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Abstract. In this paper, we study the existence of generalized solu-

tions for the infinite dimensional nonlinear stochastic differential inclu-
sions dx(t) ∈ F (t, x(t))dt + G(t, x(t))dWt in which the multifunction F
is semimonotone and hemicontinuous and the operator-valued multifunc-
tion G satisfies a Lipschitz condition. We define the Itô stochastic integral

of operator set-valued stochastic processes with respect to the cylindrical
Brownian motion on separable Hilbert spaces. Then, we generalize the
existence results for differential inclusions in [H. Abedi and R. Jahanipur,

Nonlinear differential inclusions of semimonotone and condensing type in
Hilbert spaces, Bull. Korean Math. Soc., 52 (2015), no. 2, 421–438.]
to the corresponding stochastic differential inclusions using the methods
discussed in [R. Jahanipur, Nonlinear functional differential equations of

monotone-type in Hilbert spaces, Nonlinear Analysis 72 (2010), no. 3-4,
1393–1408, R. Jahanipur, Stability of stochastic delay evolution equations
with monotone nonlinearity, Stoch. Anal. Appl., 21 (2003), 161–181, and
R. Jahanipur, Stochastic functional evolution equations with monotone

nonlinearity: existence and stability of the mild solutions, J. Differential
Equations 248 (2010), no. 5, 1230–1255.]
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1. Introduction

In recent years, the theory of stochastic differential equations has become
an active area of investigation due to its applications in physics, biology, eco-
nomics and mechanical and electrical engineering problems ( [6–8, 18, 19] and
the references therein). In this paper, we are to concerned with the existence of
generalized solution (in the strong sense) of the nonlinear stochastic differential
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inclusion

dxt ∈ F (t, xt)dt+G(t, xt)dWt,

where F and G are set-valued stochastic processes and {Wt}t≥0 is the cylin-

drical Brownian motion on a separable Hilbert space H. The part F (t, xt)dt
is related to the integral of a set-valued process with respect to time t and
the part G(t, xt)dWt is related to the Itô integral of a set-valued process with
respect to Wt. We impose some regularity and geometric conditions on set-
valued processes F and G and extend the definition of stochastic integral of
set-valued stochastic processes with respect to Brownian motion introduced by
Kisielewicz [15] to the infinite dimensional separable Hilbert spaces.

The set-valued integrals and stochastic set-valued integrals have been studied
by many authors; see e.g. [2–5, 10–16]. Inspired by Aumann’s definition [3],
Hiai and Umegaki [4] and Kisielewicz [11,12] defined the set-valued stochastic
integral as a subset of the space L2(Ω,F , P ;H). But this is not a decomposable
set and so it is not a set-valued random variable. Then, Jung and Kim [10]
introduced the set-valued stochastic integral as a closed decomposable hull
of the one defiend by Kisielewicz in [12], although some of their results and
proofs were not correct. Recently, Kisielewicz [15] correctly redefined the set-
valued stochastic integral with respect to standard Brownian motion on finite
dimensional spaces and studied its properties.

In [6, 8], Jahanipur investigated the existence and uniqueness and asymp-
totic properties of the mild solutions of deterministic and stochastic semilinear
functional evolution equations in which the nonlinear part is monotone. Us-
ing the methods introduced in [6] and invoking some selection and fixed point
theorems, we established in [1] the existence and uniqueness of the generalized
solutions for deterministic nonlinear differential inclusions in Hilbert spaces in
which the multifunction on the right-hand side is hemicontinuous and satisfies
the semimonotone condition or is condensing. But, in some cases, deterministic
models often fluctuate due to the random noise. This motivates us to switch
from deterministic problems to stochastic ones and to generalize the existence
results to stochastic differential inclusions of semimonotone type.

The paper is organized as follows. In Section 2, we recall some prelimi-
naries. In sections 3 we review the definition of the Itô stochastic integral of
the operator set-valued stochastic processes and discuss some of its properties.
Finally, in Section 4, we prove our main theorems and results in the case that
the set-valued process F is semimonotone hemicontinuous and the set-valued
process G is Lipschitz continuous.

2. Preliminaries

Let H and K be two real separable Hilbert spaces with a norm and an
inner product denoted by symbols ∥·∥ and ⟨·, ·⟩, respectively. Assume that
(Ω,F ,Ft, P ) is a complete stochastic basis with a right continuous filtration.
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Denote by B(H) the σ-field of Borel subsets of H. The σ-field generated by all
sets of the form (s, t]×F , F ∈ Fs and {0}×F , F ∈ F0 is called the predictable
σ-field and it is denoted by PT . We define the σ-field Σ on [0, T ] × Ω as
Σ = {A ∈ PT : At = {ω ∈ Ω : (t, ω) ∈ A} ∈ Ft, ∀t ∈ [0, T ]}.

The stochastic process {Wt : t ≥ 0} is called a cylindrical Brownian motion
on H if it satisfies the following conditions:

(i): W0 = 0 and Wt(x) is Ft-adapted for every x ∈ H;
(ii): For every x ∈ H such that x ̸= 0, {Wt(x)/∥x∥ : t ≥ 0} is a one-

dimensional Brownian motion.

For the properties of cylindrical Brownian motion see [18].

