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Abstract. We study the notion of bounded approximate Connes-
amenability for dual Banach algebras and characterize this type of
algebras in terms of approximate diagonals. We show that bounded
approximate Connes-amenability of dual Banach algebras forces
them to be unital. For a separable dual Banach algebra, we prove
that bounded approximate Connes-amenability implies sequential
approximate Connes-amenability.
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1. Introduction

The concept of amenability for Banach algebras was introduced by
Johnson in 1972 [14]. Several modifications of this notion were intro-
duced by relaxing some of the restrictions on the definition of amenabil-
ity. Some of the most notable are the concepts of Connes amenabil-
ity [15] and approximate amenability [10], where the former had been
studied previously under different names. We recall the definitions in
Definitions 1.1 and 1.2 below. Before proceeding further, we recall some
terminology.

Let A be a Banach algebra. Throughout this paper, the identity
element of A, whenever it exists, is denoted by e. The term unital
Banach algebra refers to a Banach algebra with identity e for which
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Bounded approximate Connes-amenability 228

||e|| = 1. For a Banach algebra A a Banach A-bimodule E, is a Banach
space which is algebraically anA-bimodule and there is a constant C ≥ 0
such that

||a . x|| ≤ C||a|| ||x|| and ||x . a|| ≤ C||a|| ||x|| (a ∈ A, x ∈ E).

We write L(A, E) for the Banach space of all bounded linear maps from
A into E. In the case where E is a Banach A-bimodule, its dual E∗

is also a Banach A-bimodule. The reader may see [3] for the standard
dual module definitions.

Suppose that A is a Banach algebra and E is a Banach A-bimodule.
A derivation D : A −→ E is a bounded linear map, satisfying

D(ab) = Da . b+ a . Db (a, b ∈ A).

For x ∈ E, the inner derivation adx : A −→ E is defined by adx(a) =
a . x − x . a. A derivation D : A −→ E is inner if there is x ∈ E such
that D = adx.

Let A be a Banach algebra. A Banach A-bimodule E is dual if there
is a closed submodule E∗ of E∗ such that E = (E∗)

∗. We call E∗ the
predual of E. A dual Banach A-bimodule E is normal if the module
actions of A on E are w∗-continuous. A Banach algebra A is dual if it
is dual as a Banach A-bimodule.

Definition 1.1. A dual Banach algebra A is Connes-amenable if ev-
ery w∗-continuous derivation from A into a normal, dual Banach A-
bimodule is inner.

Let A be a Banach algebra. The projective tensor product A⊗̂A is a
Banach A-bimodule under the operations

a . (b⊗ c) := ab⊗ c, (b⊗ c) . a := b⊗ ca (a, b, c ∈ A),

and there is a continuous linearA-bimodule homomorphism Π : A⊗̂A −→
A such that Π(a⊗ b) = ab, for a, b ∈ A (see [3]).

Let A = (A∗)
∗ be a dual Banach algebra and let E be a Banach A-

bimodule. We write σwc(E) for the set of all elements x ∈ E such that
the maps

A −→ E , a 7−→
{

a . x
x . a

,

are w∗-weak continuous. The space σwc(E) ia a closed submodule of E.
It is shown in [18, Corollary 4.6], that Π∗A∗ ⊆ σwc(A⊗̂A)∗ . Taking
adjoint, we can extend Π to an A-bimodule homomorphism Πσwc from
σwc((A⊗̂A)∗)∗ to A.
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Let A be a Banach algebra, and let E be a Banach A-bimodule. A
derivation D : A −→ E is approximately inner if there exists a net
(xi)i ⊆ E, such that

Da = lim
i
(a . xi − xi . a) (a ∈ A).

That is, D = limi adxi in the strong-operator topology of L(A, E).

Definition 1.2. A Banach algebra A is approximately amenable if for
each Banach A-bimodule E, every derivation D : A −→ E∗ is approxi-
mately inner.

The reader may see [1, 6, 11–13] for more details. Motivated by Defi-
nitions 1.1 and 1.2, the concept of approximate Connes-amenability was
introduced and studied in [9].

Definition 1.3. A dual Banach algebra A is approximately Connes-
amenable if for each normal, dual Banach A-bimodule E, every w∗-
continuous derivation D : A −→ E, is approximately inner.

