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Abstract. In this paper, we propose a modification of the sec-
ond order method introduced in [Q. Li and X. Y. Wu, A two-step
explicit P -stable method for solving second order initial value prob-
lems, Appl. Math. Comput. 138 (2003), no. 2-3, 435–442] for the
numerical solution of IVPs for second order ODEs. The numerical
results obtained by the new method for some problems show its
superiority in efficiency, accuracy and stability.
Keywords: Hybrid methods, P-stable, off-step points, predictor-
corrector.
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1. Introduction

Let us consider the initial value problems of second order ordinary
differential equations

(1.1) y′′ = f(x, y), y(x0) = y0, y′(x0) = y′0,

where we presume that f(x, y) is sufficiently differentiable and that the
first derivative does not appear explicitly in f(x, y). The numerical
methods have been paid much attention to in recent years because the
problems are usually encountered in celestial mechanics, quantum me-
chanical scattering theory, theoretical physics and chemistry, and elec-
tronics. Generally, the solution of (1.1) is periodic, so it is expected
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that the results produced by some numerical methods be of the pe-
riodicity of the analytic solution. In 1976, Lambert and Watson [11]
proposed the concepts of periodicity interval and P-stability which can
be used to discuss the stability of the numerical method for second or-
der initial value problems. Although many P-stable methods have been
proposed, such as linear multistep methods, high order hybrid P-stable
methods, implicit Runge-Kutta-Nystrom and so on [10], these methods
are implicit, so an iteration subprocess is needed in each step. The nu-
merical integration methods for (1.1) can be divided into two distinct
classes: (a) problems for which the solution period is known (even ap-
proximately) in advance (see [9,15]); (b) problems for which the period
is not known. There is a vast literature available for the numerical so-
lution of this problem. Computational methods involving a parameter
proposed by Sesappa Rai et al [16, 17], Shokri [18–20], Sommeijer [27],
Vanden Berghe et al [30], Van Deale et al [28, 29] and Xiang [33] yield
the numerical solution to the problem of the first class. Numerical treat-
ment to the problems of the second class have been presented by Chawla
et al [5, 6], Simos [21], Hollevoet et al [9], Ananthakrishnaiah [1, 2], and
Chawla and Neta [4]. In 2001, the nonlinear explicit A-stable methods
for the numerical solution of first order IVPs introduced by Wu and
Xia [31]. Li and Wu [13] in 2003 gives the nonlinear explicit P-stable
methods for second order IVPs, then Li and Wu [14], Stavroyiannis and
Simos [25], Stavroyiannis and Simos [26] and Li [12] also have presented
some modifications for these methods which have low algebraic orders,
or have high computational costs. In this paper, we study an another
modification of Wu’s method with high algebraic order and simple struc-
ture.

Lambert and Watson [11], have developed linear, symmetric multistep
methods of the form

(1.2)

k∑
j=0

αjyn+1−j = h2
k∑

j=0

βjfn+1−j , k ≥ 2,

where h(> 0) is the step length of integration and αj = αk−j , βj = βk−j ,
j = 0(1)k, on the discrete point set {xn : xn = nh, n = 0, 1, . . .}, for
finding the numerical solution of the special initial value problem (1.1).
They derive methods for k = 2, 4 and 6. Motivated by the idea, we will
present the new two-step explicit P-stable methods of orders four and
six for solving (1.1).
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In recent years a class of explicit methods at high order for stiff prob-
lems is presented by some authors (see [7, 8, 22–25]) in which with the
aid of a special vector operation, these methods can be extended to be
vector-applicable [13]. Motivated by the idea, we have presented a class
of two-step explicit symmetric P-stable methods for solving (1.1) [20].
This method has convergence of orders four and six.

2. Preliminaries

To investigate the stability properties of methods for solving the initial
value problem (1.1), Lambert and Watson [11] introduced the scalar test
equation

(2.1) y′′ = −ω2y, ω ∈ R.

