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1. Introduction and preliminaries

Recently, more and more people have been attracted to the study of
Finsler geometry. The study of Finsler spaces has many applications
in physics and biology. In complex Finsler geometry, people think the
notion of Kähler-Finlser metrics is the extension of the Kähler metrics.
Actually, the Kähler-Berwald metrics may be the closest non-Hermitian
complex Finsler metrics to the Kähler metrics. Therefore, to explore the
properties of the Kähler-Finsler metrics and the Kähler-Berwald metrics
is one of the most important tasks in complex Finsler geometry.

In real Finsler geometry, it has been known that a Berwald manifold
with constant flag curvature c must be a Riemann space (c ̸= 0) or a
locally Minkowski space (c = 0). In complex cases, the authors [4] prove
that a strictly Kähler-Berwald manifold is a complex locally Minkowski
space if and only if it has vanishing holomorphic sectional curvature.
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Strictly Kähler-Berwald manifolds 110

In this paper, we will prove that a strictly Kähler-Berwald manifolds
with nonzero constant holomorphic sectional curvature must be a Kähler
manifold.

Definition 1.1. A strongly pseudoconvex complex Finsler metric (we
shall simply call it complex Finsler metric below) on a complex manifold
M is a continuous function F : T 1,0M → R+ satisfying:

(i) G = F 2 is smooth on M̃(= T 1,0M − {0});
(ii) F (v) > 0 for all v ∈ M̃ ;
(iii) F (ζv) = |ζ|F (v) for all v ∈ T 1,0M and ζ ∈ C;

(iv) for any p ∈ M , the F -indicatrix IF (p) = {v ∈ T 1,0
p M |F (v) < 1}

is strongly pseudoconvex.

A complex manifold M endowed with a complex Finsler metric will
be called a complex Finsler manifold.

In the study of complex Finsler geometry, there are several important
classes of special metrics with additional properties, in which we are
more interested.

Let (M,F ) be a complex manifold M of complex dimension n with
a complex Finsler metric F . Let {z1, · · · , zn} be a set of local complex
coordinates, with {y1, · · · , yn} the induced holomorphic tangent space
coordinates. We shall denote by indexes after G the derivatives with
respect to the y-coordinates and the derivatives with respect to the z-
coordinates after a semicolon. For instance,

Gαβ̄ =
∂2G

∂yα∂ȳβ
or G;µν̄ =

∂2G

∂zµ∂z̄ν
.

Definition 1.2. A complex Finsler manifold (M,F ) is said to be com-
plex locally Minkowskian if, at every point z ∈ M , there is a local coor-
dinate system (zα), with induced holomorphic tangent space coordinates
(yα), such that F has no dependence on the zα. Equivalently speaking,
Gαβ̄ has no dependence on the zα.

Definition 1.3. A complex Finsler metric F is said to be a complex
Berwald metric if the Christoffel symbols Γα

β;γ of Chern-Finsler connec-
tion induced by F have no y dependence in natural coordinates, where

Γα
β;γ = Gτ̄α δGβτ̄

δzγ
;
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(Gτ̄α) is the inverse matrix of (Gατ̄ ), and
δ

δzµ = ∂
∂zµ −Γα

;µ
∂

∂yα are vectors

on T 1,0M . Here Γα
;µ = Gτ̄αGτ̄ ;µ. Clearly, Γα

;µ = yγΓα
γ;µ and Γα

γ;µ =
∂

∂yγ Γ
α
;µ.

Definition 1.4. In local coordinates, a complex Finsler metric is called
strongly-Kähler if and only if Γα

µ;ν = Γα
ν;µ; it is called Kähler if and only

if Γα
µ;νy

µ = Γα
ν;µy

µ; it is called weakly-Kähler if and only if Gα[Γ
α
µ;ν −

Γα
ν;µ]y

µ = 0.

Recently, it has been shown in [3] that a Kähler-Finsler metric must
be a strongly Kähler-Finsler one.

