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Abstract. The aim of this article is to establish the existence of at
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1. Introduction and main results

Consider the Navier boundary value problem involving the p-biharmonic
operator

(Pλ,µ)

{
∆
(
|∆u|p−2∆u

)
= λf(x, u) + µg(x, u), inΩ,

u = ∆u = 0, on ∂Ω,

where λ, µ ∈]0,+∞[, Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set
with a sufficient smooth boundary ∂Ω, p > max

{
1, N2

}
. f , g : Ω×R → R

are Carathéodory functions, that is, f(·, s), g(·, s) are measurable in Ω
for all s ∈ R and f(x, ·), g(x, ·) are continuous in R for a.e. x ∈ Ω.
Furthermore, they satisfy the following conditions:

• sup|s|≤M |f(x, s)| ∈ L1(Ω) and sup|s|≤M |g(x, s)| ∈ L1(Ω) for all
M > 0.
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Here and in the sequel, X will denote the Sobolev space W 2,p(Ω) ∩
W 1,p

0 (Ω) and endowed with the norm

∥u∥ =

(∫
Ω
|∆u|p dx

) 1
p

.

As usual, a weak solution of problem (Pλ,µ) is any u ∈ X, such that∫
Ω
|∆u|p−2∆u∆ξ dx = λ

∫
Ω
f(x, u)ξ dx+ µ

∫
Ω
g(x, u)ξ dx

for every ξ ∈ X.
The fourth-order equation of nonlinearity furnishes a model to study

traveling waves in suspension bridges. This fourth-order semilinear ellip-
tic problem can be considered as an analogue of a class of second-order
problems which have been studied by many authors. In particular, the
deformations of an elastic beam in an equilibrium state, whose two ends
are simply supported, can be described by fourth-order boundary value
problems and, also for this reason, the existence and multiplicity of so-
lutions for this kind of problems have been widely investigated (see, for
instance, [8, 10–23,25,26,29,30] and references therein).

The same variational methods as were used there, which are based on
the seminal paper of Ricceri [28], have been applied to obtain multiple
solutions (see, for instance, [1–8, 11, 12, 15, 16, 18–24, 27, 30]). In this
paper, precise estimates of parameters λ and µ are given.

Now, we establish the theorem which not only gives the estimate of
the λ but also the µ. Before proving the theorem, we give out some
notations.

Let

(1.1) k = sup
u∈X\{0}

supx∈Ω |u(x)|
∥u∥

.

Since p > max
{
1, N2

}
, W 2,p(Ω) ∩ W 1,p

0 (Ω) ↪→ C0(Ω) is compact, and

one has k < +∞. For every x0 ∈ Ω and pick r1, r2 with r2 > r1 > 0,
such that B(x0, r1) ⊂ B(x0, r2) ⊆ Ω, where B(x0, r1) denotes the ball
with center at x0 and radius of r1. Put

(1.2) σ =
12(N + 2)2(r1 + r2)

(r2 − r1)3

(
kπ

N
2 (rN2 − rN1 )

Γ
(
1 + N

2

) ) 1
p

,
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(1.3) θ =


3N

(r2−r1)(r2+r1)

(
kπ

N
2 ((r2+r1)N−(2r1)N )

2NΓ(1+N
2 )

) 1
p

, N < 4r1
r2−r1

,

12r1
(r2−r1)2(r2+r1)

(
kπ

N
2 ((r2+r1)N−(2r1)N )

2NΓ(1+N
2 )

) 1
p

, N ≥ 4r1
r2−r1

,

where Γ(·) is the Gamma function.Moreover, put Gc :=
∫
Ω
max|s|≤c G(x, s) dx

for all c > 0 and Gd := infΩ×[0,d]G for all d > 0, where G(x, s) =∫ s
0 g(x, t) dt. Clearly, Gc ≥ 0 and Gd ≤ 0. We read r

0 = +∞ for conve-
nience. Our another result is the following theorem.

Theorem 1.1. Assume that there exist two positive constants c and d
with c < θd, such that

(H3) F (x, s) ≥ 0 for each (x, s) ∈ {Ω \B(x0, r1)} × [0, d];

(H4)
∫
Ω max|s|≤c F (x,s) dx

cp ≤ 1
(σd)p

∫
B(x0,r1)

F (x, d) dx;

(H5) lim sup
|s|→+∞

supx∈Ω F (x,s)
sp ≤ 0.

