ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 1, pp. 177-187

Title:

Almost multiplicative linear functionals and approximate spectrum

Author(s):

E. Anjidani

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 1, pp. 177–187 Online ISSN: 1735-8515

ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS AND APPROXIMATE SPECTRUM

E. ANJIDANI

(Communicated by Hamid Reza Ebrahimi Vishki)

ABSTRACT. We define a new type of spectrum, called δ -approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ -approximate spectrum $\sigma_{\delta}(a)$ of a is compact. The relation between the δ -approximate spectrum and the usual spectrum is investigated. Also, an analogue of the classical Gleason-Kahane-Żelazko theorem is established: For each $\epsilon > 0$, there is $\delta > 0$ such that if ϕ is a linear functional with $\phi(a) \in \sigma_{\delta}(a)$ for all $a \in A$, then ϕ is ϵ -almost multiplicative. Finally, we use these ideas to provide a sufficient condition for a δ -almost multiplicative functional to be multiplicative.

Keywords: Almost multiplicative linear functional, Ransford spectrum, pseudospectrum, condition spectrum, Gleason-Kahane- \dot{Z} elazko theorem.

MSC(2010): Primary: 46H05; Secondary: 47A10, 46J05.

1. Introduction and preliminaries

Let A be a complex unital Banach algebra with unit 1 and $\delta > 0$. A linear functional ϕ on A is said to be δ -almost multiplicative if

$$\phi(ab) - \phi(a)\phi(b) \le \delta \|a\| \|b\|,$$

for all $a, b \in A$. The notion of almost multiplicative linear functional has been studied intensively by a number of authors, see e.g. [4,5,7,8]. The almost multiplicative linear functionals have interesting properties and applications. Jarosz [5, Proposition 5.5] proved that if ϕ is a δ -almost multiplicative linear functional on A, then ϕ is continuous and $\|\phi\| \leq$ $1 + \delta$. Also, it is easy to see that if $\delta < \frac{1}{4}$, then either $|\phi(1) - 1| < 2\delta$, in

177

O2015 Iranian Mathematical Society

Article electronically published on February 15, 2015.

Received: 19 December 2012, Accepted: 27 December 2013.

which case $\|\phi\| > 1 - 2\delta$ or $\|\phi\| < 2\delta$, in which case $|\phi(1)| < 2\delta$ [7]. In this paper, these properties are the motivation for definition of a specific type of Ransford spectrum, called the approximate spectrum.

The Ransford spectrum is an extension of the concept of spectrum (see [12]). A subset Ω of A is called a Ransford set if $1 \in \Omega$, $0 \notin \Omega$ and $\lambda \Omega \subseteq \Omega$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. The Ransford spectrum of an element a in A with respect to the Ransford set Ω is defined by

$$sp^{\Omega}(a) := \{\lambda \in \mathbb{C} : \lambda - a \notin \Omega\}.$$

A particular case of the Ransford spectrum is called the ϵ -condition spectrum and defined as follows:

$$sp_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|\lambda - a\| \| (\lambda - a)^{-1} \| \ge \frac{1}{\epsilon} \right\},$$

for $a \in A$ and $0 < \epsilon < 1$ (see [11]).

Let $a \in A$ and $0 < \delta < \frac{1}{4}$. We say that a is δ -invertible if $\phi(a) \neq 0$ for all $\phi \in \Phi_{\delta}(A)$, where

 $\Phi_{\delta}(A) := \{ \phi \mid \phi \text{ is } \delta - \text{almost multiplicative on } A \text{ and } |\phi(1) - 1| < 2\delta \}.$

The set $\operatorname{Inv}_{\delta} A$ of all δ -invertible elements of A is a Ransford set. The Ransford spectrum of a with respect to the Ransford set $\operatorname{Inv}_{\delta} A$ is called δ -approximate spectrum of element a and defined as follows:

$$\sigma_{\delta}(a) := \{ \lambda \in \mathbb{C} : \lambda - a \notin \operatorname{Inv}_{\delta} A \}.$$

In section 2, we prove that $\operatorname{Inv}_{\delta} A$ is open and hence $\sigma_{\delta}(a)$ is compact. Moreover, the relation between the δ -approximate spectrum $\sigma_{\delta}(a)$ and the usual spectrum $\sigma(a)$ of element a is investigated. In particular, we show that $\sigma_{\delta}(a) = \sigma(a)$ if and only if $a = \lambda$ for some $\lambda \in \mathbb{C}$.

