ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 1, pp. 159-175

Title: The category of monoid actions in Cpo

Author(s):

M. Mahmoudi and H. Moghbeli-Damaneh

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 1, pp. 159–175 Online ISSN: 1735-8515

THE CATEGORY OF MONOID ACTIONS IN CPO

M. MAHMOUDI* AND H. MOGHBELI-DAMANEH

(Communicated by Ali Reza Ashrafi)

ABSTRACT. In this paper, some categorical properties of the category $\mathbf{Cpo}_{\mathbf{Act}-S}$ of all cpo *S*-acts, cpo's equipped with actions of a monoid *S* on them, and strict continuous action-preserving maps between them is considered. In particular, we describe products and co-products in this category, and consider monomorphisms and epimorphisms. Also, we show that the forgetful functor from $\mathbf{Cpo}_{\mathbf{Act}-S}$ to the category of cpo's has both a left and right adjoint. **Keywords:** Directed complete partially ordered set, product, co-

product.

MSC(2010): Primary: 06F05, 18A30, 20M30; Secondary: 06F30.

1. Introduction

The categories **Dcpo** (and **Cpo**) of directed complete partially ordered sets (with a bottom element) and (strict) continuous maps between them play an important role in domain theory and in theoretical computer science. It has been shown (see, for example [1, 9, 11]) that these categories are complete and co-complete.

The action of a monoid on a set is an important algebraic structure in mathematics as well as in computer science. For example, computer scientists use the notion of a projection algebra (sets with an action of the monoid $(\mathbb{N}^{\infty}, \min)$) as a convenient means of algebraic specification of process algebras (see [8]). Combining the notions of a poset and an act, many algebraic and categorical properties of the category of actions of a monoid on a poset have been studied (see for example [2,3,7]).

O2015 Iranian Mathematical Society

Article electronically published on February 15, 2015.

Received: 30 July 2013, Accepted: 27 December 2013.

^{*}Corresponding author.

¹⁵⁹

In this paper, considering actions of a monoid S on a set, namely S-acts, as unary algebraic structures, are investigated as algebras in the category **Cpo**. We describe products, and co-products in this category and show that they are both complete and co-complete. We find free and co-free objects over cpo's, and show that this category is not cartesian closed. Also, monomorphisms and epimorphisms in this category are considered.

2. Preliminaries

In this section, we briefly recall the preliminary notions about the actions of a monoid on a set and on a poset. For more information, see [3, 12].

2.1. The category Act-S. In this subsection, we briefly recall the preliminary notions about the action of a monoid on a set. For more information, see [6, 12].

Definition 2.1. Let S be a monoid with 1 as its identity. A (right) S-act (also called S-set, S-polygon, S-system, S-transition system, Sautomata) is a set A equipped with an action $\lambda : A \times S \to A$, $(\lambda(a, s))$ is denoted by as) such that a1 = a and a(st) = (as)t, for all $a \in A$ and $s, t \in S$.

Remark 2.2. (a) Let A be an S-act with the action $A \times S \to A$. Then, we have the following right and left translations:

(*Right translation*) For each $s \in S$, $R_s : A \to A$, $R_s(a) = as$.

(Left translation) For each $a \in A$, $L_a : S \to A$, $L_a(t) = at$.

(b) Let S be a monoid, A a set, and $A \times S \to A$ a function. Then, A is an S-act if and only if $(A; (R_s)_{s \in S})$ is a unary algebra with $R_s \circ R_t = R_{ts}$ and $R_1 = id_A$.

(c) Each monoid S can clearly be considered as an S-act with the action given by its binary operation $S \times S \to S$. Note that the unary algebra related to this S-act is $(S; (R_s)_{s \in S})$, where $R_s : S \to S$ is defined by $R_s(t) = ts$.

Definition 2.3. An *S*-map $f : A \to B$ between *S*-acts is an actionpreserving map, that is f(as) = f(a)s for each $a \in A, s \in S$. The category of all *S*-acts and *S*-maps between them is denoted by **Act**-*S*.

Definition 2.4. An element a of an S-act A is said to be a zero (or a fixed) element of A if as = a, for all $s \in S$.

Note that if S is a monoid with a zero element z, then for each S-act A and $a \in A$, az is a zero element of A.

In the following, we recall some categorical ingredients of Act-S needed in the sequel (for more information, see [6]).

Theorem 2.5. (1) The product in the category of S-acts is the cartesian product with the component-wise action. In particular, the terminal S-act is the singleton S-act.

(2) The equalizer of a pair $f, g : A \to B$ of S-maps is given by $E = \{a \in A : f(a) = g(a)\}$ with the action inherited from A.

(3) The pullback of S-maps $f : A \to C$ and $g : B \to C$ is the sub S-act $P = \{(a,b) : f(a) = g(b)\}$ of $A \times B$.

(4) The co-product in Act-S is the disjoint union with the natural action. In particular, the initial S-act is the empty S-act.

2.2. The category Pos-S. In this subsection we recall the definition and give some categorical ingredients of **Pos**-S needed in the sequel. For more information, see [3].

For a monoid S we have three functions: the binary operation $S \times S \rightarrow S$ and the right and the left translations $R_s, L_s : S \rightarrow S$, for each $s \in S$. Using these functions we have the following ordered monoids (borrowing some terms from topological semigroups).

Definition 2.6. Let S be a monoid with a partial order \leq . Then:

(a) (S, \leq) is a *pomonoid* if the partial order \leq is compatible with the monoid operation; that is, for $s, t, s', t' \in S$, $s \leq t, s' \leq t'$ imply $ss' \leq tt'$. In other words,

$$(s, s') \le (t, t') \implies ss' \le tt'.$$

(b) (S, \leq) is a semi pomonoid (or separately pomonoid) if for each $s \in S$, both the right and the left translations $R_s, L_s : S \to S$ are order-preserving.

(c) (S, \leq) is a right (left) semi pomonoid if for each $s \in S$, the right (left) translation R_s (L_s) is order-preserving.

Remark 2.7. Note that (S, \leq) is a pomonoid if and only if it is a *semi pomonoid*. This remark also shows that a right or a left semi pomonoid is not necessarily a pomonoid.