The qualifier sequential prefixed to the Definitions 1.2 and 1.3 specifies
that there is a sequence of inner derivations approximating each given
derivation.

In [11], the notion of bounded approximate amenability was also in-
troduced: a Banach algebra A is boundedly approximately amenable if
for each Banach A-bimodule E, and every derivation D : A −→ E∗,
there is a net (ϕi)i ⊆ E∗ such that the net (adϕi

)i is norm bounded in
L(A, E∗) and Da = limi adϕi

(a) for a ∈ A. It leads to the following
notion.

Definition 1.4. A dual Banach algebra A is boundedly approximately
Connes-amenable if for each normal, dual Banach A-bimodule E, and
every w∗-continuous derivation D : A −→ E, there is a net (xi)i ⊆
E such that the net (adxi)i is norm bounded in L(A, E) and Da =
limi adxi(a) for a ∈ A.

In the next section, we continue the investigation of approximate
Connes-amenability. We study basic properties of the notion of bounded
approximate Connes-amenability. We characterize both approximate
and bounded approximate Connes-amenability in terms of approximate
diagonals with specified properties. We see that bounded approximate
Connes-amenability of a dual Banach algebra is equivalent to that of
its unitization. We show that a boundededly approximately Connes-
amenable dual Banach algebra must be unital. We prove that any
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boundedly approximately Connes-amenable dual Banach algebra which
is also separable as a Banach space is sequentially approximately Connes-
amenable. We conclude by looking at approximate Connes-amenability
of the direct sum of two approximately Connes-amenable dual Banach
algebras such that one of them has an identity.

2. Bounded approximate connes-amenability

We first state the following which is a combination of [9, Propositions
2.3 and 3.3].

Proposition 2.1. Let A be a dual Banach algebra. Then, the following
are equivalent:

(i) A is approximately Connes-amenable.
(ii) There is a net (Mα)α ⊆ σwc((A♯⊗̂A♯)∗)∗ such that

a . Mα −Mα . a −→ 0 and ΠσwcMα −→ e (a ∈ A♯) .

(iii) There is a net (M
′
α)α ⊆ σwc((A♯⊗̂A♯)∗)∗ such that

a . M
′
α −M

′
α . a −→ 0 and ΠσwcM

′
α = e (a ∈ A♯) .

The following lemma is needed to characterize (bounded) approximate
Connes-amenability.

Lemma 2.2. Let A be a dual Banach algebra and let E and F be Banach
A-bimodules. Then σwc(E ⊕ F ) = σwc(E)⊕ σwc(F ).

Proof. Let x + y ∈ σwc(E ⊕ F ), where x ∈ E and y ∈ F . Let ai
w∗
−→ a

in A. Then ai . (x+ y)
wk−→ a . (x+ y) in E⊕F . Then, by the definition

of weak topology on E ⊕ F , we have

ai . x
wk−→ a . x and ai . y

wk−→ a . y ,

respectively in E and F . Whence x ∈ σwc(E) and y ∈ σwc(F ), thus
x+ y ∈ σwc(E)⊕ σwc(F ).

Conversely, if x ∈ σwc(E) and y ∈ σwc(F ) and if ai
w∗
−→ a in A, then

ai . x
wk−→ a . x and ai . y

wk−→ a . y, respectively in E and F . Thus

ai . (x+ y)
wk−→ a . (x+ y) in E ⊕ F , thus x+ y ∈ σwc(E ⊕ F ). □

The following is an analog of [10, Corollary 2.2].

Theorem 2.3. Let A = (A∗)
∗ be a dual Banach algebra. Then A is

approximately Connes-amenable if and only if there are nets (Mα)α ⊆
σwc((A⊗̂A)∗)∗, (Fα)α, (Gα)α ⊆ σwc(A∗)∗, such that
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(i) a . Mα −Mα . a+ Fα ⊗ a− a⊗Gα −→ 0 , (a ∈ A) .
(ii) a . Fα −→ a and Gα . a −→ a , (a ∈ A) .
(iii) Πσwc(Mα)− Fα −Gα −→ 0 .

