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1. Introduction

An investigation of linear correspondences defined on cones in normed
spaces was given in [3]. In particular, the existence of a unique iteration
semigroup of continuous linear selections of an iteration semigroup of lin-
ear correspondences defined on a cone with a finite cone basis is shown
in [3]. It is shown in [5] that a regular cosine family consisting of super-
additive mappings continuous and homogeneous with respect to positive
rationals with compact values has exponential growth. The continuity
of a regular cosine family consisting of continuous and additive map-
pings with compact and convex values defined on cones with nonempty
interior in Banach spaces is established in [5]. A generalization of these
results in normed spaces can be found in [1].

In this paper, we reintroduce linear and sublinear correspondences
on cones in real normed spaces and give some results on continuity. A
general form of linear and sublinear correspondences with convex and
compact values is given. We also present some results on invertibility of
selections of sublinear correspondences and some results for an iteration
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semigroup of sublinear correspondences. More precisely, the outline of
this paper is as follows.

In Lemma 2.2 we give a necessary and sufficient condition for upper
semicontinuity of a sublinear correspondence. In Lemma 2.6 we show
that the inequality given in Lemma 2 of [3] can be replaced by equal-
ity. Corollaries 2.7 and 2.8 show the validity of Lemma 2 and Lemma
3 in [3] for sublinear correspondences, respectively. Theorem 3.4 is a
restatement of Theorem 1 in [3] for sublinear correspondences.

We begin with some basic concepts which are needed in this paper.
A subset C of a real normed space X is a cone if tC ⊆ C for every

t > 0. A linearly independent set E is said to be a basis of cone C if

C = {x ∈ X : x = Σn
i=1λiei, n ∈ N, ei ∈ E, λi ≥ 0, i = 1, · · · , n}.

Throughout this paper we assume that X and Y are two real normed
spaces and C is a convex cone of X.

Let c(X) denote the set of all nonempty and compact subsets of X
and cc(X) be the family of all convex sets of c(X).

We recall that a correspondence φ on any subset E of X is a relation
which assigns a nonempty set of Y to each element of E. We use the
notations φ : C → c(Y ) and φ : C → cc(Y ) for correspondences with
compact values and convex and compact values, respectively.

Definition 1.1. [3] A correspondence φ : C ↠ Y is called:

(1) linear if φ(x+y) = φ(x)+φ(y) (additivity) and φ(λx) = λφ(x),
for every x, y ∈ C and λ > 0;

(2) sublinear if φ(x+y) ⊆ φ(x)+φ(y) and φ(λx) = λφ(x), for every
x, y ∈ C and λ > 0.

It is clear that every linear correspondence is sublinear but the con-
verse is not true.

Definition 1.2. [5] A correspondence φ : C ↠ Y is said to be bounded
if for every bounded subset E of C the subset φ(E) is bounded in Y .

We recall that a neighborhood of a set A is any set B for which there
is an open set V satisfying A ⊆ V ⊆ B.

Definition 1.3. [2] A correspondence φ : C ↠ Y is said to be:

(1) upper semicontinuous at the point x if for every neighborhood U
of φ(x), there is a neighborhood V of x such that z ∈ V implies
φ(z) ⊆ U . Also φ is upper semicontinuous on C, if it is upper
semicontinuous at every point of C.
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(2) lower semicontinuous at the point x if for every open set U that
φ(x) ∩ U ̸= ∅ there is a neighborhood V of x such that z ∈ V
implies φ(z) ∩ U ̸= ∅. φ is lower semicontinuous on C, if it is
lower semicontinuous at every point of C.

(3) continuous at x if it is both upper and lower semicontinuous at
x. It is continuous if it is continuous at each point of C.

For each pair of nonempty and compact subsets A and B of X, the
Hausdorff metric h is defined as

h(A,B) = max{supa∈Ad(a,B), supb∈Bd(b, A)},
where d(a,B) = infb∈B∥a− b∥.

Every correspondence with compact values φ : X ↠ Y is continuous if
and only if φ : X → (c(Y ), h) is continuous in the sense of a single-valued
function (see Theorem 17.15 in [2]).