Similar to Definition 2.6, one has the following.

Definition 2.8. Let S be a pomonoid, A an S-act, and \leq a partial order on A. Then:

(a) (A, \leq) is an *S*-poset if the action on A is order-preserving; that is,

$$(a,s) \le (b,t) \Rightarrow as \le bt.$$

(b) (A, \leq) is a semi S-poset (or separately S-poset) if for each $s \in S$ and $a \in A$, both the right and the left translations $R_s : A \to A$, $L_a : S \to A$ are order-preserving.

(c) (A, \leq) is a *weak semi S-poset* if for each $s \in S$, the right translation $R_s: A \to A$ is order-preserving.

Remark 2.9. (a) Let S be a pomonoid, A an S-act, and \leq a partial order on A. Then A is an S-poset if and only if it is a semi S-poset.

(b) Let S be a pomonoid, A an S-act, and \leq a partial order on A. Then, A is a semi S-poset if and only if $(A; (R_s)_{s \in S})$ is a unary algebra in the category **Pos** of posets, satisfying $R_s \circ R_t = R_{ts}$ and $R_1 = id_A$.

(c) Notice that if (S, \leq) is a left or right semi pomonoid or (A, \leq) has some extra properties, then the above remarks may change accordingly. For example, as in this paper, \leq may be the equality on S and each S-poset A may have the smallest element \perp_A , in which case the action may preserve the smallest element (\perp_A, \perp_S) but the right translations may not preserve \perp_S , and vice versa (see Remark 3.2).

Definition 2.10. An *S*-poset map $f : P \to Q$ between *S*-posets is an action-preserving monotone map. The category of all *S*-posets with action-preserving monotone maps between them is denoted by **Pos**-*S*.

Recall from [3] that products, terminal object, equalizers, pullbacks, and co-products of S-posets are as in Act-S with the obvious order.

3. Acts in Cpo

In the following, we first recall the category **Cpo** of cpo's (see [11]) and then introduce the category of acts in **Cpo**.

Recall that a nonempty subset D of a partially ordered set P is called *directed*, denoted by $D \subseteq^d P$, if for every $a, b \in D$ there exists $c \in D$ such that $a, b \leq c$, and P is called a *directed complete poset*, or briefly a *dcpo*, if for every $D \subseteq^d P$, the directed join $\bigsqcup D$ exists in P. A dcpo P which has a bottom element \perp_P is said to be a *cpo*.

A continuous map $f : P \to Q$ between dcpo's is a map with the property that for every directed subset D of P, the subset f(D) of Qis directed and $f(\bigsqcup D) = \bigsqcup f(D)$. By a *cpo map* between cpo's, we mean a continuous map which is *strict*; that is, it preserves the bottom element. We denote the category of all cpo's with cpo maps between them by **Cpo**.

Recall from [1] that the product of a family of cpo's is their cartesian product, with component-wise order and ordinary projection maps. In particular, the terminal object of **Cpo** is the one element poset. Also, the co-product of a family of cpo's is their coalesced sum. Recall that the coalesced sum of the family $\{A_i : i \in I\}$ of cpo's is defined to be

$$\biguplus_{i\in I} A_i = \bot \oplus \bigcup_{i\in I} (A_i \setminus \{\bot_{A_i}\})$$

In particular, the initial object of **Cpo** is the singleton poset $\{\theta\}$.

Now, by Remark 2.2, an S-act can be considered as a unary algebra in the category **Set** of sets. In the following, we consider S-acts in the category **Cpo**, the category which will be studied in this paper.

Definition 3.1. Let S be a monoid with identity 1. By a cpo S-act we mean an S-act in the category **Cpo**. In other words, a pair $(A; (R_s)_{s \in S})$ is called a cpo S-act if A is a cpo and each $R_s : A \to A, R_s(a) = as$, is a cpo map, called an action, such that for all $s, t \in S, R_s \circ R_t = R_{ts}, R_1 = id_A$. That is, a(st) = (as)t, a1 = a.

By a *cpo* S-map between cpo S-acts, we mean a cpo map which is also an S-map. The category of all cpo S-acts with cpo S-maps between them is denoted by \mathbf{Cpo}_{Act-S} .

Remark 3.2. (1) First, note that in the definition of a cpo S-act, S need not be a pomonoid. Thus, S itself need not be a cpo S-act.

(2) Notice that a cpo A which is also an S-act whose action λ : $A \times S \to A$ is strict continuous, need not be a cpo S-act. For example, take $S = \{1, a\}$ with the identity 1, the order 1 < a, and binary operation aa = a. Then, S is a cpo which is also an S-act whose action is its binary operation which is clearly strictly continuous. However, S is not a cpo S-act, because a1 = a and so $R_a : S \to S$ is not strict.

(3) The converse of (2) need not be true as well. That is, the action of a cpo S-act is not necessarily continuous. For example, consider the monoid $S = (\mathbb{N} \cup \{\infty\}, \min)$ with the usual order of natural numbers, and $n < \infty$ for all $n \in \mathbb{N}$. Then, S is a cpo, and a monoid whose binary operation is strict continuous. In fact, for every subset X of S, we have $\bigsqcup X = \max X$ if X is a finite set and $\bigsqcup X = \infty$ if X is an infinite set. Now, take A to be the chain $\mathbf{2} = \{0, a\}$ with the right translations defined by 0n = 0 for all $n \in \mathbb{N} \cup \{\infty\}$ and $a\infty = a$ and an = 0 for all $n \in \mathbb{N}$.

Then, A is a cpo S-act but the action $\lambda : A \times S \to A$ is not continuous. Notice that the right translations $R_s : A \to A$ are strict (by definition), and are continuous since for $n \in \mathbb{N}$, $(\bigsqcup \{0, a\})n = an = 0 = \bigsqcup \{0n, an\}$, and $(\bigvee \{0, a\})\infty = a\infty = a = \bigsqcup \{0\infty, a\infty\}$. But the action $A \times S \to A$ is not continuous, since $a(\bigsqcup \mathbb{N}) = a\infty = a$ and $\bigsqcup_{n \in \mathbb{N}} an = \bigsqcup \{0\} = 0$.

