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FIRST ORDER COHOMOLOGY OF `1-MUNN
ALGEBRAS AND CERTAIN SEMIGROUP ALGEBRAS

B. SHOJAEE, G. H. ESSLAMZADEH* AND A. POURABBAS

Communicated by Fereidoun Ghahramani

Abstract. We characterize cyclic and weakly amenable `1-Munn
algebras. In the special case of Rees matrix semigroups, we obtain a
new proof of the following result due to Blackmore: The semigroup
algebra of every Rees matrix semigroup is weakly amenable. Char-
acterizations of Connes-amenable `1-Munn algebras with square
sandwich matrix and semigroup algebras of Rees matrix semigroups
are also provided.

1. Introduction

Cohomology of Banach algebras has received extensive study since
the major exposition of Hochschild cohomology theory for Banach alge-
bras by B. E. Johnson[15], with emphasis on the first order cohomology
groups. Let A be a Banach algebra. Vanishing of the first cohomology
groups H1(A,X) for certain classes of Banach A-modules X has been
given different names, depending on the class of Banach A-modules un-
der investigation among which are cyclic, weak and Connes-amenability.
The reader may see [1,2,4,14,15,16,18] for more information. Here, we
consider these notions for `1-Munn algebras and semigroup algebras of
Rees matrix semigroups.
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Blackmore showed that the semigroup algebra of every Rees matrix
semigroup is weakly amenable [3]. Bowling and Duncan [4] considered
weak and cyclic amenability of the convolution algebras of Rees matrix
semigroups and gave another proof of Blackmore’s result. As shown
in [9], these convolution algebras are certain types of `1− Munn alge-
bras, whose introduction in [9], was motivated by two open problems in
[8]. Some of the properties and the structure of these algebras have been
studied in [9-11]. In Sections 2 and 3 we study weak and cyclic amenable
`1-Munn algebras and semigroup algebras of Rees matrix semigroups.
Our results involve Bowling and Duncan’s result. Connes-amenability
has been proved an appropriate version of amenability for dual Banach
algebras. For more information on this subject, see [18]. In the last sec-
tion we consider Connes amenability of `1-Munn algebras and semigroup
algebras of Rees matrix semigroups.

Before proceeding further we set up our notations.
Let G be a group , I and J be arbitrary nonempty sets, and G0 =

G
⋃
{0}. An I×J matrix A over G0 that has at most one nonzero entry

a = A(i, j) is called a Rees I × J matrix over G0 and is denoted by
(a)ij . Let P be a J × I matrix over G. The set S = G× I × J with the
composition (a, i, j) ◦ (b, l, k) = (aPjlb, i, k), (a, i, j), (b, l, k) ∈ S, is a
semigroup that we denote by M(G, p). Similarly, if P is a J × I matrix
over G0, then S = G × I × J ∪ {0} is a semigroup under the following
composition operation which is denoted by M0(G,P ):

(a, i, j) ◦ (b, l, k) =
{

(aPjlb, i, k), if pjl 6= 0
0 if pjl = 0,

(a, i, j) ◦ 0 = 0 ◦ (a, i, j) = 0 ◦ 0 = 0.

M0(G,P ) is isomorphic to the semigroup of all Rees I×J matrices over
G0 with binary operation A ◦ B = APB. M0(G,P ) [resp. M(G,P )] is
called the Rees I×J matrix semigroup over G0 [resp. G] with sandwich
matrix P .

Throughout, A is a Banach algebra and A module means Banach A-
bimodule. An A-bimodule X is called dual if there is a closed submodule
X∗ of X∗ such that X = (X∗)∗. A is called dual if it is dual as a Banach
A-bimodule. Let A be a dual Banach algebra and X be a dual A-
bimodule. If for each x ∈ X the maps a 7−→ a.x and a 7−→ x.a from A
into X are ω∗ − ω∗ continuous, then X is called a normal A-bimodule.
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Let X be an A module. We will denote the set of all bounded [resp.
inner] derivations from A intoX by Z1(A,X) [resp. B1(A,X)]. Also, set
H1(A,X) = Z1(A,X)/B1(A,X). A bounded derivation D : A −→ A∗

is called cyclic if 〈Da, b〉 + 〈Db, a〉 = 0, for all a, b ∈ A. The set of
all cyclic derivations is denoted by Z1

λ(A,A
∗) and Z1

λ(A,A
∗)/B1(A,A∗)

by H1
λ(A,A

∗). A is called weakly amenable [resp. cyclic amenable] if
H1(A,A∗) = 0 [resp. H1

λ(A,A
∗)]. A dual Banach algebra A is called

Connes-amenable if for every normal dual Banach A-bimodule X, every
bounded ω∗ − ω∗ continuous derivation from A into X is inner.