Proof. Let A be approximately Connes-amenable. Then, by Proposition
2.1, there is a net (Nα)α ⊆ σwc((A♯⊗̂A♯)∗)∗ such that a . Nα−Nα . a −→
0, for all a ∈ A♯, and Πσwc(Nα) −→ e, where e is the identity of A♯. By
Lemma 2.2, since (A♯⊗̂A♯)∗ = (A⊗̂A)∗⊕ (A∗⊗ e)⊕ (e⊗A∗)⊕ (Ce⊗ e),
we have

σwc(A♯⊗̂A♯)∗ = σwc(A⊗̂A)∗⊕(σwc(A∗)⊗e)⊕(e⊗σwc(A∗))⊕(Ce⊗e) .

Therefore σwc((A♯⊗̂A♯)∗)∗ = σwc((A⊗̂A)∗)∗ ⊕ (σwc(A∗)∗ ⊗ e) ⊕ (e ⊗
σwc(A∗)∗)⊕ (Ce⊗ e) . Thus we can write Nα = Mα−Fα⊗ e− e⊗Gα+
cαe ⊗ e, where (Mα)α ⊆ σwc((A⊗̂A)∗)∗ and (Fα)α, (Gα)α ⊆ σwc(A∗)∗

and (cα)α ⊆ C.
Applying Πσwc, we observe that

Πσwc(Mα)− Fα −Gα + cα −→ e ,

whence cα −→ 1 and Πσwc(Mα)−Fα −Gα −→ 0, that is, we have (iii).
Next, for a ∈ A
a . Nα −Nα . a = a . Mα −Mα . a+ Fα ⊗ a− a⊗Gα

+ e⊗Gα . a− a . Fα ⊗ e+ a⊗ e− e⊗ a −→ 0 ,

whence we conclude that

lim
α

a . Mα−Mα . a+Fα⊗a−a⊗Gα = 0 , and lim
α

a . Fα = lim
α

Gα . a = a,

as required.
Conversely, given (Mα)α, (Fα)α and (Gα)α, set cα = 1 and define

Nα := Mα − Fα ⊗ e− e⊗Gα + e⊗ e. Then it is easy to check that, for
all a ∈ A♯

a . Nα −Nα . a −→ 0 and Πσwc(Nα) −→ e ,

hence A is approximately Connes-amenable. □
Theorem 2.4. Let A be a boundedly approximately Connes-amenable
dual Banach algebra. Then there exists a constant C > 0 and nets
(Mα)α ⊆ σwc((A⊗̂A)∗)∗, (Fα)α, (Gα)α ⊆ σwc(A∗)∗, such that

(i) Πσwc(Mα) = Fα +Gα .
(ii) a . Fα −→ a , for all a ∈ A .
(iii) ||a . Fα|| ≤ C||a|| , for all α and a ∈ A .
(iv) Gα . a −→ a , for all a ∈ A .
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(v) ||Gα . a|| ≤ C||a|| , for all α and a ∈ A .
(vi) supα ||a . Mα−Mα . a−a⊗Gα+Fα⊗a|| ≤ C||a|| , for all a ∈ A .
(vii) a . Mα −Mα . a− a⊗Gα + Fα ⊗ a −→ 0 , for all a ∈ A .

Proof. Regard A♯⊗̂A♯ as an A-bimodule in the usual way. Let K be the
kernel of the map Πσwc : σwc((A♯⊗̂A♯)∗)∗ −→ A♯, and let D : A −→
σwc((A♯⊗̂A♯)∗)∗ be the derivation defined by Da = a⊗ e− e⊗ a, where
e is the identity of A♯. Note that σwc((A♯⊗̂A♯)∗)∗ is normal, hence D is
w∗-continuous. Clearly, D attains its value in the w∗-closed submodule
K. Since A is boundedly approximately Connes-amenable, there exists
a net (uα)α in K such that

C := sup
α

sup
||a||≤1

||a . uα−uα . a|| < ∞ , and Da = lim
α

a . uα−uα . a ,

for all a ∈ A. Identifying σwc((A♯⊗̂A♯)∗)∗ with the direct sum

σwc((A⊗̂A)∗)∗ ⊕ (σwc(A∗)∗ ⊗ e)⊕ (e⊗ σwc(A∗)∗)⊕ (Ce⊗ e) ,

we may write each uα in the form uα = (−Mα) + (Fα ⊗ e) + (e ⊗ Gα),
for some Mα ∈ σwc((A⊗̂A)∗)∗ and some Fα, Gα ∈ σwc(A∗)∗. We shall
show that these nets have the required properties.