Definition 2.1. Let f : [0, T ]×Ω → H be an H-valued predictable process such

that E
(∫ T

0
∥f(s)∥2 ds

)
<∞. The stochastic integral of f with respect to cylin-

drical Brownian motion {Wt}t≥0 on H is a real-valued continuous martingale
given by ∫ t

0

⟨f(s), dWs⟩ =
∞∑

n=1

∫ t

0

⟨f(s), en⟩ dWs(en), ∀t ∈ [0, T ],

where {en}∞n=1 is a complete orthonormal basis for H.

Suppose that L2(H,K) is the space of all Hilbert-Schmidt operators from
H to K with the Hilbert-Schmidt norm ∥·∥L2

.

Definition 2.2. Let g : [0, T ] × Ω → L2(H,K) be an L2(H,K)-valued pre-

dictable process such that E
(∫ T

0
∥g(s)∥2L2

ds
)
< ∞. The stochastic integral of

g is a K-valued continuous martingale such that⟨
k,

∫ t

0

g(s)dWs

⟩
=

∫ t

0

⟨g∗(s)k, dWs⟩, t ∈ [0, T ], k ∈ K,

where g∗(s) is the adjoint operator of g(s).

We assume that P (H) is the family of all non-empty subsets of H and Pc(H)
(resp. Pc,v(H), Pk,v(H)) is the family of all non-empty closed (resp. closed
convex, compact convex) subsets of H. A set-valued map F : H → P (K)
is called upper semicontinuous (u.s.c) if for every open subset U of K, the
set {x ∈ H : F (x) ⊆ U} is open in H. By Proposition 1.2.5 of [5], upper
semicontinuity is equivalent to the following: for each sequence {xn}∞n=1 in H
such that xn →x as n→ ∞ and for every ε > 0, there exists a positive integer
N such that

F (xn) ⊆ F (x) + εB, ∀n ≥ N,

where B is an open unit ball of K. The map F is called lower semicontinuous
(l.s.c) if for every open subset U of K, the set {x ∈ X : F (x) ∩ U ̸= ∅} is
open in H. By Proposition 1.2.6 of [5], lower semicontinuity is equivalent to
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the following: for each sequence {xn}∞n=1 in H which converges to x and for
each y ∈ F (x), there exists a sequence {yn}∞n=1 in K such that yn ∈ F (xn) for
all n and yn → y as n → ∞. Moreover, the set-valued map F is called closed
whenever its graph {(x, y) : y ∈ F (x)} is a closed subset of the product space
H ×K.

By a set-valued random variable on the Hilbert space H we mean a closed
valued F-measurable multifunction, i.e., a set-valued map X : Ω → Pc(H)
such that X−1(C) = {ω ∈ Ω : X(ω) ∩ C ̸= ∅} ∈ F for every C ∈ Pc(H). If H
is separable, then by the Kuratowski-Ryll Nardzewski selection theorem ( [5]),
there is a sequence of random variables xn : Ω → H, n ≥ 1, such that X(ω) =
cl{xn(ω)} for ω ∈ Ω, where cl denotes the closure in the space H. Assume that
p ≥ 1, we denote by Sp(X) the family of all Bochner Lp-integrable selections
of X. If S1(X) ̸= ∅, then X is said to be Aumann integrable. Sp(X) is a
closed and decomposable subset of Lp(Ω,F , P ;H), i.e., if x1, x2 ∈ Sp(X), then
1Ax1 + 1Ω−Ax2 ∈ Sp(X) for all A ∈ F ; see [5]. A set-valued random variable
X is called integrably bounded if there exists m ∈ L1(Ω,F , P ;R+) such that
∥X(ω)∥ = sup

x∈X(ω)

∥x∥ ≤ m(ω) for a. e. ω ∈ Ω. If m ∈ L2(Ω,F , P ;R+), then

X is said to be square integrably bounded. It is easy to see that X is integrably
bounded if and only if S1(X) is a non-empty bounded subset of L1(Ω,F , P ;H);
see [5]. The decomposable hull of the set C ⊆ Lp(Ω,F , P ;H) is the smallest
decomposable subset of Lp(Ω,F , P ;H) containing C and is denoted by dec(C).
It turns out that (see [5]) dec(C) is the set of those f ∈ Lp(Ω,F , P ;H) such
that given ε > 0, there exist a finite F-measurable partition {Ak}Nk=1 of Ω

and {uk}Nk=1 ⊆ C for which E
(∥∥∥f −

∑N
k=1 1Ak

uk

∥∥∥p) < ε. Moreover, we have

dec(Sp(X)) = Sp(X) for all p ≥ 1. If C is convex, then dec(C) is convex
and dec(C) is weakly closed convex. Also, if the set-valued random variable
X is integrably bounded with convex values, then S1(X) is a weakly compact,
convex, decomposable subset of L1(Ω,F , P ;H), see [11,12,15].

The set-valued map X : [0, T ]× Ω → Pc(H) is called a set-valued stochastic
process if X(t, ·) is a set-valued random variable for every t ∈ [0, T ]. Moreover,
we say that X is measurable if it is B([0, T ]) ⊗ F-measurable. The set-valued

stochastic process X is called square integrable if E(
∫ T

0
∥Xt∥2 dt) <∞, where

∥Xt(ω)∥ = sup{∥x∥ : x ∈ X(t, ω), (t, ω) ∈ [0, T ]× Ω}.