Suppose A is unital, I and J are arbitrary index sets and P is a
J × I matrix over A such that all of its nonzero entries are invertible
and ‖ P ‖∞≤ 1. The space `1(I×J,A) with product X ◦Y = XPY is a
Banach algebra which we call the `1-Munn algebra over A with sandwich
matrix P and we denote it with LM(A,P ). As shown in [9], Proposition
5.6, semigroup algebras of Rees matrix semigroups are concrete examples
of `1-Munn algebras.

2. Weak and cyclic amenability of `1-Munn algebras

Throughout this section, we assume A is unital.

Theorem 2.1. If A is cyclic amenable , then so is LM(A,P ).

Proof. Suppose α ∈ J , β ∈ I are such that Pαβ 6= 0 and q = P−1
αβ .

Let D : LM(A,P ) −→ LM(A,P )∗ be a bounded cyclic derivation and
define D̂ by:

D̂ : A −→ A∗, 〈D̂a, b〉 = 〈D(qaεβα), qbεβα〉, a, b ∈ A.

Clearly D̂ is a bounded linear map. Let a, b, c ∈ A. Then,

〈D̂(ab), c〉 = 〈D(qaεβα ◦ qbεβα), qcεβα〉

= 〈D(qaεβα), qbεβα ◦ qcεβα〉+ 〈D(qbεβα), qcεβα ◦ qaεβα〉
= 〈D(qaεβα), qbcεβα〉+ 〈D(qbεβα), qcaεβα〉

= 〈D̂a, bc〉+ 〈D̂b, ca〉
= 〈D̂a.b+ a.D̂b, c〉.

On the other hand, by assumption we have,

〈D̂a, b〉+ 〈D̂b, a〉 = 〈D(qaεβα), qbεβα〉+ 〈D(qbβα), qaεβα〉 = 0.
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So, D̂ is a bounded cyclic derivation. Let ψ̂ ∈ A∗ be such that D̂(a) =
a.ψ̂ − ψ̂.a, (a ∈ A). Define,

ψ(aεij) = ψ̂(pjia) + 〈D(qεβj), aεiα〉, i ∈ I, j ∈ J, a ∈ A.
It is easy to see that ψ ∈ LM(A,P )∗. Let S = aεij T = bεkl be nonzero
elements in LM(A,P ), U = qεβj , V = qεβl, X = aεiα and Y = qpjkbεβα.
Then, S = X ◦ U and U ◦ T = Y ◦ V . So,

〈D(X), U ◦ T 〉 = −〈D(Y ◦ V ), X〉

= −〈D(Y ), V ◦X〉 − 〈D(V ), X ◦ Y 〉

(2.1) = 〈D(V ◦X), Y 〉− 〈D(V ), X ◦Y 〉.
But,

〈D(V ◦X), Y 〉 = 〈D(qpliaεβα), qpjkbεβα〉 = 〈D̂(plia), pjkb〉

= 〈(plia).ψ̂ − ψ̂.(plia), pjkb〉
(2.2) = 〈ψ̂, pjkbplia〉−〈ψ̂, pliapjkb〉.
So by (2.1) and (2.2), we have,

〈DS, T 〉 = 〈DU, T ◦X〉+ 〈DX,U ◦ T 〉
= 〈DU, T ◦X〉+ 〈D(V ◦X), Y 〉 − 〈DV,X ◦ Y 〉
= 〈D(qεβj), bpliaεkα〉+ 〈ψ̂, pjkbplia〉
−〈ψ̂, pliapjkb〉 − 〈D(qεβl), apjkbεiα〉
= 〈ψ, bpliaεkj〉 − 〈ψ, apjkbεil〉 = 〈δ−ψ(S), T 〉.

Therefore, D is inner. �

Lemma 2.2. If A is weakly amenable, then every bounded derivation
D : LM(A,P ) −→ LM(A,P )∗ is cyclic.

Proof. It is enough to show the cyclic identity for Rees matrices. Let
S = aεij and T = bεkl, where a,b6= 0.

Step I: pjk = 0. Then, 0 = D0 = D(S ◦ T ) = DS.T + S.DT. So, for
every X ∈ LM(M,P ),

0 = 〈DS.T,X〉+ 〈S.DT,X〉



First order cohomology of `1-Munn algebras 215

(2.3) = 〈DS, T ◦X〉+ 〈DT,X ◦S〉.
If pli 6= 0, then take X = E = p−1

li εil. Clearly, E is an idempotent,
T ◦ E = T , E ◦ S = S and hence if we substitute X with E in (2.3),
then we get,

〈DS, T 〉+ 〈DT, S〉 = 0.
So, the cyclic condition holds. If pli = 0, then choose α ∈ J and β ∈ I
such that pαβ 6= 0. Let Y = aεiα and Z = p−1

αβεβj . Then, Y ◦Z = S and
Z ◦ T = T ◦ Y = 0. So,

〈DS, T 〉 = 〈D(Y ◦ Z), T 〉 = 〈DY.Z, T 〉+ 〈Y.DZ, T 〉
= 〈DY,Z ◦ T 〉+ 〈DZ, T ◦ Y 〉 = 0.