Definition 1.5. A Kähler-Finsler metric is called a strictly Kähler-
Finsler metric if it satisfies ⟨∂̄Hθ(H,χ, K̄), χ⟩ = 0, for all H,K ∈ H,
where χ is the complex radial horizontal vector field, H is the complex
horizontal bundle, θ is the (2,0)-torsion of the Chern-Finsler connection
and ∂̄H is the horizontal part of ∂̄. We refer to [1] for all notations.

Abate and Patrizio [1] have done much research on the strictly Kähler-
Finsler manifolds, although they haven’t given an explicit definition for
them.

Let (M,F ) be a complex Finsler manifold and σ : [a, b] →M a regular

curve on M . We define σ̇ : [a, b] → M̃ by setting

σ̇(t) =
dσi

dt
(t)

∂

∂zi
|σ(t).

Then the length of σ is given by

L(σ) =

∫ b

a
F (σ̇(t))dt.

Let Σ : (−ε, ε)× [a, b] → M be a regular variation of a given regular
curve σ : [a, b] →M . We set lΣ(s) = L(σs), where σ0 = σ.

Definition 1.6. We shall say that a regular curve σ is a geodesic for
F if dlΣ

ds (0) = 0 for all fixed regular variations Σ of σ. The vector field

U(t) = U i(t) ∂
∂zi

|σ(t) := ∂lΣ
∂u (0, t) is called the variation field of lΣ.
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Observe that
dlΣ
ds (0) = d

ds

∫ b
a F (σ̇s(t))dt|s=0

=
∫ b
a

1
2F {[F

2]zkU
k + [F 2]z̄k Ū

k + [F 2]yk
dUk

dt + [F 2]ȳk
dŪk

dt }dt
= Re(

∫ b
a

1
2F {[F

2]zkU
k + [F 2]yk

dUk

dt }dt)
= Re(

∫ b
a {

1
2F [F

2]zk − d
dt(

1
2F [F

2]yk)}Ukdt+ 1
2F [F

2]ykU
k|ba)

= Re(
∫ b
a

1
2F {[F

2]zk − d
dt [F

2]yk}Ukdt).

Thus σ is a geodesic if and only if the following equality holds on σ:

G;k −
d

dt
Gk = 0,

where G;k = ∂G
∂zk

, Gk = ∂G
∂yk

.

If we further assume M is weak kählerian, we have (see [1]):

(1.1) σ̈i +N i
j σ̇

j = 0.

Then for any given p ∈ M and v ∈ M̃p, there exists a unique geodesic
σ : (−ε, ε) →M such that σ(0) = p and σ̇(0) = v.

2. Holomorphic sectional curvatures for Kähler-Finsler
manifolds

Suppose that Y is a non-zero geodesic field on an open subset U ⊂
M , then GY (or gY ) is a naturally induced smooth Hermitian metric
on U , where GY (Z,W ) = Gαβ̄(Y )ZαW̄ β. GY is called the Y-Hermitian
metric on M .

Let D̄ denote the (1,0)-compatible connection of Ḡ := GY . It is well
known that

D̄YW = {yj ∂w
i

∂zj
+ wjΓ̃i

j;ky
k} ∂

∂zi
,

where under the local coordinates,

Y = yi
∂

∂zi
,W = wi ∂

∂zi
, and Γ̃i

j;k = (Gjh̄;k +Gjh̄r

∂yr

∂zk
)Gh̄i.

Since gY is an Hermitian metric on U , we can define the curvature
under this metric. Hence for p ∈ U ,we have a well-known quadrilinear
function

RY : TpU × TpU × TpU × TpU → C.

Let p ∈ M, 0 ̸= X ∈ TpM . We write X = X1,0 +X0,1,where X1,0 ∈
T 1,0M,X0,1 ∈ T 0,1M , and X0,1 = X1,0.We extend X1,0 to be a geodesic
field on U , and denote it by Y , then X = Y (p) + Ȳ (p).
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For X ̸= 0, let

K(p,X) = −RY (X, JX,X, JX)

|X ∧ JX|2Y

=
RY (Y, Ȳ , Y, Ȳ )

g2Y (Y, Y )
|p

=
1

G2(Y )
RY (Y, Ȳ , Y, Ȳ )|p

where J is complex structure, and if X = 0, let K(p,X) = 0.