Then, for every λ ∈ Λ :=

]
(σd)p∫

B(x0,r1)
F (x,d) dx

, cp∫
Ω max|s|≤c F (x,s) dx

[
and for

every Carathéodory function g : Ω× R → R such that

(H6) lim sup
|s|→+∞

supx∈Ω G(x,s)
sp < +∞,

there exists δλ,g > 0 such that, for each µ ∈ [0, δλ,g[, problem (Pλ,µ) has
at least three solutions, where

δλ,g := min

{
cp − λpkp

∫
Ωmax|s|≤c F (x, s) dx

pkpGc
,

σpdp − λpkp
∫
B(x0,r1)

F (x, d) dx

pkp |Ω|Gd

}
,

δλ,g := min

δλ,g,
1

max

{
0, pkp |Ω| lim sup

|s|→+∞

supx∈Ω G(x,s)
sp

}
 ,

and |Ω| is the Lebesgue measure of Ω.

Remark 1.2. Here, we prove that the perturbed problem (Pλ,µ) has at
least three solutions by choosing µ in a suitable way but under a more
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general growth condition on the nonlinear term. In particular, we require
on the primitive of the function f both a growth more than quadratic in
a suitable interval and a growth less than quadratic at infinity, moreover
on g an asymptotic condition is requested.

If N = 1 and the function f is dependent on u only, we can get better
result than Theorem 1.1. For simplicity, fixing Ω = [0, 1], p > 1, consider
the following equation,

(P ′
λ,µ)

{
(|u′′|p−2 u′′)′′ = λf(u) + µg(x, u), in ]0, 1[,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
.

Now, we present another result.

Theorem 1.3. Assume that f : R → R is a continuous function and
there exist two positive constants c, d with c < d, such that

(H7) f(s) ≥ 0 for each s ∈ [−c, d];
(H8) F (c) < p

(
c

16d

)p
F (d);

(H9) lim sup
|s|→+∞

F (s)
sp ≤ 0.

Then, for every λ ∈ Λ :=
]
(16d)p

pF (d) ,
cp

F (c)

[
and for every Carathéodory

function g : [0, 1]× R → R such that

(H10) lim sup
|s|→+∞

supx∈[0,1] G(x,s)

sp < +∞,

there exists δλ,g > 0, for each µ ∈ [0, δλ,g[, the problem (P ′
λ,µ) has at

least three solutions, where

δλ,g := min

cp − λF (c)

Gc
,
λF (d)− (16d)p

p

Gd


and

δλ,g := min

δλ,g,
p

max

{
0, lim sup

|s|→+∞

supx∈[0,1] G(x,s)

sp

}
 .

Remark 1.4. In this situation, Theorem 1.3 gives out a location of the
set Λ ∈ [0,+∞[ and an estimate of µ which is more piecewise than [20].

Now, we give an application of previous result.
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Example 1.5. Let f, g : R → R be defined as follows:

f(s) =

{
s2 s ≤ 1
1
s2

s > 1

and

g(s) =
2s

1 + s2
.

The following problem{
u(4) = λf(u) + µg(x, u), x ∈]0, 1[,
u(0) = u(1) = u′′(0) = u′′(1) = 0,

admits at least three solutions, for each λ ∈]384, 3000[, µ < 3×10−6−λ×10−9

3 .
Indeed, bearing in mind that in this case we have p = 2,

F (u) =

{
u3

3 u ≤ 1

− 1
u + 4

3 u > 1

and

G(u) = ln(1 + u2),

for every u ∈ R, by choosing c = 10−3 and d = 1, an easy computation
shows that all assumptions of Theorem 1.3 are satisfied and our claim
follows.

2. Preliminary

Our main tools are three critical points theorems that we recall here
in a convenient form. The theorem was obtained in [9].

Theorem 2.1 (see [9]). Let X be a reflexive real Banach space, Φ :
X → R be a coercive, continuously Gâteaux differentiable and sequen-
tially weakly lower semicontinuous functional whose Gâteaux derivative
admits a continuous inverse on X∗, and Ψ : X → R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact
such that

Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that:

(a1)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ,

(a2) for each λ ∈ Λr :=
]
Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x)

[
the functional Φ−λΨ is

coercive.
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Then, for each λ ∈ Λr , the functional Φ−λΨ has at least three distinct
critical points in X.

3. Proof the main results

Proof of Theorem 1.1. Fix λ, g and µ as in the conclusion. For each
u ∈ X,

Φ(u) =
1

p
∥u∥p

and

Ψ(u) =

∫
Ω

[
F (x, u(x)) +

µ

λ
G(x, u(x))

]
dx.

On the space C0(Ω), we consider the norm ∥u∥∞ = supx∈Ω |u(x)|. Due
to (1.1), we have

(3.1) ∥u∥∞ ≤ k ∥u∥ .
Since the critical points of the functional Φ(u)−λΨ(u) on X are exactly
the weak solutions of problem (Pλ,µ), our aim is to apply Theorem 2.1
to Φ(u) and Ψ(u). To this end, taking into account that the regularity
assumptions of Theorem 2.1 on Φ(u) and Ψ(u) are satisfied and the
assumptions of f and g, so we will only verify (a1) and (a2).