The Gleason-Kahane-Zelazko theorem states that a linear functional ϕ on complex Banach algebra A is multiplicative if

(1.1)
$$\phi(a) \in \sigma(a) \quad (a \in A, ||a|| = 1)$$

Some important generalizations of this result have been given by many mathematicians (see for example [3,6,13]). In addition, there are several possible approximate versions of the Gleason-Kahane- \dot{Z} elazko theorem which are concerned with identifying the almost multiplicative linear functionals among all linear functionals on Banach algebra A in terms of spectra. The first result was given by Johnson [7]. He proved that linear functional ϕ is almost multiplicative if condition (1.1) is replaced by

$$d(\phi(a), \sigma(a)) < \epsilon \quad (a \in A, ||a|| = 1).$$

In [9, Theorem 5] the spectrum in condition (1.1) is replaced by the ϵ condition spectrum while in [1, Theorem 4.2] is replaced by the so-called
pseudospectrum, defined by

$$\Lambda_{\epsilon}(a) := \{\lambda \in \mathbb{C} : \|(\lambda - a)^{-1}\| \ge \frac{1}{\epsilon}\}$$

for $a \in A$ and $\epsilon > 0$.

In section 3, we prove an approximate version of the Gleason-Kahane- \dot{Z} elazko theorem in which the spectra in condition (1.1) are replaced by the δ -approximate spectra.

Finally, in section 4, we use these ideas to provide a sufficient condition for an almost multiplicative linear functional to be multiplicative.

2. Approximate Spectrum

We define a specific type of Ransford spectrum, called the approximate spectrum.

Definition 2.1. Let $a \in A$ and $0 < \delta < \frac{1}{4}$. We say that a is δ -invertible if for every $\phi \in \Phi_{\delta}(A)$, $\phi(a) \neq 0$, where

 $\Phi_{\delta}(A) := \{ \phi \mid \phi \text{ is } \delta - \text{almost multiplicative on } A \text{ and } |\phi(1) - 1| < 2\delta \}.$

The set of all δ -invertible elements of A is denoted by $Inv_{\delta}A$.

It is clear that $1 \in \text{Inv}_{\delta}A$, $0 \notin \text{Inv}_{\delta}A$ and $\lambda x \in \text{Inv}_{\delta}A$ for all $\lambda \in \mathbb{C} \setminus \{0\}$ and $x \in \text{Inv}_{\delta}A$. Hence, $\text{Inv}_{\delta}A$ is a Ransford set.

Definition 2.2. The Ransford spectrum of a with respect to the Ransford set $Inv_{\delta}A$ is called δ -approximate spectrum of a and defined by

$$\sigma_{\delta}(a) := \{ \lambda \in \mathbb{C} : \lambda - a \notin \operatorname{Inv}_{\delta} A \}.$$

It is known that the set $\Phi(A)$ of all nonzero multiplicative linear functionals on A is a weak^{*} compact subset of the dual space A^* . Now, we prove that so is $\Phi_{\delta}(A)$.

Recall that a basis for weak^{*} topology on the dual space X^* of a Banach space X is given by sets of the form $V(\phi; x_1, \ldots, x_n; \epsilon)$, where

$$V(\phi; x_1, \dots, x_n; \epsilon) = \{ \psi \in X^* : |\psi(x_i) - \phi(x_i)| < \epsilon \text{ for } 1 \le i \le n \}$$

for arbitrary $\epsilon > 0$ and elements $x_1, \ldots, x_n \in X$.

Theorem 2.3. Let $0 < \delta < \frac{1}{4}$. The set $\Phi_{\delta}(A)$ is a weak^{*} compact subset of A^* .

Proof. At first we show that the set

 $\mathfrak{M}_{\delta}(A) := \{ \phi : \phi \text{ is } \delta - \text{almost multiplicative on } A \}$

is weak^{*} compact in A^* . Since $\mathfrak{M}_{\delta}(A)$ is bounded, it is sufficient to prove that this set is weak^{*} closed. For each $x, y \in A$, since the maps $\phi \mapsto \phi(x), \phi \mapsto \phi(y)$ and $\phi \mapsto \phi(xy)$ are weak^{*} continuous, the set