2. Continuity of linear and sublinear correspondences

In this section we study the continuity of linear and sublinear corre-
spondences defined on cones with a finite basis in real normed spaces.
We start with the following.

Lemma 2.1. [5] A sublinear correspondence φ : C ↠ Y is bounded if
and only if there exists a positive constant M such that

(2.1) ∥φ(x)∥ := sup{∥y∥ : y ∈ φ(x)} ≤M∥x∥, (x ∈ C).

Lemma 1 in [3] gives a necessary condition for upper semicontinuity
of a linear correspondence.

Lemma 2.2. Let 0 ∈ C ⊆ X. If φ : C ↠ Y is a bounded-valued
sublinear correspondence, then φ is upper semicontinuous at zero if and
only if φ is bounded.

Proof. If φ is upper semicontinuous at zero, then by an argument similar
to that in the proof of ( [3], Lemma 1) and Lemma 2.1 we get the
boundedness of φ. Conversely, suppose that φ satisfies (2.1) and U is
a neighborhood of φ(0) = {0}. Then, there exists ε > 0 such that
Nε(0) ⊆ U . Now for every z ∈ N ε

M
(0) we have φ(z) ⊆ U , i.e., φ is

upper semicontinuous at zero. □
We define the norm of a bounded sublinear correspondence φ : C ↠ Y

by
∥φ∥ = inf{M > 0 : ∥φ(x)∥ ≤M∥x∥, x ∈ C}.
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Theorem 2.3. Let E = {e1, e2, ..., en} be a basis of C. If φ : C → c(Y )
is linear, then φ is continuous.

Proof. Let ∼ denote the Rȧdström’s equivalence relation between pairs
of members of cc(Y ) defined by

(A,B) ∼ (C,D) ⇔ A+D = B + C, (A,B ∈ cc(X))

and [A,B] denote the equivalence class of (A,B) (see [4]). The set of all
equivalence classes ∆ with the operations

[A,B] + [C,D] = [A+ C,B +D],

λ[A,B] = [λA, λB] (λ ≥ 0),

λ[A,B] = [−λB,−λA] (λ < 0),

and the norm

∥[A,B]∥ := h(A,B),

constitute a real linear normed space (see [4]). The function f : C → ∆
defined by

f(x) = [φ(x), {0}],

is linear and can be extended to a linear operator f̂ : C − C → ∆ by

f̂(x− y) = f(x)− f(y), (x, y ∈ C).

Since C−C is of finite dimension, f̂ and consequently f are continuous.
Let x0 ∈ C and (xn) be a sequence of C converging to x0. Then

lim
n→∞

h(φ(xn), φ(x0)) = lim
n→∞

∥f(xn)− f(x0)∥ = 0,

that is, φ is continuous. □

Each set of the formM :=M1× ...×Mn, whereMi ⊆ Rn (i = 1, ..., n)
will be called a multimatrix. If E = {e1, e2, ..., en} is a basis of C and
φ : C ↠ C is linear, then there exists an isomorphism l : C − C → Rn

defined by

(2.2) l(

n∑
j=1

λjej) = (λ1, ..., λn)
T ,

that maps C onto [0,+∞)n and Mφ := l(φ(e1)) × ... × l(φ(en)) is a
nonempty convex multimatrix [3].
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Corollary 2.4. Let E = {e1, e2, ..., en} be a basis of C. If φ : C ↠ C
is a linear correspondence, then

(2.3) φ(x) = {l−1Al(x)}A∈Mφ , (0 ̸= x ∈ C)

and φ is lower semicontinuous at every point.

Proof. If x =
∑n

j=1 λjej ∈ C, we have l−1Al(x) =
∑n

i=1

∑n
j=1(λjaij)ei,

for every A = [aij ] ∈Mφ and therefore

{
∑n

i=1

n∑
j=1

(λjaij)ei : A = [aij ] ∈Mφ} = {l−1Al(x)}A∈Mφ .

Thus, it suffices to show that

φ(x) = {
∑n

i=1

n∑
j=1

(λjaij)ei : A = [aij ] ∈Mφ} (0 ̸= x =
n∑

j=1

λjej ∈ C).