When applying a symmetric two-step method to the test equation (2.1),
one obtains the following difference equation of the form:

(2.2) yn+1 − 2C(H)yn + yn−1 = 0,

where H = ωh and h is a fixed step length, C(H) is a rational polyno-
mial with respect to H. The characteristic equation and polynomial are
defined by the following respectively:

(2.3) ξ2 − 2C(H)ξ + 1 = 0,

(2.4) Q(z, ξ) = Q0(z
2)ξ2 +Q1(z

2)ξ +Q2(z
2),

where z = iwh and Q0(z
2), Q1(z

2), and Q2(z
2) are determined by the

left side of (2.2) (see [7]).

Definition 2.1. Let ξ1, ξ2 be the two roots of (2.2), the method (1.2)
is unconditionally stable if | ξ1 |≤ 1, | ξ2 |≤ 1 for all values of wh.

Definition 2.2. The interval (0,H2
0 ) is the periodicity interval of the

method (1.2) if the roots of (2.2) satisfy ξ1 = ξ2 = eig(H), for all H2 ∈
(0,H2

0 ), where g(H) is a real function of H.

Definition 2.3. The method (1.2) is P-stable if the periodicity interval
of the method is (0,+∞).

Definition 2.4. The order of the root of (2.3) (say ξ1) is p if ξ1 satisfies

(2.5) ez − ξ1 = Czp+1 +O(zp+2), z → 0,

where C is the error constant of ξ1.
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Theorem 2.5. Suppose (2.2) is the characteristic equation of some
method, and | C(H) |< 1 for all H2 ∈ (0,H2

0 ), then the interval of
periodicity of the method is (0,H2

0 ).

Proof. See [11]. □
Theorem 2.6. Set p ≥ 1, the root of the characteristic polynomial of
some method is of order p if and only if

(2.6) Q(z, ez) = C
∂2Q

∂ξ2
(0, 1)zp+2 +O(zp+3), z → 0.

Proof. See [8]. □
Lambert and Watson [11] have proved that the method described by

(1.2) has a nonvanishing interval of periodicity only if it is symmetric
and for P-stability the order cannot exceed 2. Further, the method is
implicit. Later Chawla and Rao [6] noted that Numerov method has

phase-lag error of H6

480 and derived a Numerov type method of algebraic

order four with minimal phase-lag H6

12096 and having an periodicity inter-
val (0, 2.71). This method is implicit and its implementation involves
the computations of Jacobians and solution of nonlinear systems of equa-
tions. So subsequently, many authors proposed explicit modifications of
Numerov method.

3. The new two-step nonlinear predictor-corrector methods

For the numerical integration of (1.1), we consider two-step, symmet-
ric, methods of the form

(3.1) yn+1 + yn−1 = 2yn exp

(
h2fn + h4b

(
f ′′
n+α + f ′′

n−α

)
2yn

)
,

where α, b are two arbitrary parameters, 0 < α < 1 and presume yn ̸= 0.
Our aim in this work, is a modification of Wu’s methods by finding
nonlinear P-stable methods of higher-order with high derivatives and
off-step points. The condition yn ̸= 0, is introduced for the first time
in Wu’s paper [13], because of the structure of the method, and it also
exists in the modified papers [25, 26] by Stavroyiannis and Simos. Our
method which is another modification of [13] also needs this condition.
Indeed, this singularity inherits from the original method.

Formula (3.1) can only be used if we know the values of the solution
y(x) and y′′(x) at two successive points. These two values will be as-
sumed to be given. Further, this equation is referred to as an explicit
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or predictor formula since yn+1 occurs only on one side of the equation.
In other words, the unknown yn+1 can be calculated directly.

Now with the difference equation (3.1), we can associate the difference
operator L defined next.

