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Abstract. An oriented perfect path double cover (OPPDC) of a
graph G is a collection of directed paths in the symmetric orien-
tation Gs of G such that each arc of Gs lies in exactly one of the
paths and each vertex of G appears just once as a beginning and
just once as an end of a path. Maxová and Nešetřil (Discrete Math.
276 (2004) 287-294) conjectured that every graph except two com-
plete graphs K3 and K5 has an OPPDC and they claimed that the
minimum degree of the minimal counterexample to this conjecture
is at least four. In the proof of their claim, when a graph is smaller
than the minimal counterexample, they missed to consider the spe-
cial cases K3 and K5. In this paper, among some other results, we
present the complete proof for this fact. Moreover, we prove that
the minimal counterexample to this conjecture is 2-connected and
3-edge-connected.
Keywords: Perfect path double cover, Oriented perfect path dou-
ble cover, Oriented cycle double cover.
MSC(2010): Primary: 05C38; Secondary: 05C70.

1. Introduction

We denote by G = (V,E) a finite undirected graph with no loops or
multiple edges. The symmetric orientation of G, denoted by Gs, is an
oriented graph obtained from G by replacing each edge of G by a pair
of opposite directed arcs.

A cycle double cover (CDC) of a graph G is a collection of its cycles
such that each edge of G lies in exactly two of the cycles. A well-known
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conjecture of Seymour [7] asserts that every simple bridgeless graph has
a CDC. This problem also motivated several related conjectures. A
small cycle double cover (SCDC) of a graph on n vertices is a CDC with
at most n − 1 cycles. Bondy conjectured that every simple bridgeless
graph has an SCDC [1].

An oriented cycle double cover (OCDC) of G is a collection of directed
cycles in Gs of length at least 3 such that each arc of Gs lies in exactly
one of the cycles. Jaeger [3] conjectured that every bridgeless graph
has an oriented cycle double cover. An small oriented cycle double cover
(SOCDC) of a graph G on n vertices is an OCDC with at most n − 1
elements.

A perfect path double cover (PPDC) of a graph G is a collection P of
paths in G such that each edge of G belongs to exactly two members of
P and each vertex of G occurs exactly twice as an end of a path in P [2].
In [4] it is proved that every simple graph has a PPDC. The existence of
a PPDC for graphs in general is equivalent to the existence of an SCDC
for bridgeless graphs with a vertex joined to all other vertices.
Definition 1.1. [5] An oriented perfect path double cover (OPPDC) of
a graph G is a collection of directed paths in the symmetric orientation
Gs such that each arc of Gs lies in exactly one of the paths and each
vertex of G appears just once as a beginning and just once as an end of
a path.

Similar to the above, it can be seen that the existence of an OPPDC
for graphs in general is equivalent to the existence of an SOCDC for
bridgeless graphs with a vertex joined to all other vertices. Maxová and
Nešetřil in [5] showed that two complete graphs K3 and K5 have no
OPPDC, and in [6], they conjectured the following statement.
Conjecture 1.2. [6] (OPPDC conjecture) Every connected graph ex-
cept K3 and K5 has an OPPDC.

In the following theorem, a list of sufficient conditions for a graph to
admit an OPPDC is provided.

Theorem A. [5] Let G ̸= K3 be a graph. In each of the following
cases, G has an OPPDC.

(i) Each vertex of G has odd degree.
(ii) G arises from a graph G′ which has an OPPDC by dividing one

edge of G′.
(iii) G = G1∪G2 and V (G1)∩V (G2) = {v} which Gi is a graph with

an OPPDC, for i = 1, 2.
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(iv) G \ v has an OPPDC, for some v ∈ V (G) of degree less than 3.

In [5], Maxová and Nešetřil in the following two theorems proved that
if a graph of order n with a vertex v of degree 3 has no OPPDC, then
there exists a graph of order n− 1 which has no OPPDC either.