(2.1)
$$\{\phi \in A^* : |\phi(xy) - \phi(x)\phi(y)| \le \delta \|x\| \|y\|\}$$

is weak^{*} closed. Hence, $\mathfrak{M}_{\delta}(A)$ which is the intersection of sets of the form (2.1) over all choices of x, y, is weak^{*} closed. By [7, Proposition 2.3], we have

 $\mathfrak{M}_{\delta}(A) = \Phi_{\delta}(A) \bigcup \{ \phi : \phi \text{ is } \delta - \text{almost multiplicative on } A, \|\phi\| < 2\delta \}.$ Also, it is clear that

 $\{\phi : \phi \text{ is } \delta - \text{almost multiplicative on } A, \|\phi\| < 2\delta\} \subseteq V(0; 1; 2\delta)$

and $V(0;1;2\delta) \cap \Phi_{\delta}(A) = \emptyset$. Therefore, $\Phi_{\delta}(A)$ is weak^{*} compact. \Box

Theorem 2.4. The set $Inv_{\delta}A$ is an open subset of A.

Proof. Let $x \in \operatorname{Inv}_{\delta} A$. Then $\phi(x) \neq 0$ for every $\phi \in \Phi_{\delta}(A)$. Since $\Phi_{\delta}(A)$ is weak^{*} compact, the set $\{\phi(x) : \phi \in \Phi_{\delta}(A)\}$ is compact in \mathbb{C} . Therefore, there is $\epsilon > 0$ such that the open disc with center at the origin and radius ϵ does not intersect the set $\{\phi(x) : \phi \in \Phi_{\delta}(A)\}$. Choose $y \in A$ with $||x - y|| < \frac{\epsilon}{1+\delta}$. Then $|\phi(x) - \phi(y)| \leq ||\phi|| ||x - y|| < \epsilon$ for all $\phi \in \Phi_{\delta}(A)$. Therefore $y \in \operatorname{Inv}_{\delta} A$ and so $\operatorname{Inv}_{\delta} A$ is an open subset of A.

In the following theorem, we investigate the relation between the approximate spectrum and the usual spectrum in commutative complex Banach algebras.

Theorem 2.5. Let A be a complex commutative unital Banach algebra with unit 1 and $a \in A$. Then,

- 1) $\sigma(a) \subseteq \sigma_{\delta}(a)$,
- 2) $\sigma_{\delta}(a)$ is a nonempty compact subset of \mathbb{C} ,
- 3) $\sigma(a) = \bigcap \sigma_{\delta}(a)$, where the intersection is taken over $0 < \delta < \frac{1}{4}$,
- 4) $\sigma_{\delta}(a) = \sigma(a)$ if and only if a = z for some $z \in \mathbb{C}$.

Proof. Since A is commutative, $\lambda \in \sigma(a)$ if and only if there is $\phi \in \Phi(A)$ such that $\phi(a) = \lambda$. This implies that $\sigma(a) \subseteq \sigma_{\delta}(a)$ and so $\sigma_{\delta}(a)$ is nonempty.

Since the mapping $\lambda \mapsto \lambda - a$ is continuous and $Inv_{\delta}(A)$ is open, $\sigma_{\delta}(a)$

is a closed subset of \mathbb{C} . Also, for every $\lambda \in \sigma_{\delta}(a)$ there exists $\phi \in \Phi_{\delta}(A)$ such that $\lambda = \frac{\phi(a)}{\phi(1)}$ and so $|\lambda| = \frac{|\phi(a)|}{|\phi(1)|} \leq \frac{1+\delta}{1-2\delta} ||a||$. Therefore, $\sigma_{\delta}(a)$ is compact.

Now, it is clear that

$$\sigma(a) \subseteq \bigcap_{0 < \delta < \frac{1}{4}} \sigma_{\delta}(a).$$

Let $\lambda \in \bigcap_{0 < \delta < \frac{1}{4}} \sigma_{\delta}(a)$. Then, for every $n \ge 5$ there exists $\phi_n \in \Phi_{\frac{1}{n}}(A)$ such that $\lambda = \frac{\phi_n(a)}{\phi_n(1)}$. Suppose that the set $B = \{\phi_n : n \ge 5\}$ is infinite. Since $\Phi_{\frac{1}{5}}(A)$ is weak^{*} compact and $B \subseteq \Phi_{\frac{1}{5}}(A)$, B has a limit point ϕ . We prove that $\phi \in \Phi(A)$ and $\phi(a) = \lambda$. Let $\epsilon > 0$ and $x, y \in A$. The neighborhood $V(\phi; x, y, xy, a, 1; \epsilon)$ contains infinitely many points of B. Choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$ and $\phi_N \in V(\phi; x, y, xy, a, 1; \epsilon)$. Then we have