Definition 3.1. Let the differential equation (1.1) have a unique solu-

tion y(x) on [a, b] and suppose that y(x) ∈ C(p+2)[a, b] for p ≥ 1. Then
the difference operator L for method (3.1) can be written as

L[y(x), h]=y(x+ h) + y(x− h)

−2y(x) exp

(
h2y′′(x) + h4b

(
y(4)(x+ αh) + y(4)(x− αh)

)
2y(x)

)
.

In order for the difference equation (3.1) to be useful for numerical
integration, it is necessary that it would be satisfied to high accuracy
by the solution of the differential equation y′′ = f(x, y), when h is small
for an arbitrary function f(x, y). This imposes restrictions on the co-
efficients α and b. We assume that the function y(x) has continuous
derivatives at least of order 8.

We firstly use the Taylor series expansion to determine all the coeffi-
cients of (9) which can be written as

L[y(x), h] = C0y(xn) + C1hy
(1)(xn) + · · ·+ Cph

qy(p)(xn) + · · ·

where C0 = C1 = C2 = C3 = 0, C4 = 1
12 − 2b, C5 = 0, C6 = 1

360 − bα2,

C7 = 0 and C8 =
1

20160 − 1
12bα

4.

Definition 3.2. The method (3.1) is said to be of order p if,

C0 = C1 = C2 = · · · = Cp+1 = 0, Cp+2 ̸= 0,

thus for any function y(x) ∈ C(p+2) and for some nonzero constant Cp+2,
we have

(3.2) L[y(x), h] = Cp+2h
p+2y(p+2)(xn) +O(hp+3),

where Cp+2 is called the error constant.

In particular, L[y(x), h] vanishes identically when y(x) is a polynomial
whose degree is less than or equal to p.

Applying (3.1) to the scalar test equation (2.1), one gets its charac-
teristic equation (2.3), where H2 = (ωh)2 and

C(H) = exp(−1

2
H2 + bH4 − 1

2
bα2H6).
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Theorem 3.3. The method presented in (3.1) is P-stable if
√
b < α < 1.

Proof. In order to prove this theorem, we must provide conditions such
that | C(H) |< 1 for every H2. Therefore we discuss the behavior of

−1

2
H2 + bH4 − 1

2
bα2H6 < 0,

with considering α and b. That is, the restriction for α and b should be
calculated in a way that P-stability is warranted. Then we have

−1

2
H2 + bH4 − 1

2
bα2H6 = H2

(
− 1

2
+ bH2 − 1

2
bα2H4

)
< 0,

since H2 > 0, then we have

− 1

2
+ bH2 − 1

2
bα2H4 < 0.

For this propose by assuming H2 = x, the coefficient of x2 and ∆ from
quadratic polynomial φ(x) = −1

2 + bx − 1
2bα

2x2 should be negative.
Then we have

−1

2
+ bx− 1

2
bα2x2 < 0, ⇒ −1

2
bα2 < 0 and ∆ < 0,

where ∆ = b2 − bα2 < 0 and this means that b is positive and then
we can write α2 > b for all 0 < α < 1 and −1

2bα
2 < 0. So α >

√
b.

Therefore,
√
b < α < 1 and we will have −1

2 + bx − 1
2bα

2x2 < 0. That
is say | C(H) |< 1, which warranties the P-stability of the method (3.1)
and completes the proof. □

Theorem 3.4. Method (3.1) is of order 4 if b = 1
24 and α ̸=

√
1
15 and

it is of order 6 if b = 1
24 and α =

√
1
15 .

Proof. Since C0 = C1 = C2 = C3 = C5 = 0, C4 = 1
12 − 2b, C5 = 0,

C6 =
1

360 −
α2

24 , C7 = 0 and C8 =
1

20160 −
2α4

576 . Now if we take b = 1
24 then

C4 = 0 and this means that our new method (3.1) has order at least 4.