Theorem B. [5] Let G be a graph, v ∈ V (G) be a vertex of degree 3,
and N(v) = {x, y, z} induces K3 in G. If G \ v has an OPPDC, then G
has also an OPPDC.

Theorem C. [5] Let G be a graph, v ∈ V (G) be a vertex of degree 3,
N(v) = {x, y, z}, and e = xz ̸∈ E(G). If (G \ v)

∪
{e} has an OPPDC,

then G also has an OPPDC.

The structure of this paper is as follows. In Section 2, the properties of
the minimal counterexample to the OPPDC conjecture are studied and
it is proved that such graphs are 2-connected and 3-edge-connected with
minimum degree at least four. In Section 3, some sufficient conditions
for a graph to admit an OPPDC are provided.

2. The minimal counterexample to the OPPDC conjecture

In this section, among some other results, we prove that the minimal
counterexample to the OPPDC conjecture is 2-connected and 3-edge-
connected with minimum degree at least four.

Suppose that G is a minimal counterexample to the OPPDC conjec-
ture and G′ is a graph smaller than G. Since G′ can not be a counterex-
ample to the conjecture, either G′ has an OPPDC or G′ ∈ {K3,K5}.
In [5] as a corollary of Theorems A(iv), B and C it is concluded that
the minimum degree of the minimal counterexample to the OPPDC
conjecture is at least four, but the cases G′ ∈ {K3,K5} are missed to
investigate. In the following theorem along with the missing cases, we
give the complete proof for this result.

Theorem 2.1. If G is the minimal counterexample to the OPPDC con-
jecture, then δ(G) ≥ 4.

Proof. On the contrary, let G be a minimal counterexample to the
OPPDC conjecture that contains a vertex t of degree less than three
and let G′ = G \ t. Hence, either G′ has an OPPDC or G′ ∈ {K3,K5}.
In the former case by Theorem A(iv), G has an OPPDC. In the latter
case, G is one of the graphs G1, G2, G3 or G4, shown in Figure 1. In
each cases Pi, 1 ≤ i ≤ 4, is an OPPDC of Gi, where
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P1 = {tuyvxw, uxywvt, vuwyx,wxuvy, xvwu, yutv},
P2 = {tvwu, uv, vtuw,wvut}, P3 = {tuw, uv, vwu,wvut} and
P4 = {tuyxw, ut, vxuwy,wxvyu, xywvut, yvwux}. This contradicts our
assumption, thus the minimum degree of G is at least three.

Now let t ∈ V (G) with deg(t) = 3 and G′ = G \ t. If the neighbours
of t induce K3, and G′ has an OPPDC, then by Theorem B, G admits
an OPPDC. Otherwise, if G′ = K3, then G = K4 which has an OPPDC
and if G′ = K5, then G = G5 and
P5 = {twvxu, uwyxvt, vuxyw,wtuyv, xwuvy, yutvwx} is an OPPDC of
G.

If there are u, v ∈ N(t) such that e = uv /∈ E(G), then G′ =
(G \ t)

∪
{e} is smaller than G. If G′ has an OPPDC, then by The-

orem C, G admits an OPPDC. Otherwise, G′ ∈ {K3,K5}. In these
cases G ∈ {G6, G7}, where P6 = {tw, uwvt, vwtu,wutv} and P7 =
{tuxw, utwyv, vwxyu,wuyxvt, xuwvy, ywtvx} are OPPDC of G, respec-
tively.

All above cases contradict our assumption that G has no OPPDC.
Therefore, δ(G) ≥ 4. □

The complete graphs K3 and K5 are the only known examples of
connected graphs which have no OPPDC. By Theorem A(i), K2n has
an OPPDC. It is known that every symmetric orientation of K2n+2,
n ≥ 3, has a decomposition into 2n+ 1 directed Hamiltonian cycles [8].
This decomposition forms an OPPDC for K2n+1, n ≥ 3, by deleting a
fix vertex from each cycle.