$$\begin{aligned} (2.2) |\phi(xy) - \phi(x)\phi(y)| &\leq |\phi(xy) - \phi_N(xy)| \\ &+ |\phi_N(xy) - \phi_N(x)\phi_N(y)| \\ &+ |\phi_N(x)\phi_N(y) - \phi_N(x)\phi(y)| \\ &+ |\phi_N(x)\phi(y) - \phi(x)\phi(y)| \\ &< \epsilon(1 + \|x\|\|y\| + (1 + \epsilon)\|x\| + \|\phi\|\|y\|). \end{aligned}$$

Also we get

(2.3)
$$|\phi(1) - 1| \le |\phi(1) - \phi_N(1)| + |\phi_N(1) - 1| < 3\epsilon,$$

and

(2.4)
$$\begin{aligned} |\phi(a) - \lambda| &\leq |\phi(a) - \phi_N(a)| + |\phi_N(a) - \lambda| \\ &< \epsilon + |\lambda \phi_N(1) - \lambda| \\ &< \epsilon (1 + 2|\lambda|). \end{aligned}$$

Now, since $\epsilon > 0$ is arbitrary, it follows from (2.2), (2.3) and (2.4) that ϕ is multiplicative, $\phi(1) = 1$ and $\phi(a) = \lambda$. Therefore $\lambda \in \sigma(a)$. Now consider the case where *B* is finite. Then there exists $\phi \in B$ such that $\phi_n = \phi$ for infinitely many $n \in \mathbb{N}$. Similar to the pervious case, it follows that $\phi \in \Phi(A)$ and $\phi(a) = \lambda$ and so $\lambda \in \sigma(a)$.

Therefore, $\sigma(a) = \bigcap \sigma_{\delta}(a)$.

Finally, we prove assertion (4). It is clear that $\sigma_{\delta}(z) = \sigma(z) = \{z\}$ for every $z \in \mathbb{C}$.

Now, suppose that $a \neq z$ for every $z \in \mathbb{C}$. At first we prove that every

point of $\sigma(a)$ is an interior point of $\sigma_{\delta}(a)$. Choose $\epsilon > 0$ with $\epsilon^2 + 3\epsilon < \delta$. Since a does not belong to the closed subspace $\{z.1 : z \in \mathbb{C}\}$ of A, by the Hahn-Banach theorem there exists $\Lambda \in A^*$ such that $\Lambda(a) = 1$ and $\Lambda(1) = 0$.

Now let $\lambda_0 \in \sigma(a)$ and choose $\lambda \in \mathbb{C}$ with $|\lambda - \lambda_0| < \frac{\epsilon}{\|\Lambda\|}$. Then we have $f(a) = \lambda_0$ for some $f \in \Phi(A)$.

Let $\phi = (\lambda - \lambda_0)\Lambda$. It is clear that $\|\phi\| = |\lambda - \lambda_0| \|\Lambda\| < \epsilon$, and so $f + \phi$ is an $\epsilon^2 + 3\epsilon$ -multiplicative linear functional and $(f + \phi)(1) = 1$. Hence $f + \phi \in \Phi_{\delta}(A)$ and since $(f + \phi)(a) = f(a) + \phi(a) = \lambda$, it follows that $\lambda \in \sigma_{\delta}(a)$. Therefore $\sigma(a) \subseteq (\sigma_{\delta}(a))^{\circ}$.

Now if $\sigma_{\delta}(a) = \sigma(a)$, then $\sigma(a)$ is an open subset of \mathbb{C} . Since $\sigma(a)$ is also compact and nonempty, it follows that \mathbb{C} is disconnected, which is a contradiction. Therefore, if $\sigma_{\delta}(a) = \sigma(a)$, then a = z for some $z \in \mathbb{C}$.

3. Gleason-Kahane-Żelazko theorem

The approximate versions of the Gleason-Kahane-Zelazko theorem that are concerned with the investigation of the relation between almost multiplicative linear functionals and spectra (see [9, Theorem 5] and [1, Theorem 4.2]) are proved by a similar method to the proof of the following theorem of Johnson (see [7]). In Theorem 3.2, we prove an approximate version of Gleason-Kahane- \dot{Z} elazko theorem which connects the approximate spectrum and almost multiplicative linear functionals.