(4) If we define the notion of a dcpo S-act by replacing cpo by dcpo in Definition 3.1, then the above Remarks (2) and (3) do not hold. This is because a map $g: A \times B \to C$ is continuous if and only if it is separately continuous in each of its component (that is the induced maps $g_b: A \to C$, and $g_a: B \to C$ are continuous), and this gives that an action is continuous if and only if the right and the left translations are continuous.

Notice that both the *terminal and the initial* objects in the category $\mathbf{Cpo}_{\mathbf{Act}-S}$ are the one element cpo S-act. In the following, we consider products and co-products in the category $\mathbf{Cpo}_{\mathbf{Act}-S}$. To describe the products of cpo S-acts, we need the following lemma.

Lemma 3.3. [5, 11] Let $\{A_i : i \in I\}$ be a family of dcpo's. Then, the directed join of a directed subset $D \subseteq^d \prod_{i \in I} A_i$ is calculated as $\bigsqcup D = (\bigsqcup D_i)_{i \in I}$ where

$$D_i = \{ a \in A_i : \exists d = (d_k)_{k \in I} \in D, a = d_i \}$$

for all $i \in I$.

Theorem 3.4. The product of a family of cpo S-acts is their cartesian product with componentwise actions and order.

Proof. Let $\{A_i : i \in I\}$ be a family of cpo S-acts, and $A := \prod_{i \in I} A_i$. Then, we show that A with the right translations defined by $(a_i)_{i \in I} s = (a_i s)_{i \in I}$ is a cpo S-act. Recall from preliminaries that A is a cpo and an S-act. Now, to see that A is a cpo S-act, it is enough to show that the right translations on A are continuous. Let $D \subseteq^d A$ and $s \in S$. Then we show that $(\bigsqcup D)s = \bigsqcup_{x \in D} xs$. By Lemma 3.3, $\bigsqcup D = (\bigsqcup D_i)_{i \in I}$, where $D_i = \{a \in A_i : \exists (d_k)_{k \in I} \in D, d_i = a\}$ is a directed subset of A_i , for all $i \in I$. Thus we have $(\bigsqcup D)s = (\bigsqcup D_i)_{i \in I}s = ((\bigsqcup D_i)s)_{i \in I} = (\bigsqcup D_is)_{i \in I}$, where the latter equality is true, because the action on each A_i is continuous. Now, we see that $(\bigsqcup D_i s)_{i \in I} = \bigsqcup_{x \in D} xs$. Firstly, notice that $(\bigsqcup D_i s)_{i \in I}$ is an upper bound of the set $\{xs : x \in D\}$, since for $x = (d_i)_{i \in I} \in D$, we have $d_i \in D_i$, for all $i \in I$, and so $xs = (d_is)_{i \in I} \leq ((\bigsqcup D_i s)_{i \in I} \leq I)$, then for $i \in I$ and $a \in D_i$, taking $x = (d_i)_{i \in I}$ with $d_i = a$, we have $as = d_i s \leq c_i$. Thus $(\bigsqcup D_i s)_{i \in I} \leq c$, as required. Also, since A with the ordinary projection maps $p_i : A \to A_i$ is the product in the category of S-acts and in the category of cpo's, we have that they are cpo S-act maps. The universal property of products in the category $\mathbf{Cpo}_{\mathbf{Act}-S}$, follows from the universal property of A as the product in the categories \mathbf{Cpo} and $\mathbf{Act}-S$.

Since the underlying set of the co-product of S-acts is different from that of cpo's, the description of the co-product in $\mathbf{Cpo}_{\mathbf{Act}-S}$ is not as straight as that of products. To describe it, first we see the following lemmas.

Lemma 3.5. Let A be a dcpo. Then $D \subseteq A_{\perp} = \perp \oplus A$ is directed if and only if $D = \{\perp\}$ or $D = \{\perp\} \cup D'$ or D = D' where $D' \subseteq^d A$.

Proof. It is clear that all of $D = \{\bot\}$, D = D' and $D = \{\bot\} \cup D'$ where $D' \subseteq^d A$ are directed subsets of A_{\perp} . Conversely, let $D \subseteq^d A_{\perp}$. Then in the case that $\perp \notin D$, we have $D = D' \subseteq^d A$, and in the case where $\perp \in D$, we have $D = \{\bot\} \cup D'$ with $D' \subseteq^d A$, because for $x, y \in D'$, there exists $z \in D$ such that $x, y \leq z$, and this gives $z \neq \bot$. \Box

Lemma 3.6. The coalesced sum of a family of cpo S-acts is a cpo S-act.

Proof. Let $\{A_i : i \in I\}$ be a family of cpo *S*-acts. It is known that the coalesced sum $A =: \biguplus_{i \in I} A_i$ is a cpo (see Proposition 3.2.8 of [1]). Define the action on A as

$$a.s = \begin{cases} as & \text{if } as \neq \bot_{A_i} \\ \bot_A & \text{if } as = \bot_{A_i} \end{cases}$$

for $a \in A_i$, $i \in I$, $s \in S$, and $\perp_{A.s} = \perp_A$. In particular, $\perp_A . 1 = \perp_A$. Also, for $a \neq \perp_A$, we have a.1 = a. This is because, for some $i \in I$, $a \in A_i$, and so a.1 = a1 = a. Also, a.(st) = (a.s).t, for $a \in A$, $s, t \in S$. This is because, $\perp_A.(st) = (\perp_A.s).t$, by the definition. Also, for $a \neq \perp_A$, $a \in A_i$ for some $i \in I$. First, if $a(st) \neq \perp_{A_i}$, then $as \neq \perp_{A_i}$ (otherwise, since \perp_{A_i} is a zero element, $a(st) = (as)t = \perp_{A_i}t = \perp_{A_i}$), so (as).t =(as)t. Also, $(as)t = a(st) \neq \perp_{A_i}$. Therefore, (a.s).t = (as).t = (as)t =a(st) = a.(st). Secondly, if $a(st) = \perp_{A_i}$, then $a.(st) = \perp_A$. Now, if $as = \perp_{A_i}$ then $a.s = \perp_A$ and so $(a.s).t = \perp_A.t = \perp_A$. Also, if $as \neq \perp_{A_i}$ then a.s = as, and since $(as)t = a(st) = \perp_{A_i}$, $(a.s).t = \perp_A$. Thus $(a.s).t = (a.s).t = \perp_A$, as required.