Put r = 1
p(

c
k )

p taking into account (3.1), one has

sup
Φ(u)≤r

Ψ(u) = sup
Φ(u)≤r

∫
Ω

[
F (x, u(x)) +

µ

λ
G(x, u(x))

]
dx(3.2)

≤
∫
Ω
max
|s|≤c

F (x, s) dx+
µ

λ
Gc.

Now, let ū(x) be the function defined by

ū(x) =


0, x ∈ Ω\B(x0, r2),
d(3(l4−r42)−4(r1+r2)(l3−r32)+6r1r2(l2−r22))

(r2−r1)3(r1+r2)
, x ∈ B(x0, r2)\B(x0, r1),

d, x ∈ B(x0, r1),

where l = dist(x, x0) =
√∑N

i=1(xi − x0i )
2. We have

∂u(x)

∂xi
=

{
0, x ∈ Ω\B(x0, r2) ∪B(x0, r1),
12d(l2(xi−x0

i )−(r1+r2)l(xi−x0
i )+r1r2(xi−x0

i ))
(r2−r1)3(r1+r2)

, x ∈ B(x0, r2)\B(x0, r1),

∂2u(x)

∂2xi
=

{
0, x ∈ Ω\B(x0, r2) ∪B(x0, r1),
12d(r1r2+(2l−r1−r2)(xi−x0

i )
2/l−(r2+r1−l)l)

(r2−r1)3(r1+r2)
, x ∈ B(x0, r2)\B(x0, r1),
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N∑
i=1

∂2u(x)

∂2xi
=

{
0, x ∈ Ω\B(x0, r2) ∪B(x0, r1),
12d((N+2)l2−(N+1)(r1+r2)l+Nr1r2)

(r2−r1)3(r1+r2)
, x ∈ B(x0, r2)\B(x0, r1).

It is easy to verify that u ∈ X, and in particular, one has

∥u∥p = (12d)p2π
N
2

(r2 − r1)3p(r1 + r2)pΓ(
N
2 )

∫ r2

r1

|(N + 2)r2 − (N + 1)(r1 + r2)r

(3.3)

+Nr1r2|prN−1 dr.

Here, we obtain from (1.2), (1.3) and (3.3) that

(3.4)
θpdp

kp
< ∥u∥p < σpdp

kp
.

By the assumption
dθ > c,

it follows from (3.4) that

∥u∥p

p
>

dpθp

kpp
>

1

p

( c
k

)p
= r.

Now, by (3.2), we have

Ψ(ū)

Φ(ū)
≥

pkp
∫
B(x0,r1)

F (x, d) dx

σpdp
+

µ

λ

pkp |Ω|Gd

σpdp
.

supΦ(u)≤r Ψ(u)

r
≤ pkp

∫
Ωmax|s|≤c F (x, s) dx

cp
+ pkp

µ

λ

Gc

cp
.

(3.5)

Since µ < δ, one has

µ <
cp − λpkp

∫
Ωmax|s|≤c F (x, s) dx

pkpGc
,

this means

pkp
∫
Ωmax|s|≤c F (x, s) dx

cp
+ pkp

µ

λ

Gc

cp
<

1

λ
.

Furthermore,

µ <
σpdp − λpkp

∫
B(x0,r1)

F (x, d) dx

pkp |Ω|Gd
,

this means

pkp
∫
B(x0,r1)

F (x, d) dx

σpdp
+

µ

λ

pkp |Ω|Gd

σpdp
>

1

λ
.
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We obtain

pkp
∫
Ωmax|s|≤c F (x, s) dx

cp
+ pkp

µ

λ

Gc

cp
<

1

λ
<(3.6)

pkp
∫
B(x0,r1)

F (x, d) dx

σpdp
+

µ

λ

pkp |Ω|Gd

σpdp
.

Hence, from (3.5) and (3.6), condition (a1) of Theorem 2.1 is verified.

Finally, since µ < δg we can fix l > 0 such that lim sup
|s|→+∞

supx∈Ω G(x,s)
sp < l

and µl < 1
pkp|Ω| . Therefore, there exists a function h ∈ L1(Ω) such that

G(x, s) ≤ lsp + h(x)

for each (x, s) ∈ Ω× R.
Now, fix 0 < ε < 1−µlkp|Ω|p

λkp|Ω|p . From (H5) there is a function hε(x) ∈
L1(Ω) such that

F (x, s) ≤ εsp + hε(x)

for each (x, s) ∈ Ω× R. It follows that, by (3.1), for each u ∈ X,

Φ(u)− λΨ(u) ≥
(
1

p
− λεkp |Ω| − µlkp |Ω|

)
∥u∥p − λ ∥hε∥L1 − µ ∥h∥L1 .

