3
3 h3,0h2,1h1,2h1,0h2,0b1,n−1 /∈ dr(E

s+3,tq+s−3,M3
4

r ) for r ≥ 1.
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By the same method we can similarly show that for the generators count-
ing from 7 to 11, there is

as−3
3 h3,0h2,1h1,2h1,0h2,0b1,n−1 /∈ dr(E

s+3,tq+s−3,Mn
i

r ) for r ≥ 1

with corresponding i and n for each mentioned generator.
We deal with the last six families of generators differently. By the

table (10) in the last part of the proof of Theorem 3.1, we see that h
(i)
m

(5 ≤ m ≤ 10) all come from the first May differential of

as−3
n hn,0hi,0h4,0hn−i,ihn−3,3.

Thus d1(h
(i)
m ) (5 ≤ m ≤ 10) will possibly be linearly dependent in this

case. In order to avoid this, we first just consider h
(i)
5 . Since d1(h

(i)
5 ) ̸= 0,

it follows that h
(i)
5 vanishes in E

s+3,tq+s−3,Mn
11

2 . Now for the remaining
five families of generators, according to the above table we see that the
first May differential of each generator contains at least a term which
is not in the first May differential of the other generators. It follows
that the first May differentials of these generators are linearly indepen-

dent. Thus h
(i)
m (6 ≤ m ≤ 10) also vanish in E

s+3,tq+s−3,Mn
11

2 . Hence

E
s+3,tq+s−3,Mn

11
k = 0 for k ≥ 2 and then

as−3
3 h3,0h2,1h1,2h1,0h2,0b1,n−1 /∈ dr(E

s+3,tq+s−3,Mn
11)

r for r ≥ 1.

According to the above discussion, we see that

as−3
3 h3,0h2,1h1,2h1,0h2,0b1,n−1

cannot be hit by any May differential for n ≥ 2. Thus it is a per-
manent cycle in the MSS and converges nontrivially to γ̃sbn−1g0 ∈
Exts+4,tq+s−3

A (Z/p,Z/p). Thus we have proven the part (b). □
We need also the following lemma:

Lemma 4.2. [3] Let p ≥ 5 and n ≥ 2. Then

(i1i0)∗(bn−1g0) ∈ Ext
4,(2+p+pn)q
A (H∗(V (1)),Z/p)

converges to a nontrivial homotopy element ζn ∈ π(2+p+pn)q−4V (1).

In what follows we give our proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2 we see that

(i1i0)∗(bn−1g0) ∈ Ext
4,(2+p+pn)q
A (H∗(V (1)),Z/p)
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converges to a nontrivial homotopy element ζn ∈ π(2+p+pn)q−4V (1).
Consider the following composite of maps:

f̃ : Σ(2+p+pn)q−4S
ξn−→ V (1)

i2−→ V (2)
γs

−→ Σ−s(1+p+p2)qV (2)

j0j1j2−→ Σ−s(1+p+p2)q+(p+2)q+3S

where γs denotes the n-times of composites of γ. Thus f̃ is represented
by

c̃ = (j0j1j2)∗(γ
s)∗(i2i1i0)∗(bn−1g0) = (j0j1j2γ

si2i1i0)∗(bn−1g0)

in the ASS. Since γs ∈ π(s−3+(s−1)p+sp2)q−3S is represented by

γ̃s ∈ Ext
s,(s−3+(s−1)p+sp2)q+s−3
A (Z/p,Z/p)

due to [12], by the knowledge of Yoneda products we know that the
composite

Ext0,0A (Z/p,Z/p) (i2i1i0)∗−→ Ext0,0A (H∗V (2),Z/p)
(j0j1j2)∗(γ∗)s−→ Ext

s,(s−3+(s−1)p+sp2)q+s−3
A (Z/p,Z/p)

is multiplication (up to a nonzero scalar) by

γ̃s ∈ Ext
s,(s−3+(s−1)p+sp2)q+s−3
A (Z/p,Z/p)).

Hence f̃ is represented up to a nonzero scalar by a non-zero element

γ̃sbn−1g0 ∈ Ext
s+4,(s+sp+sp2+pn)q+s−3
A (Z/p,Z/p))

in the ASS (see Lemma 4.1(b)).
Moreover, by Lemma 4.1(a), γ̃sbn−1g0 cannot be hit by the Adams

differential

dr : E
s−r+4,(s+sp+sp2+pn)q+s−r−2
r −→ Es+4,(s+sp+sp2+pn)q+s−3

r ,

for r ≥ 2, hence the corresponding homotopy element f̃ ∈ π∗S is non-
trivial. Thus we have finished the proof of Theorem 1.1. □
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