Now, we show that the right translations are continuous. Let $D \subseteq^d A$ and $s \in S$. Then, by Lemma 3.5, $D \subseteq A$ is directed if and only if

 $D \subseteq^d A_i$, for some $i \in I$, or $D = D' \cup \{\perp_A\}$, where $D' = \emptyset$ or D' is a directed subset of A_i , for some $i \in I$. Now, two cases may occur:

Case (i): $D \subseteq^d A_i$, for some $i \in I$.

Subcase (i1): If $(\bigsqcup D)s \neq \bot_{A_i}$, then we have $(\bigsqcup D).s = (\bigsqcup D)s = \bigsqcup_{x \in D} xs$, where the last equality is true because A_i is a cpo S-act. Now we claim that

$$\bigsqcup_{x \in D} xs = \bigsqcup_{x \in D} x.s \quad (*)$$

Let $K = \{x \in D : xs \neq \bot_{A_i}\}$. Then we have

(1) $K \neq \emptyset$, because otherwise $(\bigsqcup D)s = \bigsqcup_{x \in D} xs = \bot_{A_i}$, which is a contradiction.

(2) For all $x \in K$, x.s = xs, by the definition of right translations on A.

(3) For all $x \in K$ and $x' \notin K$, there exists $x'' \in K$ with $x \leq x''$ and $x' \leq x''$. This is because D is directed. Then $xs \leq x''s$, and hence $x'' \in K$, since $x \in K$.

Now to prove (*), first we see that $\bigsqcup_{x \in D} xs$ is an upper bound of the set $\{x.s : x \in D\}$. Also, for all $x \in K$, $x.s = xs \leq \bigsqcup_{x \in D} xs$. For $x \notin K$, $x.s = \bot_A \leq \bigsqcup_{x \in D} xs$, as required. Secondly, if c is an upper bound of the set $\{x.s : x \in D\}$, then for all $x \in K$ we have $x.s = xs \leq c$. For $x \notin K$ and $x' \in K$ (which exists, since $K \neq \emptyset$), there exists, by (3), $x'' \in K$ such that $x \leq x''$ and $x' \leq x''$. This gives $xs \leq x''s = x''.s \leq c$. Then, for all $x \in D$, we have $xs \leq c$, and so $\bigsqcup_{x \in D} xs \leq c$, as required.

Subcase (i2): If $(\bigsqcup D)s = \bot_{A_i}$, then again we have $(\bigsqcup D)s = \bigsqcup_{x \in D} xs$. This is because the action on A_i is continuous. Also, $(\bigsqcup D)s = \bot_{A_i}$ gives $xs = \bot_{A_i}$, for all $x \in D$. This is because $\bot_{A_i} = (\bigsqcup D)s = \bigsqcup_{x \in D} xs$. Hence, by the definition of the action on A, $(\bigsqcup D).s = \bigsqcup_{x \in D} x.s = \bot_A$.

Case (ii): $D = D' \cup \{\perp_A\}$, where $D' \subseteq^d A_i$, for some $i \in I$.

By case (i), we have $(\bigsqcup D').s = \bigsqcup_{x' \in D'} x'.s$. Also, we have $(\bigsqcup D).s = (\bigsqcup D').s = \bigsqcup_{x' \in D'} x'.s = \bigsqcup_{x' \in D'} x'.s \lor \bot_A = \bigsqcup_{x' \in D'} x'.s \lor \bot_A.s = \bigsqcup_{x \in D} x.s$, as required. Therefore, the right translations on A are strict continuous, and so $A = \biguplus_{i \in I} A_i$ is a cpo S-act.

Theorem 3.7. The co-product of a family of cpo S-acts is their coalesced sum. *Proof.* Let $A = \biguplus_{i \in I} A_i$. By Proposition 3.6, A is a cpo S-act. It is known that the injections $u_i : A_i \to A, i \in I$, defined by

$$u_i(x) = \begin{cases} x & \text{if } x \neq \perp_{A_i} \\ \perp_A & \text{if } x = \perp_{A_i} \end{cases}$$

are cpo maps (see [1]). In addition, we show that $u_i : A_i \to A$, $i \in I$, are action-preserving. First, notice that $u_i(\perp_{A_i}s) = u_i(\perp_{A_i}) = \perp_A = \perp_{A.s} = u_i(\perp_{A_i}).s$. Now, let $\perp_{A_i} \neq x \in A_i$ and $s \in S$. If $xs = \perp_{A_i}$, then, by the definition of the action on A, $x.s = \perp_A$, and so $u_i(xs) = \perp_A = x.s = u_i(x).s$. If $xs \neq \perp_{A_i}$, then x.s = xs, and so $u_i(xs) = xs = x.s = u_i(x).s$. Moreover, for every cpo S-act B with cpo S-maps $f_i : A_i \to B$, $i \in I$, the unique cpo map $f : A \to B$ given by

$$f(a) = \begin{cases} f_i(a) & \text{if } a \in A_i \\ \bot_B & \text{if } a = \bot_A \end{cases}$$

which exists by the universal property of co-products in **Cpo**, and satisfies $f \circ u_i = f_i$ for all $i \in I$, is action-preserving. First notice that $f(\perp_A.s) = f(\perp_A) = \perp_B = \perp_B s = f(\perp_A)s$, for all $s \in S$. Now, let $a \neq \perp_A$. Then $a \in A_i$, for some $i \in I$. If $as = \perp_{A_i}$ then $a.s = \perp_A$, and so $f(a.s) = f(\perp_A) = \perp_B = f_i(\perp_{A_i}) = f_i(as) = f_i(a)s = f(a)s$. If $as \neq \perp_{A_i}$, then a.s = as, and so $f(a.s) = f(as) = f_i(as) = f_i(a)s = f_i(a)s = f(a)s$. \Box

4. Adjoint relations for Cpo_{Act-S}

In this section, we show that the forgetful functor $U : \mathbf{Cpo}_{\mathbf{Act}-S} \to \mathbf{Cpo}$ has both a left and a right adjoint. In other words, we find the free and co-free cpo S-acts over a cpo.