Let φM (x) be the quantity of the right hand and z ∈ φ(x). We may find
uj ∈ φ(ej) and then A = [aij ] ∈Mφ such that

z =
n∑

j=1

λjuj =
n∑

j=1

λj

n∑
i=1

(aijei) =
n∑

j=1

n∑
i=1

(λjaij)ei.

Therefore z ∈ φM (x). It is easy to see that φM (x) ⊆ φ(x) and therefore
φ(x) = φM (x) for every x ∈ C \ {0}. To see the lower semicontinuity
of φ, let x ∈ C \ {0} and U be an open set with U ∩ φ(x) ̸= ∅. From
(2.3) and the continuity of l−1Al for each A ∈ Mφ there exists an open
neighborhood V of x such that φ(z)∩U ̸= ∅, for each z ∈ V. Now to see
the lower semicontinuity of φ at zero, let (xn)n be a sequence convergent
to zero and y ∈ φ(0). We can assume that all xn’s are nonzero. Fix an
A ∈Mφ so limn→∞ l−1Al(xn) = 0 and the sequence (zn) with

zn = y + l−1Al(xn) ∈ φ(0) + φ(xn) = φ(xn),

tends to y. Thus, by Theorem 17.21 in [2], the proof is complete. □

In Corollary 2.4 if φ : C → c(C), then φ is continuous by Theorem
2.3.

Let C be a cone with a finite basis {e1, e2, ..., en}. For every sub-
linear correspondence φ : C → c(Y ) there exists a linear continuous
correspondence φ̂ : C → cc(Y0) containing φ, defined by
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(2.4) φ̂(x) =

n∑
j=1

λjco(φ(ej)),

for every x =
∑n

j=1 λjej , where Y0 and co(φ(ej)) denote the completion

of Y and the closed convex hull of the set φ(ej) in Y0, respectively.

Corollary 2.5. Let E = {e1, e2, ..., en} be a basis of C. If φ : C → c(Y )
is a sublinear correspondence, then
i) φ is upper semicontinuous at every point;
ii) moreover, if φ : C ↠ C, then for every x ∈ C \ {0} we have

φ(x) ⊆ (l−1Al(x))A∈Mco(φ)
,

where l is the isomorphism given in (2.2).

Proof. i) Let Y0 be the completion of Y. Consider φ̂ as given in (2.4).
Obviously, φ̂ : C ↠ Y0 is a linear correspondence with convex and
compact values. From Theorem 2.3, since φ̂ is upper semicontinuous at
zero and ∥φ∥ ≤ ∥φ̂∥, Lemma 2.2 implies that φ is upper semicontinuous
at zero. Now let x0 be a nonzero element in C. For any neighborhood
U of φ(x0), there exists an open ball U0 centered at zero such that,

φ(x0)− U0 + U0 ⊆ U.

Since φ is upper semicontinuous at zero then there is an open neighbor-
hood V0 of zero in C such that φ(z) ⊆ U0 for every z ∈ V0. We may
suppose that αx0 ∈ V0, for some α ∈ (0, 1). Now there is an open ballW0

of αx0 such that W0 ⊆ V0 with x0 /∈W0. Putting Wx0 = x0 −αx0 +W0

we see that Wx0 is open. Since x0 = Σn
i=1λiei /∈ W0 there exist r > 0

and open balls NC
r (x0) and NC

r (αx0) in C such that NC
r (αx0) ⊆ W0,

NC
r (x0) ∩W0 = ∅ and r < αλi for i = 1, · · · , n with λi ̸= 0. We now

show that

NC
r (x0) ⊆ NC

r (αx0) + (1− α)x0.

Without loss of generality we assume that ∥e1∥ = ∥e2∥ = · · · = ∥en∥ = 1.
Let z = Σn

i=1µiei ∈ NC
r (x0), so −r < µi − λi < r for each 1 ≤ i ≤ n

with λi ̸= 0. Therefore,

0 < −r + αλi < µi − λi + αλi < r + αλi (i = 1, · · · , n), λi ̸= 0,

and

0 < µi < r (i = 1, · · · , n), λi = 0.
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Thus Σn
i=1(µi − (1− α)λi)ei ∈ C. Since

∥z − (1− α)x0 − αx0∥ = ∥z − x0∥ < r,

so

NC
r (x0)− (1− α)x0 ⊆ NC

r (αx0).