By Theorem A(iii), if every block of graph G has an OPPDC, then
G also has an OPPDC. Remind that a block is a maximal connected
subgraph of G with no cut-vertex. Let G be the minimal counterexample
to the OPPDC conjecture. Therefore, G, either is 2-connected or at least
one of its blocks is K3 or K5. In the following theorem, we show that
the latter can not happen.

For every OPPDC of a connected graph G, say P, and every vertex
v ∈ V , let P v and Pv denote the paths in P beginning and ending with
v, respectively. Also note that we can assume, in an OPPDC, directed
paths of length zero are presented only at isolated vertices.

Theorem 2.2. The minimal counterexample to the OPPDC conjecture
is 2-connected.

Proof. Let G be the minimal counterexample to the OPPDC conjecture.
On the contrary, suppose that, G = B1 ∪ . . .∪Bk and Bi’s are blocks of
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Figure 1. Special Cases.

G. If every block of G has an OPPDC, then by Theorem A(iii), G also
has an OPPDC, which is a contradiction. Otherwise, at least one of the
Bi’s is K3 or K5. Since by Theorem 2.1, δ(G) ≥ 4, we need to consider
the following cases.

If k = 2 and B1 = B2 = K5, where V (B1) = {u, v, w, x, y} and
V (B2) = {u′, v, w′, x′, y′}. Then the following is an OPPDC of G,
P = {uxwyvy′w′x′u′, ywxuvu′x′w′y′, x′vx, u′vu, xyuwvw′u′y′x′, y′v,

wuyxvx′y′u′w′, w′vw, vy}.
If G = G1∪G2, where G1 = K5 and G2 has an OPPDC, then assume

that V (K5) = {u, v, w, x, y}, v is a cut vertex, and P̃ is an OPPDC

of G2. Also, let P̂ be the OPPDC of K5 \ {e = uv} as given above.

Consider two new directed paths Pw = P̃vvuP̂
u and P u = uvP̃ v. Thus,

P = P̂ ∪ P̃ ∪ {Pw, P
u} \

{
P̃ v, P̃v, P̂

u
}

is an OPPDC of G. In all above cases, we get a contradiction.
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For k ≥ 3, by the induction on k and Theorem A(iii), we find an
OPPDC of G, which is a contradiction. □

Theorem 2.2 concludes the following corollaries. A block graph is a
graph for which each block is a clique.

Corollary 2.3. Every block graph G ̸= K3,K5 has an OPPDC.

Proof. In the proof of Theorem 2.2, we show that, if G = B1 ∪ . . . ∪Bk

and Bi’s are blocks of G, δ(G) ≥ 4 and for each i, 1 ≤ i ≤ k, Bi has an
OPPDC or Bi = K3 or K5, then G has an OPPDC. To complete the
proof we need to consider the following remained cases.

If k = 2 and B1 = B2 = K3, where V (B1) = {u, v, w} and V (B2) =
{w, x, y}, then, P = {uwxy, ywvu, xw,wuv, vwyx} is an OPPDC of G.

If k = 2, B1 = K5 and B2 = K3, where V (B1) = {u, v, w, x, y} and
V (B2) = {v, s, t}. Let G′ = B1 \ {e = uv}. Then the following is an
OPPDC of G′,

P̂ = {uyxw, yvwux,wxvyu, xywv, vxuwy}.

Consider four new directed paths. P t = tsvuP̂ u, Pt = vt, Ps = uvs, and

P s = stvP̂ v. The following is an OPPDC of G,

P = P̂ ∪
{
P t, P s, Pt, Ps

}
\
{
P̂ u, P̂ v

}
.

Now, let G = G1 ∪ G2, where G1 = K3 and G2 has an OPPDC.

Assume that V (K3) = {u, v, w}, v is a cut vertex, and P̃ is an OPPDC

of G2. Now we define four new directed paths Pu = P̃vvwu, P
u = uv,

P v = vuw, and Pw = wvP̃ v. Therefore,

P = P̃ ∪ {Pu, P
u, P v, Pw} \

{
P̃ v, P̃v

}
is an OPPDC of G. Thus, the statement concludes. □

Since the line graph of every tree is a block graph, we have the fol-
lowing corollary.