Theorem 4.1. Free cpo S-act over a cpo exists.

Proof. For a given cpo P, we show that the free cpo S-act over P is $F = F(P) = (P \setminus \{\perp_P\} \times S)_{\perp}$ with the order defined by $(x, s) \leq (y, t) \Leftrightarrow x \leq y$ and s = t and the right translations given by (x, t).s = (x, ts) and $\perp .s = \perp$, for all $x \in P \setminus \{\perp_P\}$ and $s, t \in S$. Also, we see that the unit of the adjunction, namely the free map, is $\tau : P \to F$ given by $x \mapsto (x, 1)$ and $\perp_P \mapsto \perp$.

First, we see that $(P \setminus \{\perp_P\}) \times S$ being the product of dcpo's is a dcpo and so F is a cpo. Also, the right translations on it work since (x, s).(tt') = (x, stt') = (x, st).t = ((x, s).t).t' and (x, s).1 =(x, s1) = (x, s) for all $s, t \in S$ and $x \in P \setminus \{\perp_P\}$. Furthermore, the right translations are strict continuous. To see the continuity, let

 $D \subseteq^d (P \setminus \{\perp_P\} \times S)_{\perp}$. Then, by Lemma 3.5, $D = D' \times \{t\}$ or $D = \{\perp\} \cup (D' \times \{t\})$ where $D' \subseteq^d P \setminus \{\perp_P\}$ and $t \in S$. Now $\bigsqcup D = (\bigsqcup D', t)$, and

$$(\bigsqcup D).s = (\bigsqcup D', t).s = (\bigsqcup D', ts) = \bigsqcup_{x \in D'} (x, ts)$$
$$= \bigsqcup_{x \in D'} ((x, t).s) = \bigsqcup D.s$$

Therefore, F is a cpo S-act.

Secondly, we see that the defined map $\tau: P \to F$ is a universal strict continuous map. It is strict by its definition. For continuity, let $D \subseteq^d P$. Then

$$\tau(\bigsqcup D) = (\bigsqcup D, 1) = \bigsqcup_{x \in D} (x, 1) = \bigsqcup \tau(D).$$

To prove the universal property, let $f: P \to B$ be a strict continuous map to a cpo *S*-act *B*. Then the map $\overline{f}: (P \setminus \{\bot_P\} \times S)_{\perp} \to B$ defined by $\overline{f}(x,s) = f(x)s$ and $\overline{f}(\bot) = \bot_B$ is the unique cpo *S*-map with $\overline{f} \circ \tau = f$. It is strict by its definition. To prove continuity, let $D \subseteq^d (P \setminus \{\bot_P\} \times S)_{\perp}$. If $D = D' \times \{t\}$ where $D' \subseteq^d P \setminus \{\bot_P\}$, then

$$\overline{f}(\bigsqcup D) = \overline{f}((\bigsqcup D', t)) = f(\bigsqcup D')t = (\bigsqcup_{x \in D'} f(x))t$$
$$= \bigsqcup_{x \in D'} (f(x)t) = \bigsqcup_{x \in D'} \overline{f}((x, t)) = \bigsqcup \overline{f}(D)$$

where the third equality is true because f is continuous and the fourth equality follows from the fact that B is a cpo S-act. If $D = \bot \oplus (D' \times \{t\})$ where $D' \subseteq^d P \setminus \{\bot_P\}$, then

$$\overline{f}(\bigsqcup D) = \overline{f}((\bigsqcup D', t)) = (f(\bigsqcup D'))t = (\bigsqcup f(D'))t = \bigsqcup_{x \in D'} (f(x)t)$$
$$= \bigsqcup_{x \in D'} \overline{f}(x, t) = \bigsqcup_{x \in D'} \overline{f}(x, t) \lor \bot_B = \bigsqcup_{x \in D'} \overline{f}(x, t) \lor \overline{f}(\bot) = \bigsqcup \overline{f}(D).$$

The proof of the fact that \overline{f} is action-preserving, and is unique, is straightforward.

Now, the assignment $P \mapsto F(P)$, which maps a cpo P to the free cpo S-act, defines a left adjoint to the forgetful functor, and the free map is the unit of the adjunction.

Corollary 4.2. The forgetful functor $U : \mathbf{Cpo}_{\mathbf{Act}-S} \to \mathbf{Cpo}$ has a left adjoint.

Theorem 4.3. Co-free cpo S-act over a cpo exists.

Proof. For a given cpo P, we show that the set $K = P^S$, of all maps from S to P with the pointwise order and the right translations given by (fs)(t) = f(st), for $s, t \in S$ and $f \in P^S$ is the co-free cpo S-act over P. Also, we show that $\sigma : P^S \to P$, given by $\sigma(f) = f(1)$, is the co-unit of the adjunction, or in other words the co-free map.

Firstly, we show that P^S is a cpo S-act. It is clear that P^S is a cpo in which the supremum of each directed subset $D \subseteq P^S$ is given by $(\bigsqcup D)(s) = \bigsqcup_{f \in D} f(s)$ for all $s \in S$ and the bottom element is the constant mapping $f_{\perp} : S \to P$, $s \mapsto \bot_P$ for all $s \in S$. To see that the right translations defined above are strict continuous maps, let $D \subseteq^d P^S$ and $s \in S$. Then

$$((\bigsqcup D)s)(t) = (\bigsqcup D)(st) = \bigsqcup_{f \in D} f(st) = \bigsqcup_{f \in D} (fs)(t) = (\bigsqcup_{f \in D} fs)(t)$$

where the third and the last equalities hold because the supremum in P^S is calculated pointwise. Also $(f_{\perp}s)(t) = f_{\perp}(st) = \perp_P = f_{\perp}(t)$, for all $s, t \in S$, so the action is strict.