We denote by S2(X) (resp. S2
Σ(X)) the set of all square integrable selections

of the set-valued stochastic process X which are B([0, T ])⊗F-measurable (resp.
Σ-measurable). Let the set-valued stochastic process X be square integrable
(integrably bounded). If S2(X) ̸= ∅, we say that X is a Aumann square
integrable (integrably bounded). Similarly, X is a Σ-Aumann square integrable
(integrably bounded) if S2

Σ(X) ̸= ∅. Note that in these cases, S2(X) and S2
Σ(X)

are closed (bounded), decomposable subsets of L2([0, T ]×Ω,B([0, T ])⊗F , dt×
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P ; H) and L2([0, T ] × Ω,Σ, dt × P ; H), respectively and as before, if X has
convex values, S2(X) and S2

Σ(X) are convex and weakly compact subsets of
the above spaces, see [11,12,15].

The following inequality constitutes some part of our main tools in this paper
to obtain the existence results.

Theorem 2.3. (Ito-type inequality)( [9]) Let ξ be a K-valued, F0-measurable
random variable. Suppose that p ≥ 2, f ∈ Lp([0, T ] × Ω,Σ, P ;K) and g ∈
Lp([0, T ]× Ω,Σ, P ;L2(H,K)). If X(t) = ξ +

∫ t

0
f(s)ds+

∫ t

0
g(s)dWs, then

∥X(t)∥p ≤ ∥ξ∥p + p

∫ t

0
∥X(s)∥p−2 ⟨X(s), f(s)⟩ ds+ p

∫ t

0
∥X(s)∥p−2 ⟨X(s), g(s)dWs⟩

+
p(p− 1)

2

∫ t

0
∥X(s)∥p−2 ∥g(s)∥2L2

ds.

Let Y be a metric space. By the Caratheodory conditions on a two-variable
multifunction F : Ω×Y → P (Y ) we mean that (i) for every x ∈ Y , the function
ω → F (ω, x) is measurable; (ii) for almost all ω ∈ Ω, the function x 7→ F (ω, x)
is u.s.c. The (measurable) function x : Ω → Y such that x(ω) ∈ F (ω, x(ω)) for
each ω ∈ Ω is called a (random) fixed point of F . The following random fixed
point theorem that is a direct consequence of the well-known selection theorem
of Kuratowski-Ryll Nardzewski is needed in the later sections (Theorem 7.1
of [17]).

Theorem 2.4. Let (Ω,F) be a measurable space and Z be a non-empty com-
plete separable subset of the metric space Y . Suppose that the Caratheodory
set-valued map F : Ω× Z → Pc(Y ) satisfies the following condition For every ω ∈ Ω and sequence {xn}∞n=1 in Z and D ∈ Pc(Z),

if d(xn, D) → 0 and d(xn, F (xn)) → 0, when n→ ∞,
then F has a fixed point in D.

Then, F has a random fixed point if and only if it has a fixed point.

3. Set-valued stochastic integrals

In this section, we study the Itô stochastic integrals of set-valued stochastic
processes with respect to cylindrical Brownian motion on infinite dimensional
separable Hilbert spaces. For properties of stochastic integral for single-valued
processes with respect to the cylindrical Brownian motion, see [18] and for
set-valued stochastic integrals on finite dimensional spaces, see [11–15].

Let X be a square integrable set-valued stochastic process on the Hilbert
space H. Aumann defined the set-valued integral of X as, [3]

LX(t) =

{∫ t

0

φ(s)ds : φ ∈ S2(X)

}
,

for every t ∈ [0, T ]. One can see that LX(t) is a decomposable subset of
L2(Ω,F , P ;H), so by Hiai-Umegaki’s theorem (Theorem 3.1 of [4]), there is a
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unique set-valued stochastic process Y : [0, T ]×Ω → Pc(H) such that S2(Yt) =
LX(t) for all t ∈ [0, T ]. The process Yt is called the Aumann-Lebesgue integral

of Xt and is denoted by
∫ t

0
Xsds. In the same way, if S2

Σ(X) ̸= ∅, we define

LΣ
X
(t) =

{∫ t

0

φ(s)ds : φ ∈ S2
Σ(X)

}
.

Note that in this case, LΣ
X
(t) may not be decomposable. But, by Hiai-Umegaki’s

theorem, there exists a unique set-valued stochastic process
∫ t

0
Xsds such that

S2(
∫ t

0
Xsds) = dec(LΣ

X(t)) for each t ∈ [0, T ]. To study more about these
processes, we refer to [4, 11, 15].

Now, we are ready to define the Itô set-valued stochastic integral for an
operator set-valued stochastic process with respect to the cylindrical Brownian
motion {Wt : t ≥ 0}. Assume that the set-valued stochastic process F :

[0, T ] × Ω → Pc(L2(H,K)) is such that E
(∫ T

0
∥F (s)∥2L2

ds
)
< ∞. We define

the set-valued map JF : [0, T ] → P (L2(Ω,FT , P ;K)) as

JF (t) =

{∫ t

0

φ(s)dWs : φ : [0, T ]× Ω → L2(H,K), φ ∈ S2
Σ(F )

}
,∀t ∈ [0, T ].

An immediate consequence of this definition is that JF (t) ⊆ L2(Ω,Ft, P ;K).
Moreover, E(JF (t)) = {0} for each t ∈ [0, T ]. The following proposition
presents a few properties of the values of the set-valued map JF and can be
proved similar to Theorem 2.1 of [15] using the Itô-type inequality (Theorem
2.3) for p = 2.