Now for every z ∈ Wx0 , there is a point z0 ∈ W0 such that z = x0 −
αx0 + z0 and from above (note αx0, z0 ∈ V0)

φ(z) = φ(x0 − αx0 + z0) ⊆ (1− α)φ(x0) + φ(z0)

⊆ φ(x0)− αφ(x0) + φ(z0)

⊆ φ(x0)− U0 + U0

⊆ U.

Thus, φ is upper semicontinuous at x0.
ii) Consider the linear correspondence φ̂ as (2.4). By Corollary 2.4, φ̂ is
of the form (2.3). Since Mco(φ) =Mφ̂ and φ(x) ⊆ φ̂(x) for each nonzero
x, we obtain the desired inclusion. □

The following example shows that a sublinear correspondence need
not be lower semicontinuous at every point.

Example 1. Define φ : [0,+∞)× [0,+∞) → [0,+∞)× [0,+∞) by

φ(x, y) =

{
{(0, 0)} x ≥ 0, y > 0;
{(t, 0) : 0 ≤ t ≤ x} x ≥ 0, y = 0.

It is easy to see that the sublinear correspondence φ is not lower
semicontinuous at every point (x, 0) where x > 0.

For the rest of this section we consider, inspired by [3], the relations
between Hausdorff distance of the unit matrix and multimatrix of a
linear correspondence and invertibility of its selections.

Every cone C with a finite basis E = {e1, ..., en} induces a norm on
the vector space of all n× n matrices Mn(R) by

(2.5) ∥A∥ = sup{ ∥
n∑

i=1

(

n∑
j=1

λjaij)ei∥ :

n∑
j=1

λjej ∈ C, ∥
n∑

j=1

λjej∥ = 1},

for every A = [aij ] (see [3]).
In the following, h1 and I will denote the Hausdorff metric derived

from the norm given in (2.5) and the unit matrix, respectively.
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Lemma 2.6. Suppose that C has a finite cone basis. If φ : C → c(C)
is a linear correspondence, then

h1(Mφ, {I}) = sup{h(φ(x), {x}) : x ∈ C, ∥x∥ = 1}.

Proof. From Lemma 2 in [3], we have

h1(Mφ, {I}) ≤ sup{h(φ(x), {x}) : x ∈ C, ∥x∥ = 1},

and from Corollary 2.4, φ(x) = {l−1Al(x)}A∈Mφ
for each x ∈ C \ {0}.

If x ∈ C with ∥x∥ = 1, then by Lemma 3.76 in [2] there exists Ax ∈Mφ

such that

h(φ(x), {x}) = ∥l−1Axl(x)− x∥ ≤ ∥Ax − I∥.

Therefore

sup{h(φ(x), {x}) : x ∈ C, ∥x∥ = 1} ≤ sup{∥Ax − I∥ : x ∈ C, ∥x∥ = 1}
≤ sup{∥A− I∥ : A ∈Mφ}
= h1(Mφ, {I}).

□

Corollary 2.7. Suppose that C has a finite cone basis. If φ : C → c(C)
is a sublinear correspondence, then

h1(Mφ̂, {I}) ≥ sup{h(φ(x), {x}) : x ∈ C, ∥x∥ = 1},

where φ̂ is given in (2.4).

Proof. The proof is an easy application of Lemma 2.6 and φ(x) ⊆ φ̂(x)
for each x ∈ C. □

In [3], it is shown that for a cone C with a finite basis there exists an
η > 0 such that for every linear correspondence φ : C → c(C) satisfying

h1(Mφ, {I}) < η,

every A ∈ Mφ is invertible. If coφ : C → cc(C) denotes the correspon-
dence x→ coφ(x), then we have the following result.