Furthermore, since C7 = 0, if we take b = 1
24 , α =

√
1
15 is only root of

C6 in (0, 1). Then, if α ̸=
√

1
15 , the order of the new method (3.1) is

exactly 4 and if α =
√

1
15 , then Ci = 0, i = 0, 1, . . . , 7 and c8 = 31

907200 ,

so the order of (3.1) is 6 and in this case the local truncation error is

E8 =
31

907200
h8y(8)(ζ)y(6)(ζ),
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Figure 1. Behavior of the stability function C(H), for

b = 1
24 and α =

√
1
15 .

and this completes the proof and the behaviour of the C(H), in this
case, is shown in Fig. 1. □

By choosing b = 1
24 , we can write the new two-step, symmetric, P-

stable method (3.1) as follow
(3.3)

yn+1 + yn−1 = 2yn exp

(
h2fn + h4

24

(
f ′′
n+α + f ′′

n−α

)
2yn

)
,

1

2
√
6
< α < 1.

If we take α = 1
2 , we have

(3.4) yn+1 + yn−1 = 2yn exp

h2fn + h4

24 (f
′′
n+ 1

2

+ f ′′
n− 1

2

)

2yn

 ,

is the explicit two-step P-stable method of order 4. In the numerical
experiment for (3.4), one obtains two more unknowns, yn+ 1

2
and yn− 1

2
,

to be solved beside yn+1. For this purpose, Simos [23] has used the
O(h6) differentiation formula given by

yn+1 = 2yn − yn−1 + h2fn, fn = f(xn, yn),
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yn+1 = 2yn − yn−1 +
h2

12

(
fn+1 + 10fn + fn−1

)
,

ỹn+1 = 2yn−yn−1+
h2

60

(
fn+1 + 26f (k)

n + fn−1 + 16
(
fn+1/2 + fn−1/2

))
,

fi = f(xi, yi), i = n− 1, n, fn+1 = f(xn+1, yn+1),

yn+ 1
2
=

1

104

(
5yn+1 + 146yn − 47yn−1

)
+

h2

4992

(
−59fn+1 + 1438fn + 253fn−1

)
,

yn− 1
2
=

1

52

(
3yn+1 + 20yn + 29yn−1

)
+

h2

4992

(
41fn+1 − 682fn − 271fn−1

)
.

Moreover its local truncation error is

E6 = − 11

1440
h6y(6)(ζ).

If we take α =
√

1
15 , we have

(3.5) yn+1 + yn−1 = 2yn exp


h2fn + h4

24

(
f ′′
n+

√
1
15

+ f ′′
n−

√
1
15

)
2yn

 ,

is the explicit two-step P-stable method of order 6. In the numeri-
cal experiment for (3.5), one obtains two more unknowns, y

n+
√

1
15

and

y
n−

√
1
15

, to be solved beside yn+1. For this purpose, Simos [23] has used

the O(h6) differentiation formula given by

y
n+

√
1
15

=
1

171360

[
112

√
15yn+1 +

191195648

1125
yn + 112

√
15yn−1

− h2√
15

[(
509404√

15
+

503132

25

)
f̃n+1 −

(
85479296

16875

√
15

)
fn

+

(
509404√

15
− 503132

25

)
fn−1

− 9
√
3

(
868

16875

√
3
√
15 +

8092

75

√
7

)
fn+s

− 9
√
3

(
868

16875

√
3
√
15− 8092

75

√
7

)
fn−s

]]
,
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and

y
n−

√
1
15

=
1

171360

[
112

√
15yn+1 +

191195648

1125
yn + 112

√
15yn−1

− h2√
15

[(
509404√

15
− 503132

25

)
f̃n+1 −

(
85479296

16875

√
15

)
fn

+

(
509404√

15
+

503132

25

)
fn−1

− 9
√
3

(
868

16875

√
3
√
15− 8092

75

√
7

)
fn+s

− 9
√
3

(
868

16875

√
3
√
15 +

8092

75

√
7

)
fn−s

]]
,

where s =
√
21
3 and

yn+s =
1

486

[
3
√
7yn+1

(
7
√
7 + 27

√
3
)
+ 192yn

+ 3
√
7yn−1

(
7
√
7− 27

√
3
)
+ h2

[
2
√
7f̃n+1

(
9
√
3 + 7

√
7
)