Proposition 3.1. Let F be the set-valued stochastic process defined above.
Then,

i): for every t ∈ [0, T ], JF (t) is a closed subset of L2(Ω,Ft, P ;K). In
addition, if F is square integrably bounded, then JF (t) is a bounded
subset of L2(Ω,Ft, P ;K);

ii): JF (t) is a decomposable subset of L2(Ω,Ft, P ;K) if and only if JF (t)
is singleton. Moreover, if Int

(
dec(JF (t))

)
̸= ∅, then dec(JF (t)) =

L2(Ω,Ft, P ;K);
iii): if F is a convex-valued, then JF (t) and dec(JF (t)) are convex and

weakly closed subsets of L2(Ω,Ft, P ;K). If, in addition, F is square
integrably bounded, then JF (t) is convex and weakly compact subset of
L2(Ω,Ft, P ;K) and there exists a sequence {φn}∞n=1 in S2

Σ(F ) such
that

JF (t) = clw

{∫ t

0

φn(s)dWs : n ≥ 1

}
and

dec(JF (t)) = clw

{
dec(

∫ t

0

φn(s)dWs) : n ≥ 1

}
,
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where clw stands for the weak closure in the space L2(Ω,Ft, P ;K).

Again by Theorem of Hiai-Umegaki, we can find the set-valued random
variable Yt : Ω → PC(K) such that S2(Yt) = dec(JF (t)) for every t ∈ [0, T ]. We
call the process {Yt}0≤t≤T , the Ito stochastic integral of set-valued stochastic
process F with respect to the cylindrical Brownian motion W and denote it by∫ t

0
F (s)dWs. In addition, if F has convex values, then by the previous definition

and Proposition 3.1, we have

S2
(∫ t

0

F (s)dWs

)
= dec(JF (t))

= co(dec(JF (t))) = co
(
S2
(∫ t

0

F (s)dWs

))
= S2

(
co
(∫ t

0

F (s)dWs

))
.

This implies that
∫ t

0
F (s)dWs is a closed convex subset of L2(Ω,Ft, P ;K).

We have the following Ito-type inequality for the set-valued stochastic integrals.

Theorem 3.2. Let p ≥ 2 and F : [0, T ] × Ω → Pc(L2(H,K)) be a stochastic

process such that E
(∫ T

0
∥F (s)∥pL2

ds
)
<∞. Then,

E(

∥∥∥∥∫ t

0

F (s)dWs

∥∥∥∥p) ≤ Cp,T

∫ t

0

E
(
∥F (s)∥pL2

)
ds,

for every t ∈ [0, T ], where Cp,t = e(p−1)(p−2)t(p−1
2 + 9p2

2 t
p−2
p ). Moreover,

E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

F (s)dWs

∥∥∥∥p
)

≤ Kp

∫ T

0

E
(
∥F (s)∥pL2

)
ds,

where Kp =
(

p
p−1

)p
Cp,T .

Proof. Let t ∈ [0, T ], by definition of the Ito set-valued stochastic integral and
Theorem 2.2 of [4], we get

E

(∥∥∥∥∫ t

0

F (s)dWs

∥∥∥∥p
)

= E

[
sup

{
∥z∥p : z ∈

∫ t

0

F (s)dWs

}]
= sup

{
E [∥u∥p] : u ∈ Sp

(∫ t

0

F (s)dWs

)}
= sup

{
E [∥u∥p] : u ∈ dec(JF (t))

}
= sup

{
E [∥u∥p] : u ∈ dec(JF (t))

}
.
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For u ∈ dec(JF (t)), there exist a finite Ft-measurable partition {Ak}Nk=1 of Ω

and {φk}Nk=1 ⊆ Sp
Σ(F ) such that u =

N∑
k=1

1Ak

∫ t

0
φk(s)dWs. Thus, we have

E

(∥∥∥∥∫ t

0

F (s)dWs

∥∥∥∥p
)

≤ sup
{φk}N

k=1⊆Sp
Σ(F )

E

(
max

1≤k≤N

∥∥∥∥∫ t

0

φk(s)dWs

∥∥∥∥p
)
.

Note that, the Burkholder-Davis inequality (see [18]) with the Ito-type inequal-
ity, implies that

(3.1) E

(
sup

0≤s≤t

∥∥∥∥∫ t

0

φk(s)dW (s)

∥∥∥∥p
)

≤ Cp,t

∫ t

0

E
(
∥φk(s)∥pL2

)
ds,

where Cp,t = e(p−1)(p−2)t(p−1
2 + 9p2

2 t
p−2
p ). Now, with a similar argument as in

the proof of Inequality (3.1), we conclude that

E

(∥∥∥∥∫ t

0

F (s)dWs

∥∥∥∥p
)

< Cp,t sup
{φk}N

k=1⊆Sp∑(F )

E

(
max
1≤N

∫ t

0

∥φk(s)∥pL2
ds

)

≤ Cp,t

∫ t

0

E
(
∥F (s)∥pL2

ds.
)

We set ϕ(t) = sup
{
∥Z∥p : Z ∈

∫ t

0
F (s)dWs

}
, then, {ϕ(t)}t∈[0,T ] is a real-

valued Ft-submartingle ( [4]). So, by the maximal inequality for real-valued
submartingles, we obtain

E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

F (s)dWs

∥∥∥∥p
)

= E
(

sup
0≤t≤T

ϕ(t)
)
≤
(

p

p− 1

)p

E (ϕ(T )) .