Corollary 2.4. For every tree T ̸= K1,3,K1,5, L(T ) has an OPPDC.

For line graphs, the following result is also obtained from Theo-
rem A(iii).

Corollary 2.5. If the degree of no adjacent vertices in G have the same
parity, then the line graph L(G) has an OPPDC.
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The following lemmas are necessary to prove our next theorem.

Lemma 2.6. If G1 = G2 = K5 and G = G1 ∪ G2 ∪ {uu′, vv′}, where
{u, v} ∈ V (G1) and {u′, v′} ∈ V (G2), then G has an OPPDC.

Proof. Let G1 = G2 = K5, V (G1) = {u, v, w, x, y}, and V (G2) =
{u′, v′, w′, x′, y′}. Then the following is an OPPDC of G = G1 ∪ G2 ∪
{uu′, vv′}.
P = {uxywvv′y′u′x′w′, xvwu,wxuvy, yuu′, vuwyx, v′x′y′w′u′uyvxw,

x′u′w′v′, w′x′v′u′y′, y′v′v, u′v′w′y′x′}.
□

Lemma 2.7. Let G1 = K5 and G2 be a graph with an OPPDC. If
G = G1 ∪ G2 ∪ {uu′, vv′}, where {u, v} ∈ V (G1) and {u′, v′} ∈ V (G2),
then G has an OPPDC.

Proof. Let V (G1) = {u, v, w, x, y}, P̂ be the OPPDC of G1 \ {e = uv}
given in the proof of Theorem 2.2, and P̃ be an OPPDC of G2. Now

set four new directed paths. P u = uu′, Pv = P̃u′u′uv, Pw = P̃v′v
′vuP̂ u,

and Pv′ = P̂vvv
′. Thus,

P = P̂ ∪ P̃ ∪ {P u, Pv, Pw, Pv′} \
{
P̂ u, P̂v, P̃u′ , P̃v′

}
is an OPPDC of G. □

By Theorem 2.2, the minimal counterexample to the OPPDC conjec-
ture is bridgeless, therefore if G has an edge cut F of size 2, then the
edges of F are vertex disjoint. In the next theorem, we show that G has
no vertex disjoint edge cut of size 2.

Theorem 2.8. The minimal counterexample to the OPPDC conjecture
is 3-edge-connected.

Proof. Let G be the minimal counterexample to the OPPDC conjecture.
Suppose, on the contrary, that G has an edge cut of size 2, say F . By
Theorems 2.1 and 2.2, F is vertex disjoint. Let F = {uv,wx}, and G1

and G2 be the components of G \ F such that u,w ∈ V (G1).
If G1 and G2 have no OPPDC, then by minimality of G and by The-

orem 2.1, G1 and G2 are isomorphic to K5. Therefore by Lemma 2.6, G
has an OPPDC which is a contradiction. Now without loss of generality,
suppose that only G1 has an OPPDC. By minimality of G and Theo-
rem 2.1, G2 is isomorphic to K5; thus by Lemma 2.7, G has an OPPDC
which is a contradiction.
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It remains to consider the case that, G1 and G2 have an OPPDC,

P̂ and P̃ , respectively. Now we define four new directed paths P =

P̂uuvP̃
v, P v = vu, Q = P̂wwxP̃

x, and P x = xw. Therefore,

P = P̂ ∪ P̃ ∪ {P,Q, P v, P x} \
{
P̂u, P̂w, P̃

v, P̃ x
}

is an OPPDC ofG. This contradiction implies thatG is 3-edge-connected.
□

3. Some sufficient conditions for existence of an OPPDC

In this section, we prove some sufficient conditions for a graph to
admit an OPPDC. Since the minimal counterexample to the OPPDC
conjecture is 2-connected, first we consider the OPPDC conjecture for
2-connected graphs.