Secondly, we see that the co-free map $\sigma: P^S \to P$ is a universal strict continuous map. It is strict by its definition. To prove continuity, let $D \subseteq^d P^S$. Then

$$\sigma(\bigsqcup_{f\in D} f) = (\bigsqcup_{f\in D} f)(1) = \bigsqcup_{f\in D} f(1) = \bigsqcup_{f\in D} \sigma(f).$$

Finally, given a strict continuous map $g: A \to P$ from a cpo S-act A, it is routine to see that the map $\overline{g}: A \to P^S$, given by $\overline{g}(a)(s) = g(as)$, is the unique cpo S-map which satisfies $\sigma \circ \overline{g} = g$.

Corollary 4.4. The forgetful functor $U : \mathbf{Cpo}_{\mathbf{Act}-S} \to \mathbf{Cpo}$ has a right adjoint.

Remark 4.5. (1) Notice that the forgetful functor $U : \mathbf{Cpo}_{\mathbf{Act}-S} \to \mathbf{Set}$ does not have a right adjoint. This is because it does not preserve the initial object. Recall that the initial object in $\mathbf{Cpo}_{\mathbf{Act}-S}$ is the singleton cpo whereas in **Set** is the empty set.

(2) Notice that the free cpo S-act on a dcpo S-act A is proved directly to be A_{\perp} with the right translations defined by:

$$a.s = \begin{cases} as & \text{if } a \in A \\ \bot & \text{if } a = \bot \end{cases}$$

for all $a \in A_{\perp}$ and $s \in S$.

Regarding the adjoint functors, we show that the product endofunctor $A \times -$ of cpo S-acts does not necessarily have a right adjoint; that is:

Theorem 4.6. The category Cpo_{Act-S} is not cartesian closed.

Proof. For a non trivial cpo S-act A, since $A \times \{\bot\} \not\cong \{\bot\}$, the functor $A \times -: \mathbf{Cpo}_{\mathbf{Act}-S} \to \mathbf{Cpo}_{\mathbf{Act}-S}$ does not preserve the initial object, and so it does not have a right adjoint. \Box

5. Monomorphisms and epimorphisms in Cpo_{Act-S}

In this section, we show that monomorphisms in $\mathbf{Cpo}_{\mathbf{Act}-S}$ are exactly one-one morphisms while its counterpart is not true for epimorphisms. It is shown for morphisms whose images are Scott-closed, being epic is equivalent to being onto.

Remark 5.1. Recall from [4] that monomorphisms in the category **Dcpo** are exactly one-one morphisms. The same is true for the category **Cpo**. In fact, since the inclusion functor from **Cpo** to **Dcpo** has a left adjoint (see [1]), it preserves monomorphisms, and consequently monomorphisms in **Cpo** are monomorphisms in **Dcpo**, and hence they are one-one.

Theorem 5.2. Monomorphisms in Cpo_{Act-S} are exactly one-one cpo S-maps.

Proof. Having the adjunction given in 4.2, and the fact that right adjoints preserve limits, and in particular monomorphisms, we get that monomorphisms in $\mathbf{Cpo}_{\mathbf{Act}-S}$ are exactly cpo *S*-maps which are monomorphisms in \mathbf{Cpo} . Then the result follows by the above remark. \Box

In the following remark, we consider epimorphisms in Cpo_{Act-S} .

Remark 5.3. Epimorphisms in $\mathbf{Cpo}_{\mathbf{Act}-S}$ are not necessarily onto. For example, take S to be an arbitrary monoid, $A = \bot \oplus \mathbb{N}$ in which the order on \mathbb{N} is discrete, and $B = \bot \oplus \mathbb{N} \oplus \top$ in which the order on \mathbb{N} is the usual order. Then, A and B with the identity right translations are cpo S-acts. Define the map $h : A \to B$ by $h(\bot) = \bot$ and h(n) = n for all $n \in \mathbb{N}$. We show that h is a cpo S-act epimorphism which is not onto. It clearly preserves the action. To see that h is (strict) continuous, let $D \subseteq^d A$. Then $D = \{\bot\}$, or there exists $n \in \mathbb{N}$ such that $D = \{\bot, n\}$ or $D = \{n\}$. For the case that $D = \{\bot, n\}$, $n \in \mathbb{N}$, we have

$$h(\bigsqcup D) = h(n) = n = \bigsqcup \{\bot, n\} = \bigsqcup \{h(\bot), h(n)\} = \bigsqcup h(D).$$

The other cases are clear. To show that h is an epimorphism, let $f_1, f_2 : B \to P$ be two cpo S-maps with $f_1 \circ h = f_2 \circ h$. Then, we have

$$f_1(\bot) = f_1(h(\bot)) = f_2(h(\bot)) = f_2(\bot),$$

$$f_1(n) = f_1(h(n)) = f_2(h(n)) = f_2(n)$$

for all $n \in \mathbb{N}$, and

$$f_1(\top) = f_1(\bigsqcup \mathbb{N}) = \bigsqcup_{n \in \mathbb{N}} f_1(n) = \bigsqcup_{n \in \mathbb{N}} f_2(n) = f(\bigsqcup \mathbb{N}) = f_2(\top).$$

Therefore, $f_1 = f_2$.

In the following, we show that epimorphisms $f : A \to B$ in $\mathbf{Cpo}_{\mathbf{Act}-S}$ are onto if f(A) is a Scott-closed subset of B. Recall that (see [1]), $C \subseteq B$ is Scott-closed if and only if $B \setminus C$ is an upper closed subset of B, and for $D \subseteq^d B$ if $| D \in (B \setminus C)$ then $D \cap (B \setminus C) \neq \emptyset$.

Lemma 5.4. Let B be a cpo S-act, and I be a nonempty Scott-closed subact of B. Then

(i) $B^* = (B \setminus I) \cup \{\bot\}$ is a cpo S-act.

(ii) The mapping $g: B \to B^*$ defined by $g(x) = \bot$ for $x \in I$, g(x) = x for $x \notin I$ is a cpo S-map.