Theorem 3.1. [7, Theorem 8.7] Let A be a complex commutative Banach algebra. There is a monotonic function ϵ from (0,0.1) into $(0,\infty)$ with $\epsilon(\delta) \to 0$ as $\delta \to 0$ such that if ϕ is a continuous linear functional on A with

$$d(\phi(a), \sigma(a)) \le \delta \|a\| \quad (a \in A),$$

then ϕ is $\epsilon(\delta)$ -multiplicative.

Theorem 3.2. Let A be a complex unital Banach algebra. Then the following assertions hold.

1) For every $\epsilon > 0$ there is $\delta > 0$ such that if ϕ is a linear functional on A with

 $\phi(a) \in \sigma_{\delta}(a) \quad (a \in A, ||a|| = 1),$

then ϕ is ϵ -almost multiplicative.

2) Suppose that A is commutative. For every $0 < \delta < \frac{1}{6}$, if ϕ is a linear functional on A with

$$\phi(a) \in \sigma_{\delta}(a) \quad (a \in A, ||a|| = 1),$$

then ϕ is ϵ -almost multiplicative, where

$$\epsilon = 4 \left(\ln \frac{1 - 2\delta}{\delta} \right)^{-1} \left(\frac{6}{\ln 2} + 2 \left(\ln \frac{1 - 2\delta}{\delta} \right)^{-1} \right).$$

Proof. Let $0 < \delta < \frac{1}{6}$. Suppose that ϕ is a linear functional on A with $\phi(a) \in \sigma_{\delta}(a) \quad (a \in A, ||a|| = 1).$

Then $\phi(1) = 1$ and $|\phi(a)| \le \frac{1+\delta}{1-2\delta}$ for all $a \in A$ with ||a|| = 1, and so ϕ is continuous and $\|\phi\| \leq \frac{1+\delta}{1-2\delta}$. Let $a \in A$ with $\|a\| = 1$. Since ϕ is continuous and linear, we have

$$\phi(\exp za) = \sum_{n=0}^{\infty} \frac{\phi(a^n)}{n!} z^n$$

for all $z \in \mathbb{C}$. Hence the function $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = \phi(\exp za)$ is an entire function such that for all $z \in \mathbb{C}$ we have

(3.1)
$$|f(z)| = |\phi(\exp za)| \le ||\phi|| ||\exp za|| \le \frac{1+\delta}{1-2\delta}e^{|z|}$$

Therefore, f has growth order less than or equal to one. Suppose that $\alpha_1, \alpha_2, \ldots$ are the zeros of f indexed with

$$|\alpha_1| \le |\alpha_2| \le \cdots.$$

Using the Hadamard's factorization theorem [14] and by the same method as in the proof of [9, Theorem 5], we get

$$\phi(a^2) - \phi(a)^2 = -\sum_j \frac{1}{\alpha_j^2}.$$

Now let α_j be a zero of f. Using Jensen's formula [14] and the inequality (3.1), by the same reasoning as in the proof of [9, Theorem 5] we obtain

$$j\ln 2 \le \ln \frac{1+\delta}{1-2\delta} + 2|\alpha_j|.$$

On the other hand, since

$$\phi\left(\frac{\exp\alpha_j a}{\|\exp\alpha_j a\|}\right) \in \sigma_\delta\left(\frac{\exp\alpha_j a}{\|\exp\alpha_j a\|}\right),$$

we have $0 \in \sigma_{\delta} (\|\exp \alpha_{j}a\|^{-1} \exp \alpha_{j}a)$ from which it follows that $\exp \alpha_{j}a \notin \operatorname{Inv}_{\delta}A$ and thus there exists $\psi \in \Phi_{\delta}(A)$ such that $\psi(\exp \alpha_{j}a) = 0$. Hence, we have

$$1 - 2\delta \le |\psi(1)| \le \delta \|\exp\alpha_j a\| \|\exp(-\alpha_j a)\| \le \delta e^{2|\alpha_j|},$$

and so $|\alpha_j| \ge \frac{1}{2} \ln \frac{1-2\delta}{\delta}$. Therefore we have

$$j\ln 2 \le \ln \frac{1+\delta}{1-2\delta} + 2|\alpha_j| \le \frac{1}{2}\ln \frac{1-2\delta}{\delta} + 2|\alpha_j| \le 3|\alpha_j|.$$