Corollary 2.8. Let {e1, e2, · · · , en} be a finite basis of C. Then, there
exists an η > 0 such that for every sublinear correspondence φ : C →
c(C) satisfying h1(Mco(φ), {I}) < η, each A ∈Mφ is invertible.
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Proof. Consider φ̂ as given in (2.4). Since φ̂ is linear with convex and
compact values, by Lemma 3 in [3], there exists η > 0 such that for
every linear correspondence φ̂ with h1(Mφ̂, {I}) < η, then A ∈ Mφ̂ is
invertible. Since Mco(φ) = Mφ̂ and Mφ ⊆ Mco(φ), every A ∈ Mφ is
invertible. □

3. Iteration semigroups of sublinear correspondences

In this section we investigate the continuity of an iteration semigroup
of sublinear correspondences. Theorem 3.4 is, in fact, a generalization
of Theorem 1 in [3].

Recall that the composition of two correspondences φ : X ↠ Y and
ψ : Y ↠ Z is defined by

ψ ◦ φ(x) = ∪y∈φ(x)ψ(y), (x ∈ X).

Definition 3.1. [3] A family {φt : t ≥ 0} of correspondences φt : C ↠
C is called an iteration semigroup if φt ◦ φs = φt+s for all t, s ≥ 0. An
iteration semigroup {φt : t ≥ 0} of correspondences φt : C → cc(C) is
said to be continuous if for every x ∈ C the correspondence t → φt(x)
is continuous.

Lemma 3.2. [5] Let C be convex with nonempty interior. Then there
exists M > 0 such that for every linear continuous correspondence φ :
C → c(Y ) the inequality

h(φ(x), φ(y)) ≤M∥φ∥ ∥x− y∥, (x, y ∈ C)

holds.

As a direct result of Lemma 3.2, we get the following result.
If E = {e1, e2, ..., en} is a finite basis of C, then there isM > 0 such that
for every compact-valued sublinear correspondence φ, ψ : C → c(C),

h(φ̂ ◦ ψ̂(x), φ̂(x)) ≤M∥φ̂∥ h(ψ̂(x), {x}), (x ∈ C)

where φ̂ is of the form (2.4).

Lemma 3.3. Let C be a cone with finite basis {e1, e2, ..., en}. If {φt :
C → cc(C)}t≥0 is an iteration semigroup of sublinear correspondences
φt with φ0(x) = {x}, then there exists M > 1 such that

(3.1) h(φ̂w+s(x), φ̂w(x)) ≤M ∥φ̂w∥ ∥φ̂s − φ0∥ ∥x∥,

for each w, s ≥ 0 and x ∈ C.
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Proof. For every w ≥ 0, s ≥ 0 and z ∈ φ̂s+w(x) ⊆ φ̂w ◦ φ̂s(x), we get

d(z, φ̂w(x)) ≤ h(φ̂w ◦ φ̂s(x), φ̂w(x)).

Therefore by Lemma 3.2,

d(z, φ̂w(x)) ≤M∥φ̂w∥ h(φ̂s(x), {x}),

and so

(3.2) sup
z∈φ̂w+s(x)

d(z, φ̂w(x)) ≤M∥φ̂w∥ ∥φ̂s − φ0∥ ∥x∥.

Without loss of generality we can assume thatM > 1. On other hand for
z ∈ φ̂w(x), there exist zi ∈ φw(ei), i = 1, . . . , n such that z =

∑n
i=1 λiei.

Thus

φ̂w+s(x) =
∑n

i=1 λiφ
sφw(ei)

⊇
∑n

i=1 λiφ
s(zi)

⊇ φs(
∑n

i=1 λizi),

and consequently

d(z, φ̂w+s(x)) ≤ d(z, φs(z))

≤ supy∈φ̂s(z) ∥z − y∥

= ∥(φ̂s − φ0)(z)∥

≤ ∥z∥ ∥φ̂s − φ0∥

≤ ∥φ̂w∥ ∥φ̂s − φ0∥ ∥x∥.

Hence

(3.3) sup
z∈φ̂w(x)

d(z, φ̂w+s(x)) ≤M∥φ̂w∥ ∥φ̂s − φ0∥ ∥x∥.

Now, (3.2) and (3.3) imply (3.1). □

Theorem 3.4. Let C be a cone with finite basis {e1, · · · , en} and let
B be a bounded subset of C. If {φt : C → cc(C)}t≥0 is an iteration
semigroup of sublinear correspondences satisfying the conditions:
i) φ0(x) = {x}, for all x ∈ C;
ii) limt→0 ∥φt − φ0∥ = 0;
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then, there exists β0 > 0 and γ > 0 such that ∥φt∥ ≤ β0e
γt, for each

t ≥ 0 and
(3.4)

∀w ≥ 0 ∀ε > 0∃δ > 0∀x ∈ B (| s− w |< δ ⇒ h(φ̂w(x), φ̂s(x)) < ε).