Proof. (i) First we show that B^* with the order defined by $b \leq b'$ if and only if $b \leq b'$ in B or $b = \bot$, is a cpo. We show that the supremum of every directed subset of B^* exists. For this, let $D \subseteq^d B^*$. Then, two cases may occur:

Case (1): $\perp \notin D$. In this case, $D \subseteq^d B$ and $\bigsqcup D$ exists in B. Also, $\bigsqcup D \notin I$ and so $\bigsqcup D \in B^*$. This is because, if $\bigsqcup D \in I$ then $D \subseteq I$ which is a contradiction.

Case (2): $\perp \in D$. In this case, $D' = D \setminus \{\perp\}$ is a directed subset of B, and so $\bigsqcup D = \bigsqcup D'$ exists in B^* . This is because, if $\bigsqcup D' \in I$ then $D' \subseteq I$ which is a contradiction.

Now, we define the right translations on B^* as

$$a.s = \begin{cases} as & \text{if } as \notin I \\ \bot & \text{if } as \in I \text{ or } a = \bot \end{cases}$$

Cpo $S\text{-}\mathrm{act}$

for $a \in B^*$ and $s \in S$. We show that for $s, t \in S$ and $a \in B^*$, we have $a_{\cdot}(st) = (a \cdot s) \cdot t$. If $a(st) \in I$, then $a_{\cdot}(st) = \bot$. Now, if $as \in I$, then $(a.s).t = \bot .t = \bot$; and if $as \notin I$, then $(a.s).t = (as).t = \bot$, since $(as)t = a(st) \in I$. Also, if $a(st) \notin I$, then $as \notin I$, since I is a subact, and so $a_{\cdot}(st) = a(st) = (as)t = (a.s).t$. The right translations are also continuous, since for $D \subseteq^d B^*$ and $s \in S$, $(\bigsqcup D).s = \bigsqcup_{y \in D} y.s$. This is because, if $\bigsqcup D = c$ and $cs \in I$, then $ys \in I$ for all $y \in D$. Thus, $c.s = \perp = \bigsqcup_{y \in D} y.s$, as required. Also, if $cs \notin I$, then c.s = cs and cs is an upper bound of y.s for all $y \in D$ (this is because y.s = ys or $y.s = \bot$). Further, if $b \in B^*$ is an upper bound of the set $\{y.s : y \in D\}$, then taking $K = \{y \in D : ys \notin I\}$, we have $K \neq \emptyset$ (since otherwise $ys \in I$ for all $y \in D$, and so $\bigsqcup_{y \in D} ys \in I$ which gives the contradiction that $cs = (\bigsqcup D)s = \bigsqcup_{y \in D} ys \in I$. Therefore, there exists $y' \in K$. Now, since D is directed, for $y \notin K$ there exists $y_0 \in D$ such that $y, y' \leq y_0$. We show that $y_0 \in K$. To get this, we show $y_0 s \notin I$. On the contrary, let $y_0 s \in I$, then $y_0 s \in I$ (since I is a down-set) which is a contradiction. $z \cdot s = zs \leq b$ for all $z \in K$, and for all $y \notin K$ there exists $y_0 \in K$ such that $y \leq y_0$ and so $y_s \leq y_0 s \leq b$. So b is an upper bound for the set of $\{ys : y \in D, y \neq \bot\}$, and $c.s = cs = \bigsqcup_{\{y \in D \setminus \{\bot\}\}} ys \leq b$, as required. Hence B^* with the action and order defined above is a cpo S-act.

(ii) We see that g is strict by its definition. To show that g is continuous, let $D \subseteq^d B$. We consider two cases:

Case (1): $\bigsqcup D \in I$. In this case, $g(\bigsqcup D) = \bot = \bigsqcup g(D)$, where the last equality holds because $D \subseteq I$.

Case (2): $\bigsqcup D \notin I$. In this case, $g(\bigsqcup D) = \bigsqcup D$. Now, using the fact that for $y \in D$, g(y) = y or $g(y) = \bot$, we have $\bigsqcup_{y \in D} g(y) = \bigsqcup D$, as required.

Finally, to prove that g is action-preserving, let $b \in B$ and $s \in S$. Then two cases may occur:

Case (a): $bs \in I$. In this case, $g(bs) = \bot$. If $b \notin I$, then $g(b).s = b.s = \bot$. Also if, $b \in I$, then $g(b).s = \bot . s = \bot$. Therefore g(bs) = g(b).s.

Case (b): $bs \notin I$. In this case, $b \notin I$ and g(bs) = bs. Also g(b).s = b.s = bs. Therefore g(bs) = g(b).s.

Theorem 5.5. Let $f : A \to B$ be an epimorphism in $\mathbf{Cpo}_{\mathbf{Act}-S}$. Then, f is onto if and only if its image is a Scott-closed subset of B.

Proof. Let f(A) be a Scott-closed subset of B. Consider the cpo S-act B^* with I = f(A), and the cpo S-map $h : B \to B^*$ defined in Lemma 5.4. Also, consider the constant cpo S-map $k : B \to B^*$, $b \mapsto \bot$. Then

 $h \circ f = k \circ f$. Since f is an epimorphism, h = k and so f(A) = B, as required. The converse is clear.

6. Completeness and co-completeness of Cpo_{Act-S}

In this final section, applying the results of the above sections, we show that the category of cpo S-acts is both complete and co-complete.

Proposition 6.1. The category Cpo_{Act-S} is complete.

Proof. Applying Theorem 3.4, it is enough to show that equalizers exist in the category $\mathbf{Cpo}_{\mathbf{Act}-S}$. Let $f, g : A \to B$ be cpo S-maps. Then, from the fact that

$$E = \{ x \in A : f(x) = g(x) \}$$

is their equalizer in both categories **Cpo** and **Act**-S, we get that it is the equalizer of f and g in the category of cpo S-acts.

In the following, we show that the category $\mathbf{Cpo}_{\mathbf{Act}-S}$ is co-complete. To this end, applying Theorem 23.14 of [10], it is enough to show that $\mathbf{Cpo}_{\mathbf{Act}-S}$ has a coseparator and is well-powered.