+ 224fn + 2
√
7fn−1

(
7
√
7− 9

√
3
) ]]

,

yn+s =
1

486

[
3
√
7yn+1

(
7
√
7− 27

√
3
)
+ 192yn

+ 3
√
7yn−1

(
7
√
7 + 27

√
3
)
+ h2

[
2
√
7f̃n+1

(
9
√
3− 7

√
7
)

+ 224fn + 2
√
7fn−1

(
7
√
7 + 9

√
3
) ]]

.

4. Numerical examples

In this section, we present some numerical results obtained by our
new nonlinear methods and compare them with those of other multi-
step methods.

Example 4.1. Consider the initial value problem{
y′′ = −ω2y,
y(0) = 1, y′(0) = 0,

with the exact solution y = cos(ωx). Set ω = 10. Absolute errors in
y(x), with h = π/200, π/400, π/800 and π/1600, obtained by the new
method (3.5), are listed in Tables 1 and 2 for comparison, where the
other numerical results are from Li and Wu [13].
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New method (3.5) Wu’s method
Point h = π

200 h = π
400 h = π

200 h = π
400

5π 1.2898e-005 3.3073e-007 5.1541e-002 3.2539e-003
10π 6.5789e-005 4.4419e-007 2.0104e-001 1.3001e-002
15π 3.8678e-004 9.5241e-007 4.3307e-001 2.9117e-002
20π 7.1661e-004 1.2743e-006 7.2365e-001 5.1678e-002

Table 1. Absolute errors for the example 4.1, with
h = π/200 and h = π/400, are calculated for compar-
ison among two methods: Li and Wu [13] and our new
method (3.5).

New Method (3.5) Wu’s Method
Point h = π

800 h = π
1600 h = π

800 h = π
1600

5π 2.1930e-008 3.3093e-010 2.0362e-004 1.2731e-005
10π 5.1391e-008 7.4533e-010 8.1460e-004 5.0928e-005
15π 1.7547e-007 4.6950e-009 1.8327e-003 1.1459e-004
20π 8.6830e-007 8.9078e-009 3.2575e-003 2.0372e-004

Table 2. Absolute errors for the example 4.1, with h =
π/800 and h = π/1600, are calculated for comparison
among two methods: Li and Wu [13] and our new method
(3.5).

Example 4.2. Consider the initial value problem{
y′′ = 50y3,
y(1) = 1/6, y′(1) = −5/36,

with the exact solution y(x) = 1/(1 + 5x). In the numerical experi-
ment, we take the step length h = 0.1, 0.01, 0.001, and for simplicity,
the true value at x = 1 + h is taken as the second starting value. In
Tables 3 and 4, we present the absolute errors at the points x = 5, 10,
15, 20.

Example 4.3. Consider the two-body problem{
y′′1 = −y1

r3
, y1(0) = 1, y′1(0) = 0,

y′′2 = −y2
r3
, y2(0) = 0, y′2(0) = 1,
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Method (3.5)
x h = 0.1 h = 0.01 h = 0.001
5 1.3021e-006 3.3698e-008 1.2136e-011
10 5.1254e-006 9.2586e-008 8.2149e-011
15 2.0114e-005 3.2158e-007 3.3274e-010
20 7.2365e-005 6.3655e-007 7.1023e-010

Table 3. Absolute errors for the example 4.2, with
h = 0.1, h = 0.01 and h = 0.001, are calculated for
comparison among two methods: Li and Wu [13] and
our new method (3.5).