Definition 2.1. Let (M,F ) be a Kähler-Finsler manifold. ∀p ∈M,X ∈
TpM ,the above K(p,X) is called the holomorphic sectional curvature of
M towards the tangent vector X at p.

We want to show the above definition is rational. For this we need
the following conclusion:

Proposition 2.2. K(p,X) depends only on Y (p)(or X) for Kähler-
Finsler manifold (M,F ).

Proof. Firstly we seek a formula in local coordinates for R(p,X). To
begin with, if X = ξi ∂

∂zi
+ ξ̄i ∂

∂z̄i
, JX = iξi ∂

∂zi
− ξ̄i ∂

∂z̄i
.Y = yi ∂

∂zi
, where

yi(p) = ξi.

K(p,X) =
1

G2(Y )
RY (Y, Ȳ , Y, Ȳ )|p =

Rij̄kl̄y
iȳjykȳl

gij̄gkl̄y
iȳjykȳl

|p

where Rij̄kl̄ is the curvature tensor under the Hermitian metric gY . Now

we need to show Rij̄kl̄y
iȳjykȳl(p) depends only on Y (p).

It is well known that

(2.1) Rij̄kl̄ =
∂2[gij̄(z, Y (z))]

∂zk∂z̄l
− ∂[gis̄(z, Y (z))]

∂zk
∂[gtj̄(z, Y (z))]

∂z̄l
gs̄t

Lemma 2.3.
∂2[gij̄(z,Y (z))]

∂zk∂z̄l
yiȳl = gij̄;l̄N

i
kȳ

l + gij̄
∂N i

k

∂z̄l
ȳl − gij̄

∂N i
k

∂ȳs N̄
s
l ȳ

l −
gij̄s̄N

i
kN̄

s
l ȳ

l

Proof. We have known that

N s
k = yi(gij̄;k + gij̄r

∂yr

∂zk
)gj̄s,

so

gsk̄N
s
k = yi(gij̄;k + gij̄r

∂yr

∂zk
),
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and

yi
∂

∂z̄l
(gij̄;k + gij̄r

∂yr

∂zk
) =

∂

∂z̄l
(gsj̄N

s
k)

= gsj̄;l̄N
s
k + gsj̄

∂N s
k

∂z̄l
+ (gsj̄t̄N

s
k + gsj̄

∂N s
k

∂ȳt
)
∂ȳt

∂z̄l
.

Since Y is a geodesic field, we have

ȳlyi
∂

∂z̄l
(gij̄;k+gij̄r

∂yr

∂zk
) = (gsj̄;l̄N

s
k+gsj̄

∂N s
k

∂z̄l
)ȳl−(gsj̄t̄N

s
k+gsj̄

∂N s
k

∂ȳt
)N̄ t

l ȳ
l,

where we have used (1.1). So the equality in lemma holds. □

Now we return to our proof of Proposition 2.1. Dealing with each
term of (2.1) similarly as Lemma 2.3, we know Rij̄kl̄y

iȳjykȳl depends

only on Y (p). In fact, by direct computation,

K(p,X) =
gij̄(

∂N i
k

∂z̄l
− ∂N i

k
∂ȳr N̄

r
l )ȳ

jykȳl

gij̄gkl̄y
iȳjykȳl

|p =
gij̄

δ
δz̄l
N i

kȳ
jykȳl

gij̄gkl̄y
iȳjykȳl

|p.

□

Definition 2.4. A Kähler-Finsler metric F is said to be of scalar cur-
vature if K(p,X) = K(p) is independent of the tangent vector X. In
particular, if K(p,X) is a constant in spite of any p and X, it is said
to be of constant curvature.

Remark 2.5. Before the present work, there have been other notions
of curvature for complex Finsler manifold (see [1, 7]). However, all of
them are unanimous. The definition here seems more natural when it is
viewed as an extension from an Hermitian manifold.