□

4. Existence results

In this section, we study the existence of generalized solution for nonlinear
stochastic differential inclusion

(4.1)

{
dx(t) ∈ F (t, x(t))dt+G(t, x(t))dWt, t ∈ [0, T ],
x(0) = ξ,

in which W is the cylindrical Brownian motion on the real separable Hilbert
space H. The multifunctions F and G on the right-hand side are defined on
[0, T ] × Ω × K with values in spaces Pc(K) and Pc(L2(H,K)), respectively.
First, we give the definition of a generalized solution for the problem (4.1).

Definition 4.1. The mean square continuous Σ-measurable stochastic process
{xt}t∈[0,T ] is said to be a generalized solution of (4.1) if x(0) = ξ and there
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are stochastic processes f : [0, T ]×Ω → K and g : [0, T ]×Ω → L2(H,K) such
that the following integral equation holds:

xt − xs =

∫ t

s

f(τ)dτ +

∫ t

s

g(τ)dWτ , ∀s, t ∈ [0, T ],

where
∫ t

s
f(τ)dτ ∈ S2

(∫ t

s
F (τ, xτ )dτ

)
and

∫ t

s
g(τ)dWτ ∈ S2

(∫ t

s
G(τ, xτ )dWτ

)
for every s, t ∈ [0, T ].

Along with the stochastic differential inclusion (4.1), we consider the sto-
chastic integral inclusion

{
xt − xs ∈

∫ t

s
F (τ, xτ )dτ +

∫ t

s
G(τ, xτ )dWτ , s, t ∈ [0, T ] and a.e. ω ∈ Ω,

x(0) = ξ,

and the stochastic functional inclusion

(4.2)

{
xt − xs ∈ clL2

(
LΣ
1[s,t]F̃

(t) + J1[s,t]G̃(t)
)
, t, s ∈ [0, T ],

x(0) = ξ,

where F̃ (t, ω) = F (t, ω, x(t, ω)) and G̃(t, ω) = G(t, ω, x(t, ω)) for every t ∈ [0, T ]

and ω ∈ Ω. Note that if f ∈ S2
Σ(F̃ ) and g ∈ S2

Σ(G̃) in the above definition,

then
∫ t

0
f(s)ds ∈ LΣ

F̃
(t) and

∫ t

0
g(s)dWs ∈ JG̃(t).

The following theorem tells us how to connect differential inclusion (4.1) to
the corresponding stochastic functional inclusion (4.2); see Theorem 4.2 of [13].

Theorem 4.2. Let {xt}0≤t≤T be a solution of the stochastic functional inclu-

sion (4.2) such that F̃ and G̃ are Ft-adapted and moreover

E

(∫ T

0

∥F̃t∥2dt

)
<∞ and E

(∫ T

0

∥G̃t∥2L2
dt

)
<∞.

Then {xt}0≤t≤T is a generalized solution of problem (4.1).

In order to prove the existence result for problem (4.1), we assume that F
and G are Σ ⊗ B(K)-measurable set-valued processes such that for every Σ-
measurable stochastic process {xt}0≤t≤T , the multifunctions {F (t, xt)}0≤t≤T

and {G(t, xt)}0≤t≤T are set-valued stochastic processes. Furthermore, we im-
pose the following hypotheses on F and G:

H1): For each t ∈ [0, T ] and ω ∈ Ω, the set-valued map x 7→ F (t, ω, x)
is hemicontinuous on K; i.e., for each sequence {xn}∞n=1 in K which is
convergent to x, if y ∈ F (t, ω, x), then there exists a sequence {yn}∞n=1

in K such that for all n ≥ 1, yn ∈ F (t, ω, xn) and yn
w→ y in K;

H2): There is a constant C > 0 such that ∥F (t, ω, x)∥ ≤ C (1 + ∥x∥) for
all t ∈ [0, T ], x ∈ K and ω ∈ Ω a.e.;
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H3): F is semimonotone with parameter M . In other words, for every
x1, x2 ∈ K, t ∈ [0, T ], ω ∈ Ω, y1 ∈ F (t, ω, x1) and y2 ∈ F (t, ω, x2), we
have

⟨x1 − x2, y1 − y2⟩ ≤M ∥x1 − x2∥2 ;
H4): G : [0, T ] × Ω × K → Pc(L2(H,K)) is a Σ-measurable set-valued

process on K such that ∥G(t, ω, x)−G(t, ω, y)∥L2
≤ C ∥x− y∥ for all

t ∈ [0, T ], ω ∈ Ω and x, y ∈ K.

First, we study the stochastic differential inclusion

(4.3) dx(t) ∈ F (t, x(t)) +G(t)dWt, t ∈ [0, T ],

where G : [0, T ]× Ω → Pc(L2(H,K)) is a Σ-measurable set-valued process. In
the case that K is finite dimensional, by virtue of Theorem 2.4, we obtain the
following

Theorem 4.3. Suppose that the set-valued map F : [0, T ]×Ω×Rn → Pc,v(Rn)
is u.s.c with respect to the third variable, the map (t, ω) 7→ F (t, ω, x) is Σ-
measurable and there exists a continuous function h : [0, T ] × [0,∞) → [0,∞)
such that for each t ∈ [0, T ], the map u → h(t, u) is monotone increasing
and ∥F (t, ω, x)∥ ≤ h(t, ∥x∥) for all t ∈ [0, T ], a.e. ω ∈ Ω and all x ∈ Rn.
Let the set-valued map G : [0, T ] × Ω → Pc(L2(H,Rn)) be Σ-measurable and∫ T

0
∥G(s)∥2L2

ds < ∞. If the differential equation u′ = h(t, u) with initial con-
dition u(0) = 0 has a solution u(t) existing on [0, T ], then the stochastic differ-
ential inclusion (4.3) with the initial random variable ξ = 0, has a generalized
solution.