An ear-decomposition of a 2-connected graph G is a decomposition of
E(G) to subgraphs G0 = C0 ⊂ G1 ⊂ . . . ⊂ Gk = G such that C0 is a
cycle and for i, 2 ≤ i ≤ k, Gi \ Gi−1 is a simple path in Gi, with only
two distinct end vertices in Gi−1.

Theorem 3.1. If a 2-connected graph G has an ear-decomposition G0 =
C0 ⊂ G1 ⊂ . . . ⊂ Gk = G such that Gi \Gi−1 = Pi is a path of length at
least 2, for i = 1, . . . , k, and C0 ̸= K3, then G has an OPPDC.

Proof. We prove the statement by induction on k. For k = 0, G is a
cycle and the following is an OPPDC of cycle C = [v1, v2, . . . , vn].

P = {vnvn−1, vn−1vn−2 . . . v2v1vn, vn−2vn−1vnv1} ∪
(
∪n−3
i=1 {vivi+1}

)
.

Now by induction on k and by Theorem A(iv) and (ii), an OPPDC of
G is obtained. □

The following corollary provides a condition for every ear decomposi-
tion of the minimal counterexample to the OPPDC conjecture.

Corollary 3.2. Every ear-decomposition of the minimal counterexample
to the OPPDC conjecture has at least one ear of length 1.

Theorem 3.3. Let G be a connected graph. If E(G) is partitioned to a
cycle C of length at least 4 and a connected graph G′ such that G′ has
an OPPDC and |V (C) \ V (G′)| ≥ 2, then G also has an OPPDC.

Proof. If |V (C)∩V (G′)| = 1, then by Theorem A(iii), G has an OPPDC.

Now, suppose that |V (C)∩ V (G′)| ≥ 2. Let P̂ be an OPPDC of G′ and
C = [v1, v2, . . . , vk].
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Figure 2. Every ear-decomposition of G has at least one ear
of length 1.

If there exist two vertices vi and vj , i < j, in V (C) \ V (G′) and two
vertices vr and vs in V (C)∩V (G′), both of which in the same segment of
C divided by vi and vj , then without loss of generality, we can assume
that 1 ≤ i < j < r < s ≤ k. Thus, we can find an OPPDC for G

as follows. Let P vi = vivi−1vi−2 . . . vsP̂
vs , P vs = vsvs−1 . . . vi, P vj =

vjvj+1 . . . vrP̂
vr , and P vr = vrvr+1 . . . vj . Now, let P̃vi and P̃vs be the

collections of directed paths obtained by breaking the paths P vi and
P vs on the vertices of V (C) \ (V (G′) ∪ {vj}). Thus, the following is an
OPPDC of G,

P = P̂ ∪ P̃vi ∪ P̃vs ∪ {P vj , P vr} \ {P̂ vr , P̂ vs}.

Otherwise, C = [v1, v2, v3, v4] and V (C)∩V (G′) = {v1, v3}. In this case,

we define four new directed paths Pv2 = v1v4v3v2, P
v2 = v2v1P̂

v1 , P v4 =

v4v1v2v3, and Pv4 = P̂v3v3v4. Now, the following is an OPPDC of G.

P = P̂ ∪ {Pv2 , P
v2 , P v4 , Pv4} \ {P̂ v1 , P̂v3}.

□

Corollary 3.4. Let G be a connected graph. If E(G) is partitioned to
a collection of cycles {C1, C2, . . . , Ck} such that for each i, 2 ≤ i ≤ k,
|V (Ci) \ ∪j<iV (Cj)| ≥ 2 and C1 ̸= K3, then G has an OPPDC.

Example 1. The graph G in Figure 2 is a 2-connected even graph that
every ear-decomposition of G has at least one ear of length 1. In fact,
in every ear-decomposition of G, at least one of the edges of the clique
⟨{w, x, y, z}⟩ is an ear. So the condition of Theorem 3.1 does not hold.
On the other hand, let C1 = [wxyz] and C2 = E(G) \ E(C1). In the
cycle decomposition {C1, C2} of G, |V (C2)\V (C1)| ≥ 2. Thus by Corol-
lary 3.4, G has an OPPDC.
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In the following theorem, we give a sufficient condition for the exis-
tence of an OPPDC in graphs of minimum degree at most three.