First, for all α, we have

0 = Πσwc(uα) = −Πσwc(Mα) + Fα +Gα ,

and we obtain (i). Next, since

a.uα−uα.a = (−a.Mα+Mα.a+a⊗Gα−Fα⊗a)+(a.Fα⊗e)+(−e⊗Gα.a) ,

and the left hand side is bounded in norm by C||a||, we must have
||a . Fα|| ≤ C||a||, ||Gα . a|| ≤ C||a|| and

||a . Mα −Mα . a− a⊗Gα + Fα ⊗ a|| ≤ C||a|| ,
for all α and a ∈ A. Whence we have (iii), (v) and (vi).

Finally, for each a ∈ A,

a⊗ e− e⊗ a = Da = lim
α
(a . uα − uα . a)

= lim
α
(−a . Mα +Mα . a+ a⊗Gα − Fα ⊗ a)

+ lim
α
(a . Fα ⊗ e) + lim

α
(−e⊗Gα . a) .

Then, we conclude that

a = lim
α

a . Fα = lim
α

Gα . a and lim
α

a . Mα−Mα . a−a⊗Gα+Fα⊗a = 0 ,

as required. □
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Recall that if A = (A∗)
∗ is a dual Banach algebra, then its unitization

A♯ = A ⊕1 C is a dual Banach algebra with predual A∗ ⊕∞ C, where
⊕1 and ⊕∞ indicate ℓ1 and ℓ∞ direct sums, respectively. A Banach
A-bimodule E is said to be neo-unital if

E = A . E . A = {a . x . b : a, b ∈ A, x ∈ E} .

Theorem 2.5. Let A be a dual Banach algebra. Then A is boundedly
approximately Connes-amenable if and only if A♯ is boundedly approxi-
mately Connes-amenable.

Proof. Let A be boundedly approximately Connes-amenable, E be a
normal dual Banach A♯-bimodule, and D : A♯ −→ E be a w∗-continuous
derivation. By [10, Lemma 2.3], D = D1 + adη, where e is the identity

of A♯ and D1 : A♯ −→ e . E .e is a w∗-continuous derivation into the
normal dual Banach A♯-bimodule e . E .e, thus D1(e) = 0. Hence,
without loss of generality, we may suppose that E is neo-unital and
so D(e) = 0. By assumption, there is a net (xi) ⊆ E and C > 0
such that Da = limi(a . xi − xi . a), for all a ∈ A, and moreover
||a . xi − xi . a|| ≤ C||a||, for all i. Since D(e) = 0 and e . x = x . e for
all x ∈ E, it follows that

D(a+ λe) = lim
i
((a+ λe) . xi − xi . (a+ λe))

and

||(a+ λe) . xi − xi . (a+ λe)|| ≤ C||a|| ≤ C||a+ λe||
hence A♯ is boundedly approximately Connes-amenable.

Conversely, Let E be a normal, dual Banach A-bimodule, and D :
A −→ E be a w∗-continuous derivation. Setting e . x = x . e = x,
makes E into a normal, dual Banach A♯-bimodule. We extend D to A♯

by setting D(e) = 0. Note that this extension is still w∗-continuous.
Therefore, there is a net (xi) ⊆ E and C > 0, such that for all a ∈ A

Da = lim
i
(a . xi − xi . a) with ||a . xi − xi . a|| ≤ C||a|| ,

as required. □

Theorem 2.6. Suppose that A and B are Banach algebras and θ : A −→
B is a continuous homomorphism with dense range. Then we have the
following:

(i) Suppose that A is boundedly approximately amenable, then B is
boundedly approximately amenable.
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(ii) Suppose that B is a dual Banach algebra. If A is boundedly
approximately amenable, then B is boundedly approximately Connes-
amenable.

(iii) Suppose that A and B are dual Banach algebras. If A is bound-
edly approximately Connes-amenable and if θ is w∗-continuous, then B
is boundedly approximately Connes-amenable.

Proof. We just give the proof of (i). Given a Banach B-bimodule E,
then it is also a Banach A-bimodule with actions

a . x := θ(a) . x and x . a := x . θ(a) (a ∈ A, x ∈ E) .

If D : B −→ E∗ is a derivation, then Dθ : A −→ E∗ is a derivation.
Then, there are a net (ϕα) in E∗ and a constant C > 0 such that
D(θ(a)) = limα θ(a) . ϕα − ϕα . θ(a), for every a ∈ A, and ||adϕα || < C,
for each α.