Proof. By the Kuratowski-Ryll Nardzewski selection theorem, there is a Σ-
measurable function φ : [0, T ] × Ω → L2(H,Rn) such that φ(t, ω) ∈ G(t, ω)
for every (t, ω) ∈ [0, T ] × Ω. We define the stochastic process y as y(t, ω) =

x(t, ω)−
∫ t

0
φ(s)dWs and consider the following stochastic functional inclusion{

y(t) ∈ LΣ
F̃x

(t), t ∈ [0, T ],

y(0) = ξ,

where F̃x(t, ω) = F̃ (t, ω, x) = F (t, ω, x+
∫ t

0
φ(s)dWs) for t ∈ [0, T ], ω ∈ Ω and

x ∈ Rn. By Inequality (3.1), we have∥∥∥F̃ (t, ω, x)∥∥∥ ≤ h(t, ∥x∥+
∥∥∥∥∫ t

0

φ(s)dWs

∥∥∥∥) ≤ h̃(t, ∥x∥),

for all (t, x) ∈ [0, T ]× Rn, and a.e. ω ∈ Ω, where

h̃(t, x) = h

t, x+

(
Kp,T

∫ T

0

∥G(s)∥2L2
ds

) 1
2

 .
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Now, as in the proof of Theorem 3.1 of [1], we define the set K of all con-
tinuous Σ-measurable stochastic processes {xt}0≤t≤T such that x(0) = ξ and
∥x(t, ω)∥ ≤ u(t) for each t ∈ [0, T ] and ω ∈ Ω. Define the set-valued map Λ as

Λ(x) = LΣ
F̃x

=

y : [0, T ]× Ω → Rn

∣∣∣∣∣∣
for every t ∈ [0, T ], y(t) =

∫ t

0
v(s)ds,

where v ∈ L2 ([0, T ]× Ω, Σ, dt× P ; Rn)

and v(s, ω) ∈ F̃ (s, ω, x(s, ω)), dt× P − a.e.

 .

With a similar argument as in Theorem 3.1 of [1], we conclude that Λ is a
compact set-valued map with convex and compact values. Moreover, the set-
valued map Λ(ω, ·) is u.s.c. for every ω ∈ Ω and map Λ(·, x) is measurable for
every x ∈ K. Then, Kakutani’s fixed point theorem guarantees that Λ satisfies
the conditions of Theorem 2.4. Therefore, it has a random fixed point which is
a generalized solution of stochastic differential inclusion (4.3). □

If we assume in the previous theorem that the set-valued map F is l.s.c on
K, the result can be proved in a similar manner; see [1]. In the case that K
is an infinite dimensional separable Hilbert space and the set-valued map F

satisfies hypotheses H1−H3 and
∫ T

0
∥G(s)∥2 ds <∞, we obtain a sequence of

approximate solutions in finite dimensional spaces which is weakly convergent
to the solution of stochastic differential inclusion (4.3). Take an orthonormal
basis {en}∞n=1 forK and letKn be the subspace ofK generated by {e1, . . . , en}.
Then, {Kn}∞n=1 is an increasing sequence of finite dimensional subspaces of K
with the property ∪∞

n=1Kn = K. Suppose that Pn is the orthogonal projection
of K onto Kn and define the set-valued map PnF : [0, T ]×Ω×K → Pc,v(Kn)
by PnF (t, ω, x) = {Pn(y) | y ∈ F (t, ω, x)}. Now, as in Theorem 3.1 of [1], we
can see that the stochastic differential inclusion{

dx(t) ∈ PnF (t, x(t))dt+G(t)dWt, t ∈ [0, T ],
x(0) = 0,

has a Σ-measurable solution xn : [0, T ]× Ω → Cn such that

sup
0≤t≤T

∥xn(t, ω)∥ ≤ e(2M+1)T

∫ T

0

∥F̃ (s, 0)∥2ds,

for every ω ∈ Ω. Thus, for each ω ∈ Ω there is a subsequence {xnk
(·, ω)}k≥1

such that ∫ T

0

e−2Mt ⟨xnk
(t, ω), xnl

(t, ω)⟩ dt→ 0, k, l → ∞.

We assume that x(·, ω) is the weak limit of the above subsequence that is a
generalized solution of stochastic differential inclusion (4.3) ( [1]). Moreover,
the hypothesis H3 implies that this solution is unique ( [7]). It remains to show
the measurablity of the solution. For arbitrary u ∈ K and k ≥ 1, the function
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0
⟨xnk

(s, ω), u⟩ ds is Σ-measurable and∫ t

0

⟨xnk
(s, ω), u⟩ ds →

k→∞

∫ t

0

⟨x(s, ω), u⟩ ds.

So, the function
∫ t

0
⟨x(s, ω), u⟩ ds is also Σ-measurable with continuous inte-

grand and we have ⟨x(t, ω), u⟩ = d
dt

∫ t

0
⟨x(s, ω), u⟩ ds. Since K is a separable

Hilbert space, x(t, ω) is Σ-measurable.