Theorem 3.5. If G ̸= K3 is a graph with ∆(G) ≤ 4 and δ(G) ≤ 3, then
G has an OPPDC.

Proof. We proceed by induction on the order of graph, n. For n = 2
the statement is trivial. For n ≥ 3, suppose deg(v) = δ(G) ≤ 3. If
d(v) = 1 or 2, then G′ = G \ v is a graph of order n− 1, ∆(G′) ≤ 4, and
δ(G′) ≤ 3. Therefore, by the induction hypothesis G′ has an OPPDC,
and by Theorem A(iv), G also has an OPPDC.
Let deg(v) = 3 and N(v) = {x, y, z}. Now, if N(v) induces K3, then
by the induction hypothesis and by Theorem B, G has an OPPDC.
Otherwise, let e = xz /∈ E(G). Thus by the induction hypothesis,
G \ v ∪ {e} has an OPPDC. Therefore by Theorem C, G admits an
OPPDC. □

Corollary 3.6. Every 4-regular graph with a cut-vertex has an OPPDC.

Proof. If G is a 4-regular graph with a cut-vertex, then every block,
G′, of G is a graph with ∆(G′) ≤ 4 and δ(G′) ≤ 3. Therefore, by
Theorems 3.5 and A(iii), G has an OPPDC. □

Following theorem guarantees the existence of an OPPDC for a large
family of graphs. The Cartesian product, G□H of two graphs G and H is
the graph with vertex set V (G)×V (H) and two vertices (u, v) and (x, y)
are adjacent if and only if either u = x and vy ∈ E(H), or ux ∈ E(G)
and v = y. In the following theorem we prove that the existence of an
OPPDC for two graphs G and H, provides an OPPDC for the Cartesian
product of G and H.

Theorem 3.7. If G and H have an OPPDC, then G□H also has an
OPPDC.

Proof. Suppose that P and Q are the OPPDC of G and H, respectively.
Let R = {PuQ

v : (u, v) ∈ V (G□H)}, where Pu ∈ P is the directed
path ending with u in the copy of G in G□H corresponding to the vertex
v in H, and Qv ∈ Q is the directed path starting from v in the copy
of H in G□H corresponding to the vertex u in G. It can be seen that
every arc of the symmetric orientation of G□H is covered by one path
in R and every vertex (u, v) appears just once as a beginning and once
as an end of a path in R. Therefore, R is an OPPDC of G□H. □
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Theorem 3.7 concludes that the OPPDC conjecture holds for some
well-known families of graphs, such as Cartesian products of cycles,
paths, wheels, complete graphs, and complete bipartite graphs.

In the following an OPPDC for the complete bipartite graph is given.

Theorem 3.8. Every Kn,m has an OPPDC.

Proof. Let V (Kn,m) = {v1, . . . , vn;w1, . . . , wm} and E(Kn,m) = {viwj :
1 ≤ i ≤ n, 1 ≤ j ≤ m}. We proceed by induction on m. Suppose first
that m = 1. Define P v1

n,1 = v1w1, Pw1
n,1 = w1vn, and P vi

n,1 = viw1vi−1, for
2 ≤ i ≤ n. Therefore,

Pn,1 = {Pw1
n,1, P

vi
n,1 : 1 ≤ i ≤ n}

is an OPPDC of Kn,1.
Now for m ≥ 2, define P v1

n,m = v1wm, Pwm
n,m = wmvnP

vn
n,m−1, P vi

n,m =

viwmvi−1P
vi−1

n,m−1, for 2 ≤ i ≤ n, and P
wj
n,m = P

wj

n,m−1, for 2 ≤ j ≤ m− 1.
Thus,

Pn,m = {P vi
n,m, P

wj
n,m : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

is an OPPDC of Kn,m. □
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