For b ∈ B, there is a net (ai) ⊆ A such that θ(ai) −→ b. For an
arbitrary ϵ, there is an index i such that ||D|| ||b − θ(ai)|| + C||b −
θ(ai)|| <

2ϵ

3
. Then we may choose α such that ||D(θ(ai))− (θ(ai) . ϕα−

ϕα . θ(ai))|| <
ϵ

3
. Now ||Db−(b . ϕα−ϕα . b)|| < ϵ, and we are done. □

Recall that a multiplier-bounded left approximate identity for a Ba-
nach algebra A is a left approximate identity (ei) for A such that
||eia|| ≤ K||a||, for a constant K > 0 and for all a ∈ A. A multiplier-
bounded right approximate identity is defined similarly.

Theorem 2.7. Suppose that A is a boundedly approximately Connes-
amenable dual Banach algebra, and has both a multiplier-bounded left
approximate identity and a multiplier-bounded right approximate iden-
tity. Then A has an identity.

Proof. Let (eα) and (fβ) be, respectively, right and left multiplier-bounded
approximate identities for A. Then there exists a constant K > 0 such
that for all α, β and a ∈ A

||aeα|| ≤ K||a|| and ||fβa|| ≤ K||a|| .
Then, by the definition of the projective tensor norm, we obtain

||fβ . m|| ≤ K||m|| and ||m . eα|| ≤ K||m||

for every α, β and m ∈ A⊗̂A. Therefore, using the w∗-density of A⊗̂A in
σwc((A⊗̂A)∗)∗ and the w∗-continuity of the actions of A on σwc((A⊗̂A)∗)∗,
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we have
||fβ . T || ≤ K||T || and ||T . eα|| ≤ K||T || ,

for every α, β and T ∈ σwc((A⊗̂A)∗)∗.
Let (Fi), (Gi), (Mi) and C be the nets and the constant satisfying

the conditions of Theorem 2.4. Towards a contradiction, suppose that
the net (fβ) is norm unbounded. For every i and every β

||fβ . Mi −Mi . fβ − fβ ⊗Gi + Fi ⊗ fβ|| ≤ C||fβ|| ,
hence by the above estimates we have

||(fβ . Mi −Mi . fβ − fβ ⊗Gi + Fi ⊗ fβ) . eα|| ≤ KC||fβ|| ,
for every α, β and i.

Therefore, using left multiplier-boundedness of the net (fβ) we have

||fβ || ||Gi . eα|| ≤ ||fβ ⊗Gi . eα − fβ . Mi . eα +Mi . (fβeα)− Fi ⊗ fβeα||
+ ||fβ . Mi . eα −Mi . (fβeα) + Fi ⊗ fβeα||
≤ KC||fβ ||+K||Mi . eα||+K||Mi|| ||eα||+K||Fi|| ||eα||

for every α, β and i. Hence

||Gi . eα|| ≤ KC +
K

||fβ||
(||Mi . eα||+ ||Mi|| ||eα||+ ||Fi|| ||eα||) ,

for every α, β and i.
For fixed α and i, the assumption that (fβ) is unbounded yields

||Gi . eα|| ≤ KC. Taking limit with respect to i, we have ||eα|| ≤ KC,
for each α. Because (eα) is a right approximate identity and (fβ) is a
left-multiplier bounded set, we obtain

||fβ|| = lim
α

||fβeα|| ≤ lim
α

K||eα|| ≤ K2C ,

for all β. This contradicts our assumption that the net (fβ) is un-
bounded.

Similarly, the net (eα) is also bounded. Then with an standard ar-
gument we obtain a bounded approximate identity for A. Taking a
w∗-cluster point yields an identity. □
Theorem 2.8. Suppose that A is a boundedly approximately Connes-
amenable dual Banach algebra. Then A has an identity.