Put $M := \frac{1}{2} \ln \frac{1-2\delta}{\delta}$ and let k be the greatest integer less than or equal to $\frac{3}{\ln 2}M$. Now we find a bound for $\left|\sum_{j} \frac{1}{\alpha_{j}^{2}}\right|$, by using $|\alpha_{j}| \geq M$ for $1 \leq j \leq k$ and $|\alpha_{j}| \geq \frac{\ln 2}{3}j$ for j > k. Then, a simple computation shows that

$$\left|\sum_{j} \frac{1}{\alpha_{j}^{2}}\right| \leq \sum_{j=1}^{k} \frac{1}{|\alpha_{j}|^{2}} + \sum_{j=k+1}^{\infty} \frac{1}{|\alpha_{j}|^{2}} \leq \frac{1}{M} \left(\frac{6}{\ln 2} + \frac{1}{M}\right).$$

Therefore, we get

(3.2)
$$|\phi(a^2) - \phi(a)^2| \leq 2\left(\ln\frac{1-2\delta}{\delta}\right)^{-1} \left(\frac{6}{\ln 2} + 2\left(\ln\frac{1-2\delta}{\delta}\right)^{-1}\right) := g(\delta),$$

for all $a \in A$ with ||a|| = 1.

Let $\epsilon > 0$. By [1, Corollary 3.6], there is $\delta_1 > 0$ such that if φ is a linear functional on A with

$$|\varphi(a^2) - \varphi(a)^2| \le \delta_1 \quad (a \in A, ||a|| = 1),$$

then φ is ϵ -almost multiplicative.

Now there is $\delta > 0$ such that $g(\delta) < \delta_1$. By (3.2), the linear functional ϕ is ϵ -almost multiplicative if $\phi(a) \in \sigma_{\delta}(a)$ for all $a \in A$ with ||a|| = 1. This proves the first assertion.

Now suppose that A is a commutative Banach algebra. Let $0 < \delta < \frac{1}{6}$ and $\phi : A \to \mathbb{C}$ be a linear functional with

$$\phi(a) \in \sigma_{\delta}(a) \quad (a \in A, ||a|| = 1).$$

By (3.2), the second assertion follows from [9, Lemma 4].

4. a sufficient condition for an almost multiplicative functional to be multiplicative

The following extension of the Gleason-Kahane- \dot{Z} elazko theorem was given in [2].

Theorem 4.1. Suppose that Ω is a Ransford subset of A and the Ransford spectrum $sp^{\Omega}(a)$ of a is bounded for all $a \in A$. Moreover, assume that there is a strictly increasing sequence $\{n_k\}$ in \mathbb{N} such that if $x \in \Omega$, then $x^{n_k} \in \Omega$ for all $k \in \mathbb{N}$. Then, if ϕ is a unital (i.e. $\phi(1) = 1$) linear functional on A with $\phi(a) \in sp^{\Omega}(a)$ for all $a \in A$, then ϕ is multiplicative.

A proof of this theorem can be found in [10]. We apply this result to get a sufficient condition for an almost multiplicative linear functional to be multiplicative.

Theorem 4.2. Let $0 < \delta < \frac{1}{4}$ and $f \in \Phi_{\delta}(A)$. Assume that there exists an integer number $r \ge 2$ such that

$$f(x) \neq 0 \Rightarrow f(x^r) \neq 0$$

holds true for all $x \in A$. Then,

$$f(xy) = \frac{f(x)f(y)}{f(1)} \quad (x, y \in A).$$

Proof. Let Ψ_r be the set of all δ -almost multiplicative functionals ψ in $\Phi_{\delta}(A)$ satisfying

$$\psi(x) \neq 0 \Rightarrow \psi(x^r) \neq 0 \quad (x \in A).$$

Moreover, put

$$\Omega := \{ x \in A : \psi(x) \neq 0 \text{ for all } \psi \in \Psi_{\mathbf{r}} \}.$$