Similarly, 〈DT, S〉 = 0 and hence the cyclic condition holds.
Step II: pjk 6= 0. By the symmetry of the cyclic condition, we may

assume pli 6= 0 as well. As above, let E = p−1
li εil. Then, we have,

〈D(S ◦ T ), E〉 = 〈DS.T,E〉+ 〈S.DT,E〉
= 〈DS, T ◦ E〉+ 〈DT,E ◦ S〉

(2.4) = 〈DS, T 〉+〈DT, S〉.
Now, define the map φ : A −→ LM(A,P ) by φ(c) = p−1

li cεil. Clearly, φ
is an injective bounded linear map. Let c, d ∈ A. Then,

φ(cd) = p−1
li cdεil = (p−1

li cεil) ◦ (p−1
li dεil) = φ(c) ◦ φ(d).

Therefore, φ is a bounded algebra monomorphism. Now, define the map,

D̂ : A −→ A∗, 〈D̂a, b〉 = 〈(Dφ)(a), p−1
li bεil〉 a, b ∈ A.

Then, D̂ is a bounded linear map. If a, b, c ∈ A, then,

〈D̂(ab), c〉 = 〈D(φ(ab)), p−1
li cεil〉

= 〈(Dφ(a)).φ(b), p−1
li cεil〉+ 〈φ(a).(Dφ(b)), p−1

li cεil〉
= 〈D(φ(a)), φ(b) ◦ p−1

li cεil〉+ 〈D(φ(b)), p−1
li cεil ◦ φ(a)〉

= 〈D(φ(a)), p−1
li bεil ◦ p

−1
li cεil〉+ 〈D(φ(b)), p−1

li cεil ◦ p
−1
li aεil〉

= 〈D(φ(a)), p−1
li bcεil〉+ 〈D(φ(b)), p−1

li caεil〉
= 〈D̂a, bc〉+ 〈D̂b, ca〉
= 〈D̂a.b+ a.D̂b, c〉.

Therefore, D̂ is a bonded derivation and, by assumption, it is inner. So,
for every a ∈ A, 〈D̂a, 1〉 = 0, and hence,

〈D(S ◦ T ), E〉 = 〈D(apjkbεil), p−1
li εil〉
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= 〈Dφ(pliapjkb), p−1
li εil〉

(2.5) = 〈D̂(pliapjkb), 1〉 = 0.

Now, by (2.4) and (2.5),

〈DS, T 〉+ 〈DT, S〉 = 〈D(S ◦ T ), E〉 = 0.

Therefore, in either case, the cyclic condition holds. �
The following theorem is an immediate consequence of Theorem 2.1

and Lemma 2.2.

Theorem 2.3. If A is weakly amenable, then so is LM(A,P ).

Remark 2.4. In the proof of the following theorem we use Lemma
3.7 in [9] which is true only for the case that the sandwich matrix P is
square; i.e., the index sets I and J are equal. If P is a regular square
matrix and LM(A,P ) has a bounded approximate identity, then the
converse of theorems 2.1 and 2.3 are also true.

Theorem 2.5. Suppose P is a regular square matrix and LM(A,P )
has a bounded approximate identity. Then, LM(A,P ) is cyclic [resp.
weakly] amenable if and only if A is cyclic [resp. weakly] amenable.

Proof. we need only to prove the converse. By Lemma 3.7 in [9], the
index set I is finite and LM(A,P ) is topologically isomorphic to A⊗̂Mn,
for some n ∈ N . If D : A −→ A∗ is a bounded derivation, then D ⊗ 1
is a bounded derivation from LM(A,P ) to LM(A,P )∗. Moreover, if D
is cyclic, then so is D ⊗ 1, since the action of Mn on itself as its dual,
is componentwise. Now, suppose LM(A,P ) is weakly amenable and
D : A −→ A∗ is a bounded derivation. There is a φ =

∑n
i=1 f

i ⊗ Bi ∈
A∗ ⊗Mn = LM(A,P )∗ such that D ⊗ 1 = δφ. It is easy to see that
D = δf , where f =

∑m
i=1B

i
11f

i. The argument for cyclic derivations is
the same. �

Now, we apply the preceding results to the semigroup algebras of Rees
matrix semigroups. The following theorem is (Corollary 5.3 in [3]) comes
with a different proof. Another proof can also be found (see Theorem
2.4 in [4]).