Example 2.6. Let (M1, α), (M2, β) be Hermitian manifolds. Fε is the
complex Szabó metric on the product manifold M1 ×M2 defined by

Fε :=

√
α(y1)2 + β(y2)2 + ε(α(y1)2k + β(y2)2k)

1
k ,

where y = y1⊕y2 = (v1, · · · , vm, vm+1, · · · , vm+n) ∈ T 1,0
z (M1×M2), z =

(z1, z2) ∈M1×M2.y1 = (v1, · · · , vm) ∈ T 1,0
z1 M1, y2 = (vm+1, · · · , vm+n) ∈

T 1,0
z2 M2, and k > 1 is a positive integer.

We have known in [5] that Fε is a strongly pseudoconvex complex
Finsler metric. Furthermore, Fε is strongly Kähler-Finslerian if α and



115 Chen and Yan

β are both Kähler metrics. In fact, the coefficients of Chern-Finsler
connection can be written as follows:

N i
j(y) =


∑m

l=1 a
l̄ivl̄;j 1 ≤ i, j ≤ m∑m+n

l=m+1 b
l̄ivl̄;j m+ 1 ≤ i, j ≤ m+ n

0 otherwise

For X = (X1, X2) = y + ȳ ∈ Tz(M1 × M2), a direct computation
shows that

K(z,X) = 1
G2 (Aaαδ̄Γ

α
γ;µν̄v

γ v̄δvµv̄ν

+Bbα+mδ+mΓα+m
γ+m;µ+mν+m

vγ+mv̄δ+m)vµ+mv̄ν+m

= 1
G2 (AKα(z1, X1) +BKβ(z2, X2)),

where G = F 2
ε , A = 1 + ε(α2k + β2k))

1
k
−1α2(k−1), B = 1 + ε(α2k +

β2k)
1
k
−1β2(k−1).

Now we can easily have:

Theorem 2.7. Let (M1, α), (M2, β) be Kähler manifolds and Fε the
complex Szabó metric on the product manifold M1×M2. Then the holo-
morphic sectional curvature of (M1 ×M2, Fε) vanishes if both (M1, α)
and (M2, β) have vanishing holomorphic sectional curvatures.

3. Strictly Kähler-Berwald manifolds with nonzero constant
holomorphic sectional curvature

Since the Chern-Finsler connection is defined on the holomorphic
tangent-tangent bundle T 1,0(T 1,0)M of M , we now give another con-
nection directly defined on T 1,0M .

Let (M,F ) be a complex Finsler manifold. For any z ∈ M and

0 ̸= y ∈ T 1,0
z M , we define ∇y : T 1,0

z M ⊗ C∞(T 1,0M) → T 1,0
z M by

∇y
uV = {u(V i(z)) + V j(z)Γi

j;k(z, y)u
k} ⊗ ∂

∂zi
|z where

u = ui
∂

∂zi
|z, V = V i ∂

∂zi
.

The complex Berwald connection ∇ : T 1,0
z M ⊗C∞(T 1,0

M ) → T 1,0
z M is

defined by ∇yV = ∇y
yV for y ∈ M̃z and ∇y = 0 when y = 0. In general,

this connection isn’t a linear one. However, it is linear if and only if
(M,F ) is Berwaldian.

Theorem 3.1. Let (M,F ) be a strictly Kähler-Berwald manifold with
nonzero constant holomorphic sectional curvature c. Then (M,F ) is a
Kähler manifold.
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Proof. Let ∇ be the complex Berwald connection on (M,F ), which is a
linear connection since M is Berwaldian. The curvature forms of ∇ are

Φβ
α = dωβ

α − ωγ
α ∧ ωβ

γ ,

where ωβ
α = Γβ

γ;αdzγ .
Under local coordinate system, we can write

Φβ
α =

1

2
Kβ

αγδ̄
dzγ ∧ dz̄δ,

where Kβ

αγδ̄
= −2

∂Γβ
α;γ

∂z̄δ
, since [ δ

δzµ ,
δ

δzν ] = 0.