Recall that an object C of a category C is called a *coseparator* (or *cogenerator*) if the functor $\hom(-, C) : C^{op} \to \mathbf{Set}$ is faithful; in other words, for each distinct arrows $f, g : A \to B$ there exists an arrow $h: B \to C$ such that $h \circ f \neq h \circ g$.

Lemma 6.2. The category Cpo_{Act-S} has a coseparator.

Proof. We show that for each cpo P with $|P| \ge 2$, the co-free object P^S described in Proposition 4.3 is a co-separator. Let P be a cpo with $|P| \ge 2$, and $f, g: A \to B$ be cpo S-maps with $f \ne g$. First, we define a cpo map $k: B \to P$ such that $k \circ f \ne k \circ g$. Since $f \ne g$, there exists $a \in A$ with $f(a) \ne g(a)$. Three cases may occur:

(1)
$$f(a) < g(a)$$
 (2) $g(a) < f(a)$ (3) $f(a) \parallel g(a)$

Let f(a) < g(a). Then, taking $B' = \{b \in B \mid b \leq f(a)\}$, define $k : B \to P$ by

$$k(b) = \begin{cases} \perp_P & \text{if } b \in B' \\ y & \text{otherwise} \end{cases}$$

where $y \in P$ is chosen with $y \neq \perp_P$ (such y exists since $|P| \ge 2$). First, we show that k is order-preserving, and hence it take directed subsets to directed ones. Let $b_1, b_2 \in B$ with $b_1 \le b_2$. If $b_1 \in B'$, then for the case where $b_2 \in B'$, $\perp_P = k(b_1) = k(b_2)$; and for the case where $b_2 \notin B'$, $\perp_P = k(b_1) < y = k(b_2)$. Also, if $b_1 \notin B'$, then $b_2 \notin B'$ and so

 $k(b_1) = k(b_2) = y$. To prove the continuity of k, let $D \subseteq^d B$. It is clear, by the definition of B', that $\bigsqcup D \in B' \Leftrightarrow D \subseteq B'$. Now, if $\bigsqcup D \in B'$, then $D \subseteq B'$ and so $k(\bigsqcup D) = \bot_P = \bigsqcup_{z \in D} k(z)$. Also, if $\bigsqcup D \notin B'$, then $k(\bigsqcup D) = y$ and $D \not\subseteq B'$. Thus $D \setminus B' \neq \emptyset$, and

$$\bigsqcup_{z\in D}k(z)=\bigsqcup_{z\in (D\backslash B')\cup (B'\cap D)}k(z)=y\vee \bot_P=y$$

as required. Finally, since P^S is the co-free cpo S-act on P, there exists a unique cpo S-map $h: B \to P^S$ such that $\sigma \circ h = k$, where σ is the co-free map defined in Proposition 4.3. This gives that $h \circ f \neq h \circ g$, and so P^S is a co-separator.

The case (2) is proved similarly. And about case (3), take $B' = \{b \in B : b \leq f(a)\}$ or $B' = \{b \in B : b \leq g(a)\}$ in the proof of case (1). \Box

Recall for instance from [10] that a category is well-powered if for each of its objects, the class of its subobjects (considered up to isomorphisms) forms a set. Also, for the categories in which monomorphisms coincide with one-one morphisms, the class of subobjects of an object B would be a subset of the power set of B, and therefore is a set. This also holds for the category of cpo S-acts, by Lemma 5.2. Therefore,

Lemma 6.3. The category Cpo_{Act-S} is well-powered.

Proposition 6.4. The category Cpo_{Act-S} is co-complete.

Proof. By Theorem 23.14 [10] and Lemmas 6.2, 6.3 and 6.1, the category is co-complete. \Box

Acknowledgments

The authors gratefully acknowledge Professor M.Mehdi Ebrahimi's comments and conversations during this work. Also, our sincere thanks goes to the referees for very valuable comments which improved the paper.

References

- S. Abramsky and A. Jung, Domain Theory, Handbook of Logic in Computer Science, 3, Oxford Univ. Press, New York, 1994.
- [2] S. Bulman-Fleming, A. Gilmour and M. Kilp, Flatness properties of S-posets, Comm. Algebra 34 (2006), no. 4, 1291–1317.
- [3] S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum 71 (2005), no. 3, 443–461.
- [4] F. Cagliari and S. Mantovani, Exponentiable monomorphisms in categories of domains, J. Pure Appl. Algebra 211 (2007), no. 2, 404–413.

Mahmoudi and Moghbeli

- [5] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.
- [6] M. M. Ebrahimi and M. Mahmoudi, The category of M-Sets, Ital. J. Pure Appl. Math. 9 (2001) 123–132.
- [7] M. M. Ebrahimi, M. Mahmoudi and H. Rasouli, Banaschewski's theorem for S-posets: regular injectivity and completeness, Semigroup Forum 80 (2010), no. 2, 313-324.
- [8] H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici and M. Grobe-Rhode, Algebraic data type and process specifications based on projection spaces, Lecture Notes in Computer Science, 332, Springer, Berlin-Heidelberg, 1988.
- [9] A. Fiech, Colimits in the category DCPO, Math. Structures Comput. Sci. 6 (1996), no. 5, 455-468.
- [10] H. Herrlich and G. E. Strecker, Category Theory, Allyan and Bacon Inc., Boston, 1973.
- [11] A. Jung, Cartesian Closed Categories of Domains, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
- [12] M. Kilp, U. Knauer and A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter & Co., Berlin, 2000.

(Mojgan Mahmoudi) DEPARTMENT OF MATHEMATICS, SHAHID BEHESHTI UNI-VERSITY, G.C., P.O. BOX 19839-63113, TEHRAN, IRAN E-mail address: m-mahmoudi@sbu.ac.ir

(Halimeh Moghbeli Damaneh) DEPARTMENT OF MATHEMATICS, SHAHID BEHESHTI UNIVERSITY, G.C., P.O. BOX 19839-63113, TEHRAN, IRAN

E-mail address: h_moghbeli@sbu.ac.ir