Theorem 4.4. Let K be a separable Hilbert space and the set-valued map
F : [0, T ] × Ω × K → Pc,v(K) be u.s.c with respect to the third variable, let
the map (t, ω) 7→ F (t, ω, x) be Σ-measurable and satisfy hypotheses H1 −H3.
Suppose that the set-valued map G : [0, T ]×Ω → Pc(L2(H,K)) is Σ-measurable

and
∫ T

0
∥G(s)∥2L2

ds <∞. Then, the stochastic differential inclusion (4.3) with
the initial random variable ξ = 0 has a unique generalized solution.

Now, we assume that F,G are two set-valued processes defined on [0, T ]×K
with values in Pc,v(K) and Pc(L2(H,K)), respectively. Suppose that hypothe-

ses H1 − H4 hold and
∫ T

0
∥G(s, 0)∥pL2

ds < ∞ for some p ≥ 2. Consider the
following stochastic differential inclusion

(4.4) dx(t) ∈ F (t, x(t))dt+G(t, x(t))dWt, t ∈ [0, T ],

with the given initial data x(0) = ξ ∈ L2(Ω,F , P ;K). We may take the
initial data ξ = 0, since if x is a generalized solution of (4.4), then x is a
continuous solution of the stochastic integral inclusion x(t) ∈ LΣ

Fx
(t) + JGx(t)

with x(0) = ξ, where Fx(t, ω) = F (t, ω, x(t, ω)) and Gx(t, ω) = G(t, ω, x(t, ω))
for every (t, ω) ∈ [0, T ]× Ω. Set x̄ = x− ξ. Then x̄ is a continuous solution of{

x̄(t) ∈ LΣ
F̄x̄

(t) + JḠx̄
(t), t ∈ [0, T ], a.s. ω ∈ Ω,

x̄(0) = 0,

where F̄x̄(t, ω) = F (t, ω, x̄(t, ω) + ξ(ω)) and Ḡx̄(t, ω) = G(t, ω, x̄(t, ω) + ξ(ω)).
One can easily check that the set-valued processes F̄x̄ and Ḡx̄ satisfy the same
hypotheses as for Fx and Gx. Finally, at the end of this section we prove the
following existence theorem for the stochastic differential inclusion (4.4).

Theorem 4.5. Let p ≥ 2 and
∫ T

0
∥F (s, 0)∥p ds < ∞,

∫ T

0
∥G(s, 0)∥pL2

ds <
∞. Suppose that hypotheses H1 − H4 hold. Then, the stochastic differen-
tial inclusion (4.4) has a unique generalized solution x on [0, T ] such that

E

(
sup

0≤s≤t
∥x(s)∥p

)
<∞, ∀t ∈ [0, T ].

Proof. Without lose of generality, we can assume that ξ = 0. Theorem 4.4
implies that the differential inclusion

dx(t) ∈ F (t, x(t))dt+G(t, 0)dWt, ∀t ∈ [0, T ],
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has a unique generalized solution x1 such that x1(0) = 0. By Definition
4.1, there exist stochastic processes f and g on [0, T ] × Ω into spaces K

and L2(H,K), respectively, such that x1(t) =
∫ t

0
f(s)ds +

∫ t

0
g(s)dWs with∫ t

0
f(s)ds ∈ dec

(
LΣ
Fx1

(t)
)
and

∫ t

0
g(s)dWs ∈ dec

(
JGx1

(t)
)
for every t ∈ [0, T ].

Therefore, there are some finite F-measurable partitions {Ak}Nk=1 and {Bk}Nk=1

of Ω and stochastic processes {φk}Nk=1 ⊆ Sp
Σ(Fx1) and {ψk}Nk=1 ⊆ Sp

Σ(Gx1) such
that

E

(∥∥∥∥∥
∫ t

0

f(s)ds−
N∑

k=1

1Ak

∫ t

0

φk(s)ds

∥∥∥∥∥
p

+

∥∥∥∥∥
∫ t

0

g(s)dWs −
N∑

k=1

1Ak

∫ t

0

ψk(s)dWs

∥∥∥∥∥
p)

< 1.

By Inequality (3.1), we have

E

(
sup

0≤t≤T
∥x1(t)∥p

)
≤ 22p−2[E

(
sup

0≤t≤T

∥∥∥∥∥
∫ t

0

f(s)ds−
N∑

k=1

1Ak

∫ t

0

φk(s)ds

∥∥∥∥∥
p)

+ E

(
sup

0≤t≤T

∥∥∥∥∥
N∑

k=1

1Ak

∫ t

0

φk(s)ds

∥∥∥∥∥
p)

+ E

(
sup

0≤t≤T

∥∥∥∥∥
∫ t

0

g(s)dWs −
N∑

k=1

1Bk

∫ t

0

ψk(s)dWs

∥∥∥∥∥
p)

+ E

(
sup

0≤t≤T

∥∥∥∥∥
N∑

k=1

1Bk

∫ t

0

ψk(s)dWs

∥∥∥∥∥
p)

]

≤ 22p−2[1 + E

(
sup

0≤t≤T
max

1≤k≤N

∥∥∥∥∫ t

0

φk(s)ds

∥∥∥∥p
)

+ E

(
sup

0≤t≤T
max

1≤k≤N

∥∥∥∥∫ t

0

ψk(s)dWs

∥∥∥∥p
)
]

≤ 22p−2[1 + E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

F (s, x1(s))ds

∥∥∥∥p
)