It is clear that $0 \notin \Omega$, $1 \in \Omega$ and $z\Omega \subseteq \Omega$ for all $z \in \mathbb{C} \setminus \{0\}$. Also, there is the strictly increasing sequence $\{r^n\}$ such that

$$x \in \Omega \Rightarrow x^{r^n} \in \Omega$$

holds true for all $x \in A$. Now for every $x \in A$, the Ransford spectrum $sp^{\Omega}(x)$ of x with respect to the Ransford set Ω is defined by

$$sp^{\Omega}(x) = \{\lambda \in \mathbb{C} : \lambda - x \notin \Omega\}.$$

Since $\sigma_{\delta}(x)$ is bounded and $sp^{\Omega}(x) \subseteq \sigma_{\delta}(x)$, $sp^{\Omega}(x)$ is bounded for all $x \in A$. Put $\phi = \frac{f}{f(1)}$. Since $f \in \Psi_r$ and $f(\phi(x) - x) = \frac{f(x)}{f(1)}f(1) - f(x) = 0$ for every $x \in A$, $\phi(x) - x \notin \Omega$ and so $\phi(x) \in sp^{\Omega}(x)$ for all $x \in A$. Now it

follows from Theorem 4.1 that the linear functional ϕ is multiplicative. Hence $f(xy) = \frac{f(x)f(y)}{f(1)}$ for all $x, y \in A$.

Corollary 4.3. Suppose that $f : A \to \mathbb{C}$ is a unital δ -almost multiplicative linear functional such that

$$f(x) \neq 0 \Rightarrow f(x^2) \neq 0$$

holds true for all $x \in A$. Then f is multiplicative.

Corollary 4.4. There is $\delta > 0$ such that if ϕ is a unital linear functional on A with

(4.1)
$$|\phi(a^2) - (\phi(a))^2| < \delta \quad (a \in A, ||a|| = 1),$$

and furthermore, satisfying

(4.2)
$$\phi(a^2) = 0 \Rightarrow \phi(a) = 0 \quad (a \in A, ||a|| = 1),$$

then ϕ is multiplicative.

Proof. Let $0 < \epsilon < \frac{1}{4}$. By [1, Corollary 3.6], there is $\delta > 0$ such that the linear functional ϕ satisfying (4.1) is ϵ -almost multiplicative. Now if ϕ satisfies (4.2), then by Corollary 4.3, ϕ is multiplicative.

By [9, Lemma 4], the linear functional ϕ on commutative Banach algebra A satisfying (4.1) is 2δ -almost multiplicative. Hence, if A is commutative, then $\delta = \frac{1}{8}$ in Corollary 4.4.

References

- J. Alaminos, J. Extremera and A. R. Villena, Approximately spectrumpreserving maps, J. Funct. Anal. 261 (2011) 233–266.
- [2] C. Badea, The Gleason-Kahane-Żelazko theorem and Ransford's generalised spectra, C. R. Math. Acad. Sci. Paris 313 (1991) no. 10, 679–683.
- [3] K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991) no. 3, 915–921.
- [4] K. Jarosz, Almost multiplicative functionals, *Studia Math.* **124** (1997) 37–58.
- [5] K. Jarosz, Perturbations of Banach Algebras, Lecture Notes in Math., Springer-Verlag, Berlin, 1985.
- [6] K. Jarosz, When is a linear functional multiplicative?, Function spaces (Edwardsville, IL, 1998), 201–210, Contemp. Math., 232, Amer. Math. Soc., Providence, RI, 1999.
- [7] B. E. Johnson, Approximately multiplicative functionals, J. London Math. Soc. (2) 34 (1986) 489–510.
- [8] B. E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. (2) 37 (1988), no. 2, 294–316.

- [9] S. H. Kulkarni and D. Sukumar, Almost multiplicative functions on commutative Banach algebras, *Studia Math.* **197** (2010), no. 1, 93–99.
- [10] S. H. Kulkarni and D. Sukumar, Gleason-Kahane-Żelazko theorem for spectrally bounded algebra, Int. J. Math. Math. Sci. 2005 (2005) 2447–2460.
- [11] S. H. Kulkarni and D. Sukumar, The condition spectrum, Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 625–641.
- [12] T. J. Ransford, Generalised spectra and analytic multivalued functions, J. London Math. Soc. (2) 29 (1984), no. 2, 306–322.
- [13] A. R. Sourour, The Gleason-Kahane-Żelazko Theorem and its Generalizations, 327–331, Banach Center Publ. Warsaw, 1994.
- [14] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, Princeton, 2003.

(Ehsan Anjidani) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEYSHABUR, P.O. BOX 91136-899, NEYSHABUR, IRAN

E-mail address: anjidani@neyshabur.ac.ir