Theorem 2.6. If S is a Rees matrix semigroup, then `1(S) is weakly
amenable.
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Proof. Suppose S = M◦(G,P ). Then, by Proposition 5.6 in [9],
`1(S)/`1(0) is isomorphic to LM(`1(G), P ). By Johnson’ Theorem,
`1(G) is weakly amenable. So, by Theorem 2.3, LM(`1(G), P ) is weakly
amenable, and hence so is `1(S). �

3. Connes-amenability of `1-Munn algebras and Rees matrix
semigroup algebras

Throughout this section, we assume A ia a dual Banach algebra,
I = J , P and LM(A,P ) are as in Section 1. It is well known that
c◦(I × J,A∗)∗ = `1(I × J,A) = LM(A,P ). Moreover, c◦(I × J,A∗) is
an LM(A,P ) submodule of LM(A,P )∗ = `∞(I × J,A∗). Therefore,
LM(A,P ) is a dual Banach algebra. In the proof of the following theo-
rem, we use Lemma 3.7 in [9], which is true only for the case that the
index sets I and J are equal.

Theorem 3.1. Suppose A is a unital dual Banach algebra and the index
sets I and J are equal. Then, LM(A,P ) is Connes-amenable if and only
if it has a bounded approximate identity and A is Connes-amenable.

Proof. Suppose LM(A,P ) has a bounded approximate identity and
A is Connes-amenable. By Lemma 3.7 in [9], LM(A,P ) ' A⊗̂Mn.
Since A⊗̂Mn = (A∗⊗̌Mn)∗ and both of A and Mn are Connes-amenable,
then by using the argument of Theorem 5.4 in [15] with appropriate
modifications, we can see that LM(A,P ) is Connes-amenable.

Conversely, suppose LM(A,P ) is Connes-amenable andX is a normal
A-bimodule. Then, LM(A,P ) is unital and hence by Lemma 3.7 in [9],
LM(A,P ) ' A⊗̂Mn. Since X⊗̂Mn = (X∗⊗̌Mn)∗, then X⊗̂Mn is a dual
A⊗̂Mn− bimodule. Moreover, by the above remark, elements of A⊗̂Mn

and X⊗̂Mn have finite representations in terms of elementary tensors
and action of X⊗̂Mn on X∗⊗̌Mn is componentwise. Thus, normality
of X⊗̂Mn follows from normality of X. Now, suppose D : A −→ X is
a bounded ω∗ − ω∗ continuous derivation. Then, D ⊗ 1 : A⊗̂Mn −→
X⊗̂Mn is a bounded derivation, and ω∗−ω∗ continuity of D⊗ 1 follows
from the fact that elements of A⊗̂Mn and X⊗̂Mn are finite sums of
elementary tensors and action of X⊗̂Mn on X∗⊗̌Mn is componentwise.
Therefore, by assumption, D ⊗ 1 = δφ, for some φ ∈ X⊗̂Mn. By the
above remark, φ has a unique representation of the form φ =

∑n
i,j=1 xij⊗
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εij . Let a ∈ A and r ≤ n be a natural number. Then,

Da⊗ εrr = (D ⊗ 1)(a⊗ εrr) = (a⊗ εrr).φ− φ.(a⊗ εrr)

=
n∑
j=1

axrj ⊗ εrj −
n∑
i=1

xira⊗ εir.

Letting a = 1, we conclude that for all i, j 6= r, xrj = 0 = xir. Thus,
φ =

∑n
i=1 xii ⊗ εii. Now, the identities,

Da⊗ ε11 = (a⊗ ε11).φ− φ.(a⊗ ε11) = (ax11 − x11a)⊗ ε11

imply that D = δx11 . �

Theorem 3.2. Suppose P is a square matrix over G◦ and S = M◦(G,P ).
Then, the following conditions are equivalent.

i) G is amenable and `1(S) has a bounded approximate identity.
ii) `1(S) is Connes-amenable.

Proof. Proposition 5.6 and Lemma 5.1(ii) of [9] imply that existence
of a bounded approximate identity in `1(S) is equivalent to the ex-
istence of a bounded approximate identity in LM(`1(G), P ). Also,
Theorem 4.4.13 in [18], `1(G) is Connes-amenable if and only if G is
amenable. On the other hand, by Lemma 5.1(ii) and Proposition 5.6
in [9], Connes-amenability of `1(S) is equivalent to Connes-amenability
of LM(`1(G), P ). Therefore, equivalence of (i) and (ii) follows from
Theorem 3.1 . �
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