This leads to the coercivity of Φ(u)− λΨ(u) and condition (a2) of The-
orem 2.1 is verified. Since from (3.5) and (3.6), we can get

λ ∈

]
Φ(x̄)

Ψ(x̄)
,

r

supΦ(x)≤r Ψ(x)

[
.

Now, Theorem 2.1 ensures the existence of three critical points for the
functional Φ(u)− λΨ(u) and the proof is complete. □

Proof of Theorem 1.3. Fix λ, g and µ as in the conclusion. Take X =
W 1,p

0 (0, 1) ∩W 2,p(0, 1) endowed with the usual norm

∥u∥ =

(∫ 1

0

∣∣u′′(t)∣∣p dt

)1/p

and, for each u ∈ X,

Φ(u) =
1

p
∥u∥p

and

Ψ(u) =

∫ 1

0

[
F (u(x)) +

µ

λ
G(x, u(x))

]
dx.
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Since the critical points of the functional Φ(u)−λΨ(u) on X are exactly
the weak solutions of problem (P ′

λ,µ), our aim is to apply Theorem 2.1
to Φ(u) and Ψ(u). To this end, taking into account that the regularity
assumptions of Theorem 2.1 on Φ(u) and Ψ(u) are satisfied, we will
verify (a1) and (a2) only. Let ū(x) be the function defined by

ū(x) =

{
d− 16d(1/4− |x− 1/2|)2, x ∈ [0, 14 ] ∪ [34 , 1],

d, x ∈]14 ,
3
4 [,

and put r = (2c)p. Clearly, ū ∈ X,

Φ(ū) =
(32d)p

2p
,

and

Ψ(ū) ≥ 1

2
F (d) +

µ

λ

∫ 1

0
G(x, ū(x)) dx ≥ 1

2
F (d) +

µ

λ
inf

[0,1]×[0,d]
G.

Since

(3.7) max
x∈[0,1]

|u(x)| ≤ 1

2 p
√
p
∥u∥

for all u ∈ X (see Lemma 2 of [18]), one has maxx∈[0,1] |u(x)| ≤ c for all

u ∈ Φ−1(]−∞, r]). Therefore, we have

supΦ(u)≤r Ψ(u)

r
≤
∫ 1

0
[F (c) + µ

λG(x, c)] dx

(2c)p
=

F (c) + µ
λ

∫ 1

0
max|s|≤c G(x, s) dx

(2c)p

that is,

(3.8)
supΦ(u)≤r Ψ(u)

r
≤ F (c)

(2c)p
+

λ

µ

Gc

(2c)p
,

and

Ψ(ū)

Φ(ū)
≥

1
2F (d) + µ

λ

∫ 1
0 G(x, u) dx

(32d)p

2p

≥ F (d)
(32d)p

2p

+
µ

λ

G(d)
(32d)p

2p

,

which is

(3.9)
Ψ(ū)

Φ(ū)
≥ F (d)

(32d)p

2p

+
µ

λ

G(d)
(32d)p

2p

.

Since µ < δg , one has

µ <
(2c)p − λF (c)

Gc
,

F (c)

(2c)p
+

λ

µ

Gc

(2c)p
<

1

λ
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and

µ <
λF (d)− (32d)p

2p

Gd
,

Φ(ū)

Ψ(ū)
≥ F (d)

(32d)p

2p

+
µ

λ

G(d)
(32d)p

2p

>
1

λ
,

we obtain that,

(3.10)
F (c)

(2c)p
+

λ

µ

Gc

(2c)p
<

1

λ
<

F (d)
(32d)p

2p

+
µ

λ

G(d)
(32d)p

2p

.

Hence, from (3.8), (3.9) and (3.10), condition (a1) of Theorem 2.1 is
verified.

Finally, since µ < δg we can fix l > 0 such that lim sup
|s|→+∞

supx∈[0,1] G(x,s)

sp <

l and µl < p. Therefore, there exists a positive constant k such that

G(x, s) ≤ lsp + k

for each (x, s) ∈ [0, 1]× R. Now, fix 0 < ε < 2p−µl
λ . From (H9) there is

a positive constant kε such that

F (s) ≤ εsp + kε

for each s ∈ R. It follows that, by (3.7), for each u ∈ X,

Φ(u)− λΨ(u) ≥
(
1

p
− λ

2pp
ε− l

2pp
µ

)
∥u∥X − λkε − µk.

This leads to the coercivity of Φ(u)− λΨ(u) and condition (a2) of The-
orem 2.1 is verified. Since from (3.8), (3.9) and (3.10), we can get

λ ∈

]
Φ(x̄)

Ψ(x̄)
,

r

supΦ(x)≤r Ψ(x)

[
.

Now, Theorem 2.1 ensures the existence of three critical points for the
functional Φ(u)− λΨ(u) and the proof is complete. □
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