We can rewrite the holomorphic sectional curvature of (M,F ) as

K(X) =
Gαβ̄K

α
σγδ̄

yσȳβyγ ȳδ

G2(y)
,

where X ∈ TpM,p ∈M , and X = y + ȳ, y ∈ T 1,0
p M,y = yα ∂

∂zα .
Now let (M,F ) be a Kähler-Berwald manifold with nonzero constant

holomorphic sectional curvature c; then Γα
β;µ, and K

β

αγδ̄
are independent

on y.
Let D be the Chern-Finlser connection associated to F . In local

coordinates, the curvature operator of D is given by

Ωα
β = Rα

β;µν̄dz
µ ∧ dz̄ν +Rα

βδ;ν̄ψ
δ ∧ dz̄ν +Rα

βγ̄;µdz
µ ∧ ψ̄γ +Rα

βδγ̄ψ
δ ∧ ψ̄γ ,

where

Rα
β;µν̄ = −δν̄(Γα

β;µ)− Γα
βσδν̄(Γ

σ
;µ),

Rα
βδ;ν̄ = −δν̄(Γα

βδ),

Rα
β;γ̄µ = −∂̇γ(Γα

β;µ)− Γα
βσΓ

σ
γ̄;µ,

Rα
βδγ̄ = −∂̇γ(Γα

βδ).

We refer to [1] for the notations here.
Since (M,F ) is with constant holomorphic sectional curvature c, then

cG2 = −2Gαδν̄(Γ
α
;µ)y

µȳν .

It is equivalent to

(3.1)
c

2
(Gβγ̄Gµν̄ +Gβν̄Gµγ̄)y

β ȳγyµȳν = −2Gαγ̄δν̄(Γ
α
β;µ)y

β ȳγyµȳν .

Denote Kβσ̄µν̄ = Gασ̄K
α
βµν̄ , Rβσ̄;µν̄ = Gασ̄R

α
β;µν̄ , then

Rβσ̄;µν̄ =
1

2
Kβσ̄µν̄ −Gασ̄Γ

α
βδδν̄(Γ

δ
;µ),
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and

Rβσ̄;µν̄y
β =

1

2
Kβσ̄µν̄y

β.

For a Kähler-Berwald metric, the condition ⟨∂̄Hθ(H,χ, K̄), χ⟩ = 0 is
equivalent to ⟨Ω(H, K̄)χ, χ⟩ = ⟨Ω(χ, K̄)H,χ⟩,for all H,K ∈ H. So we
have

Rβσ̄;µν̄y
β ȳσ = Rµσ̄;βν̄y

β ȳσ.

Furthermore, by (1.4) in [2], Rβσ̄;µν̄ = Rσβ̄;νµ̄.And we haveRβσ̄;µν̄y
β ȳσ =

Rβν̄;µσ̄y
β ȳσ. Notice that Kβσ̄µν̄ = Kµσ̄βν̄ , we get

(3.2) Kβσ̄µν̄y
β ȳσyµ = Kβν̄µσ̄y

β ȳσyµ.

Differentiating on ȳ for both sides of (3.1), it turns into

c(Gβγ̄Gµν̄ +Gβν̄Gµγ̄)y
βyµȳν = 4Gαγ̄K

α
βµν̄y

βyµȳν ,

where we use (3.2). Hence,

cGµν̄y
αyµȳν = 2Kα

βµν̄y
βyµȳν .

Differentiating again on ȳ, we have

cGµν̄y
αyµ = 2Kα

βµν̄y
βyµ.

Differentiating on yα and add up by α, we can get

c(n+ 1)Gµν̄y
µ = 4Kα

αµν̄y
µ.

Differentiating once more on y, we have

Gµν̄ =
4

c(n+ 1)
Kα

αµν̄ ,

which means Gµν̄ is independent on y, and (M,F ) is a Kähler manifold.
□

Let’s look at the example in Section 2. It is obvious that Fε is a
complex Berwald metric. Furthermore, Fε is strictly Kähler-Finslerian
if α and β are both Kähler metrics. Since Fε is non-Hermitian, then it
is impossible for (M1 ×M2, Fε) to have nonzero constant holomorphic
sectional curvature.
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4. A note on S-curvature in complex Finsler geometry

S-curvature plays an important role in Riemann-Finsler geometry,
which describes the rate of change of the distortion along geodesics (see
[6, 8, 9]). Now let’s take a look in the complex setting.