In particular, {φ̂t : t ≥ 0} is continuous, where φ̂t is of the form (2.4).

Proof. We assume that ∥e1∥ = · · · = ∥en∥ = 1. Let {φt : t ≥ 0} be

an iteration semigroup satisfying i) and ii). Consider φ̂t as in (2.4)
and ∥ · ∥0 the norm induced by the basis {e1, · · · , en} of C − C with
∥x∥0 =

∑n
i=1 | λi |, where x =

∑n
i=1 λiei. Since

∥φ̂t − φ0∥ = sup{∥φ̂t(x)− x∥ : ∥x∥ = 1, x ∈ C}
= sup{∥

∑n
i=1λiφ

t(ei)−
∑n

i=1λiei∥ : ∥x∥ = 1, x =
∑n

i=1λiei}
≤ sup{

∑n
i=1λi∥φt(ei)− ei∥ : ∥x∥ = 1, x =

∑n
i=1λiei}

≤ k∥φt − φ0∥,

for some k > 0 where ∥x∥0 ≤ k∥x∥, for all x ∈ C − C. From (ii), we

have limt→0∥φ̂t − φ0∥ = 0. Therefore there exist α > 0 and β > 1 such

that ∥φ̂t∥ ≤ β, for all t ∈ [0, α]. According to the equality φt+s = φt ◦φs

and Corollary 1 in [5] we have

∥φt+s∥ ≤ ∥φt∥ ∥φs∥.

Putting t = r · α+ δ, where 0 ≤ δ < α and r is a nonnegative integer
we obtain

∥φ̂t∥ = sup{∥
∑n

i=1λiφ
rα+δ(ei)∥ : x =

∑n
i=1 λiei, ∥x∥ = 1}

≤ sup{
∑n

i=1λi∥φrα+δ(ei)∥ : x =
∑n

i=1 λiei, ∥x∥ = 1}

≤ k ∥φrα+δ∥.

Therefore for t ≥ 0, we have (note t = rα+ δ and so r < t
α)

∥φ̂t∥ ≤ k ∥φα∥r ∥φδ∥

≤ kβr+1

= kβ βr

≤ β0e
γt,
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where γ := 1
α lnβ and β0 = kβ.

Now we will show that (3.4) can be established by an argument similar
to that in the proof of Theorem 1 in [3]. Let w > 0 and B be a bounded
set. By Lemma 3.3, there exists ρ > 1 such that for each x ∈ B and
s ≥ 0

h(φ̂s+w(x), φ̂w(x)) ≤ ρ∥φ̂w∥ ∥φ̂s − φ0∥ ∥x∥

≤ ρβ0e
γw ∥φ̂s − φ0∥ ∥x∥

≤ ρβ0e
γw∥φ̂s − φ0∥ ∥B∥.

On the other hand for every x ∈ B and w ≥ s ≥ 0,

h(φ̂w(x), φ̂w−s(x)) ≤ ρ∥φ̂w−s∥ ∥φ̂s − φ0∥ ∥x∥

≤ ρβ0e
γ(w−s) ∥φ̂s − φ0∥ ∥x∥

≤ ρβ0e
γw∥φ̂s − φ0∥ ∥B∥.

Now, by (ii), statement (3.4) holds. Finally for every x ∈ C, putting B =

{x}, we get lims→w h(φ̂s(x), φ̂w(x)) = 0 and {φ̂t : t ≥ 0} is continuous.
□

Example 2. Let C be a cone with a finite basis. Then for the iteration
semigroup {φt : t ≥ 0} of sublinear correspondences φt : C → cc(C)
given by

φt(x) = [e
t
2 , et]x (x ∈ C),

we have
∥φt∥ ≤ et,

and
lim
s→w

h(φs(x), φw(x)) = 0,

that is the given family and therefore the family of their linear extensions
are continuous.
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