Wu’s Method
x h = 0.1 h = 0.01 h = 0.001
5 2.4119e-003 3.0515e-005 3.1215e-007
10 1.6102e-002 2.3060e-004 2.3630e-006
15 4.0043e-002 7.5739e-004 7.8201e-006
20 1.5401e-001 1.7428e-003 1.8350e-005

Table 4. Absolute errors for the example 4.2, with
h = 0.1, h = 0.01 and h = 0.001, are calculated for
comparison among two methods: Li and Wu [13] and
our new method (3.5).

where r =
√

y21 + y22 . The true solution is y1(x) = cos(x) and y2(x) =
sin(x). In the numerical experiment, we take the step length h = π/200,
π/400, π/800, π/1600, and for simplicity, the true value at x = h is
taken as the second starting value. In Tables 5 and 6, we present the
absolute errors (infinite norm) at the points x = 50π, 100π, 150π, 200π.

Example 4.4. We consider the following almost periodic problem stud-
ied by Stiefel and Bettis

z′′(t) + z(t) = 0.001eit, z(0) = 1, z′(0) = 0.9995i, z ∈ C.

Its exact solution is z(t) = (1.0.0005it)eit. If we set z(t) = u(t)+iv(t),
u, v ∈ R, then the problem can be rewritten in the equivalent form

u′′ + u = 0.001 cos(t), u(0) = 1, u′(0) = 0,
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New Method (3.5) Wu’s Method
Point h = π

200 h = π
400 h = π

200 h = π
400

50π 2.2361e-006 1.2320e-008 1.2898e-002 3.3073e-003
100π 6.1425e-006 5.2036e-008 2.5789e-002 6.4419e-003
150π 2.1231e-005 3.2148e-007 3.8678e-002 9.5241e-003
200π 5.1210e-005 6.2598e-007 5.1561e-002 1.2743e-002

Table 5. Absolute errors for the example 4.3, with
h = π/200 and h = π/400 are calculated for compari-
son among two methods: Li and Wu [13] and our new
method (3.5).

New Method (3.5) Wu’s Method

Point h = π
800 h = π

1600 h = π
800 h = π

1600
50π 2.1245e-010 2.1489e-011 5.1930e-004 3.3093e-004
100π 6.2578e-010 8.1436e-011 1.1391e-003 1.4533e-004
150π 2.1478e-009 1.0236e-010 1.7547e-003 4.6950e-004
200π 8.1002e-009 9.2589e-010 2.6830e-003 3.9078e-004

Table 6. Absolute errors for the example 4.3, with h =
π/800 and h = π/1600 are calculated for comparison
among two methods: Li and Wu [13] and our new method
(3.5).

v′′ + v = 0.001 sin(t), v(0) = 0, v′(0) = 0.9995,

with the exact solution

u(t) = cos(t) + 0.0005t sin(t),

and

v(t) = sin(t)− 0.0005t cos(t).

The solution for zk was computed with the step sizes of h = π/10,
π/20 and π/40 and in the range of 0 ≤ x ≤ 100π. The absolute errors
are listed in table 7 for comparison with the eighth-order Runge-Kutta-
Nyström of Dormand [7], the eighth-order hybrid method of Simos and
et al [3] and our new method (3.5).
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h Dormand Simos New Method (3.5)
π/10 2.6e-2 6.8e-3 4.6e-9
π/20 1.1e-4 9.8e-6 2.1e-10
π/40 4.2e-7 1.3e-8 3.2e-12

Table 7. Comparison of the absolute errors in the ap-
proximations using the new method (3.5), eighth-order
Runge-Kutta method of Dormand [7] and eighth-order
method of Simos and et al [3] for example 4.4.

5. Conclusions

In this paper, we have presented the new two-step P-stable nonlinear
predictor-corrector method of orders 4 and 6. The details of the proce-
dure adapted for the applications have been given in Section 3. With
high derivatives and two symmetric off-step points, we have improved
the algebraic order of Wu’s method [13] up to four and six. The nu-
merical results obtained by the new method for some problems show its
superiority in efficiency, accuracy and stability.
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