Let V be an n-dimensional complex vector space and let F = F (y)
be a Minkowski norm on V . Fix a basis {bi} for V and let

σF :=
vol(Bn)

vol{(yi) ∈ Cn|F (yibi) < 1}
,

and

gij̄ =
∂2F 2

∂yi∂ȳj
,

where y = yibi. Define

τ := ln
det(gij̄)

σF
.

It is easily verified that τ is well-defined and real-valued. We call it the
distortion of F .

Observe that

τyk =
∂

∂yk
[ln det(gij̄)] = gj̄i

∂gij̄
∂yk

= Ik,

where Ik = gj̄i
∂gij̄
∂yk

is the mean Cartan tensor given in [10]. By Deicke’s

Theorem on complex Minkowski space (see [10]), one concludes that F
is Euclidean if and only if τ = constant, in which case, τ = 0.

Now we consider complex Finsler metrics. Let F be a complex Finsler
metric on a complex manifold M . Since the distortion is defined for the
complex Minkowski norm Fz on every holomorphic tangent space T 1,0

z M ,
we obtain a scalar function τ = τ(z, y) on T 1,0M\{0}. We call it the
distortion of F . By Deicke’s Theorem in [10], F is Hermitian if and only
if τ = 0. Thus the distortion characterizes Hermitian metrics among
complex Finsler metrics.

Now we try to define the S-curvature in a complex Finsler manifold.
For a vector y ∈ T 1,0

z M\{0}, let σ = σ(t) be a geodesic with σ(0) = z
and σ̇(0) = y. Set

S1(z, y) :=
d

dt
[τ(σ(t), σ̇(t)]|t=0,
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then S1 is real-valued. However, S1 is also complex y-homogeneous of
degree one,

S1(z, λy) = λS1(z, y), λ ∈ C − {0}.
Hence, it has no choice but S1 ≡ 0, which means τ is constant along
geodesics. Recall that in real Finsler manifold, the S-curvature vanishes
for any Berwald metric. However, in general, this is not the case.

Therefore, we retry to use complex geodesics instead of geodesic curves.
For a vector y ∈ T 1,0

z M\{0}, let φ : ∆r →M be a segment of c-geodesic
complex curve with φ(0) = z, φ′(0) = y in the sense of M.Abate and
G.Patrizio [1]. We can set

S(z, y) =
d

dz
τ(φ(z), φ′(z))|z=0.

This S is also complex y-homogeneous of degree one.
However, according to the existence theorem in [1], the Cauchy prob-

lem {
Dc(φ) = φ” +Ac(φ

′) + Γα
;µ(φ

′)(φ′) = 0
φ(0) = z, φ′(0) = y

has a holomorphic solution for all (z, y) where F (y) = 1 if and only
if the holomorphic sectional curvature of (M,F ) is constant 2c and
⟨∂̄Hθ(H,χ, χ̄), χ⟩ = 0 for all H ∈ H. This means complex geodesics
can exist only under such strict conditions.

Furthermore, we also assert that S(z, y) vanishes for any Kähler-
Berwald manifolds. In fact, let φ = φ(z) be any segment of c-geodesic
complex curve on a Kähler-Berwald manifoldM . Since the line segment
z = z(t) = λt is the geodesic from 0 to λ on ∆r, where |λ| < r, 0 ≤ t ≤ 1,

γ(t) = φ(z(t)) is the geodesic on M . Let {bi(0)} be a basis of T 1,0
φ(0)M ,

and we extend it to be a holomorphic frame {bi(z)} on φ(z) by parallel
translation along the geodesic γ. Let gij̄(z) = gφ̇(z)(bi(z), bj(z)); then,

gij̄(z) is constant and γ̇(t) = λφ̇(z(t)). Similarly, F (φ(z), yibi(z)) =

constant for any (yi) ∈ Cn, so σF (φ(z)) = constant and S = 0.
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