Proof. From Theorem 2.4, there are nets (Fα)α, (Gα)α ⊆ σwc(A∗)∗ such
that a . Fα −→ a and Gα . a −→ a, for every a ∈ A, and (Fα) and (Gα)
are multiplier-bounded. SinceA = (A∗)

∗ is a dual Banach algebra, A∗ ⊆
σwc(A∗), [18, Corollary 4.6]. Let ı : A∗ −→ σwc(A∗) be the canonical
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embedding, such that ı∗ is an A-bimodule morphism from σwc(A∗)∗

onto A. Hence (ı∗(Fα))α and (ı∗(Gα))α are multiplier-bounded right
and left approximate identities, respectively, for A. Now, by Theorem
2.7, A has an identity. □

Let A = (A∗)
∗ and B = (B∗)

∗ be dual Banach algebras, then A⊕1 B
is a dual Banach algebra with predual A∗ ⊕∞ B∗.

Theorem 2.9. Suppose that A and B are dual Banach algebras. Then
A ⊕1 B is boundedly approximately Connes-amenable if and only if A
and B are boundedly approximately Connes-amenable.

Proof. By Theorem 2.8, A and B have identities. Hence the proof is
similar to [9, Proposition 2.3 (ii)]. □
Theorem 2.10. Suppose that M(G) is the measure algebra of a locally
compact group G. Then

(i) M(G) is boundedly approximately amenable if and only if G is
discrete and amenable.

(ii) M(G) is boundedly approximately Connes-amenable if and only
if G is amenable.

Proof. The part (i) is immediate by [4] and [10, Theorem 3.1], and (ii)
is obvious by [17] and [9, Theorem 5.2]. □
Example 2.11. Suppose that G is an amenable, non-discrete, locally
compact group and N∨ is the semigroup N with product m ∨ n =
max{m,n}. By [2, Theorem 6.1], the dual Banach algebra ℓ1(N∨) is
boundedly approximately amenable and so is boundedly approximately
Connes-amenable. Hence, by Theorems 2.9 and 2.10 (ii), ℓ1(N∨) ⊕1

M(G) is boundedly approximately Connes-amenable. However, using
the canonical epimorphism ℓ1(N∨)⊕1M(G) −→ M(G) and Theorems 2.6
and 2.10 (i), ℓ1(N∨)⊕1M(G) is not boundedly approximately amenable.

Theorem 2.12. Suppose that A is boundedly approximately Connes-
amenable dual Banach algebra. If A is separable as a Banach space,
then it is sequentially approximately Connes-amenable.

Proof. Let {bn | n ∈ N} be a countable dense subset of A. Let E be
a normal, dual Banach A-bimodule and let D : A −→ E be a w∗-
continuous derivation. Since A is boundedly approximately Connes-
amenable there exists a C > 0 such that for each n ∈ N, there is xn ∈ E
such that

||Dbk − (bk . xn − xn . bk)|| <
1

n
(k = 1, ..., n)
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and

||a . xn − xn . a|| ≤ C||a|| (a ∈ A) .

This shows that the sequence (xn) ⊆ E satisfies

Dbk = lim
n−→∞

(bk . xn − xn . bk) (k = 1, 2, ...) ,

and the sequence (adxn) is bounded in L(A, E). Now, for a ∈ A, without
loss of generality, we may assume that limk−→∞ bk = a. Hence Da =
limn−→∞ a . xn − xn . a, for all a ∈ A. Whence A is sequentially
approximately Connes-amenable. □

Finally, in the light of [11, Propositions 6.1 and 6.3], we can improve
some results in [9] concerning the approximate Connes-amenability of
the direct sum of dual Banach algebras. We summarize them in the
following remark.

Remark 2.13. (i) Suppose that A and B are approximately Connes-
amenable dual Banach algebras and that one of them say B has an
identity eB. Then A⊕1B is approximately Connes-amenable as well. To
see this, suppose that E is a normal, dual Banach A⊕1B-bimodule, and
D : A⊕1 B −→ E is a w∗-continuous derivation. We extend the module
actions on E by defining e . x := x − eB . x and x . e := x− x . eB for
x ∈ E, where e is the identity of A♯. Then E is a normal, dual Banach
A♯ ⊕1 B-bimodule. Next, we extend D to a w∗-continuous derivation
from A♯ ⊕1 B into E by defining D(e) := −D(eB). Hence D is inner
by [9, Proposition 2.3 (ii)].

(ii) Suppose that A is a dual Banach algebra such that A ⊕1 A is
approximately Connes-amenable. A more or less verbatim copy of the
argument given in the proof of [11, Proposition 6.3] then shows that A
has a two-sided approximate identity.
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