+ E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

G(s, 0)dWs

∥∥∥∥p
)
].
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Now, hypothesis H3 implies that for each t ∈ [0, T ],∥∥∥∥∫ t

0

F (s, x1(s))ds

∥∥∥∥2 = sup
f∈SΣ(Fx1 )

∥∥∥∥∫ t

0

f(s)ds

∥∥∥∥2 = 2 sup
f∈SΣ(Fx1 )

∫ t

0

⟨f(s), x1(s)⟩ ds

≤ 2M

∫ t

0

∥x1(s)∥2 ds+ 2

∫ t

0

∥F (s, 0)∥ ∥x1(s)∥ ds

≤ (2M + 1)

∫ t

0

∥x1(s)∥2 ds+
∫ t

0

∥F (s, 0)∥2 ds,

and by the Gronwall inequality we get∥∥∥∥∫ t

0

F (s, x1(s))ds

∥∥∥∥2 ≤ e(2M+1)t

∫ t

0

∥F (s, 0)∥2 ds.

Thus,

E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

F (s, x1(s))ds

∥∥∥∥p
)

≤ ep(2M+1)TT
p
2−1

∫ t

0

E(∥F (s, 0)∥p)ds.

Consequently, Theorem 3.2 yields that

E

(
sup

0≤t≤T
∥x1(t)∥p

)
≤ 22p−2

[
1 + ep(2M+1)TT

p
2−1

∫ t

0

E (∥F (s, 0)∥p) ds
]

+ 22p−2Kp

∫ T

0

E
(
∥G(s, 0)∥pL2

)
ds.

Also, we conclude that E( sup
0≤s≤t

∥x1(s)∥p) < ∞ for all t ∈ [0, T ]. Now, we pro-

ceed by induction and assuming xn has been defined such that E( sup
0≤s≤t

∥xn(s)∥p)

<∞, we consider the following stochastic differential inclusion:

(4.5) dxn+1(t) ∈ F (t, xn+1(t))dt+G(t, xn(t))dWt.

Hypothesis H4 implies that,

∥G(s, xn(s))∥L2
≤ C sup

0≤τ≤s
∥xn(τ)∥+ ∥G(s, 0)∥L2

,

which yields

E
(
∥G(s, xn(s))∥pL2

)
≤ 2pCpE

(
sup

0≤τ≤s
∥xn(τ)∥p

)
+ 2pE

(
∥G(s, 0)∥pL2

)
.

By Theorem 3.2, we obtain

E

(
sup

0≤s≤t

∥∥∥∥∫ s

0

G(τ, xn(τ))dWτ

∥∥∥∥p) ≤
(

p

p− 1

)p

Cp,T

∫ t

0

E
(
∥G(s, xn(s))∥pL2

)
ds.
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Hence, by Theorem 4.4, we can find a unique generalized solution xn+1 for
(4.6) such that

E

(
sup

0≤s≤t
∥xn+1∥p

)
≤ 22p−2

[
1 + ep(2M+1)TT

p
2−1

∫ t

0

E (∥F (s, 0)∥p) ds
]

+ 22p−2

(
p

p− 1

)p

Cp,T

∫ t

0

E
(
∥G(s, xn(s))∥2L2

)
ds.

Therefore, E( sup
0≤s≤t

∥xn+1∥p) < ∞, for every t ∈ [0, T ]. In order to show the

convergence of the approximating solutions {xn}∞n=1, consider the difference of
two consecutive terms of the sequence. We can assume that

xn+1(t)− xn(t) ∈ LΣ
Fxn+1

−Fxn
(t)− JGxn−Gxn−1

(t),

hence there are fn ∈ S2
Σ(Fxn+1 − Fxn) and gn−1 ∈ S2

Σ(Gxn −Gxn−1) such that

xn+1(t)− xn(t) =

∫ t

0

fn(s)ds+

∫ t

0

gn−1(s)dWs.

Then, the Ito-type inequality implies that

∥xn+1(t)− xn(t)∥p ≤ p

∫ t

0

∥xn+1(s)− xn(s)∥p−2 ⟨xn+1(s)− xn(s), fn(s)⟩ ds

+ p

∫ t

0

∥xn+1(s)− xn(s)∥p−2⟨xn+1(s)− xn(s), gn−1(s)dWs⟩

+
p(p− 1)

2

∫ t

0

∥xn+1(s)− xn(s)∥p−2 ∥gn−1(s)∥2L2
ds.

Therefore, a similar argument as in the proof of Theorem 4.2 of [8] shows that

E

(
sup

0≤s≤t
∥xn+1(t)− xn(t)∥p

)
≤
(
C1e

C2T
)n−1

(n− 1)!
E

(
sup

0≤s≤t
∥x2(t)− x1(t)∥p

)
,

where C1 and C2 are constants dependent on C, p and M . Thus, {xn}∞n=1 is a
Cauchy sequence in the space Lp(Ω,F , P ;K) and there exists a continuous Ft-
adapted process x(t) such that E( sup

0≤s≤t
∥x(s)∥p) <∞ and E( sup

0≤s≤t
∥xn(t)− x(t)∥p)

→ 0, as n → ∞ for every t ∈ [0, T ]. To prove the uniqueness of solution, let
x and y be two solutions of (4.4) corresponding to the initial random variable
ξ = 0 such that x(t) ∈ LΣ

Fx
(t) + JGx(t) and y(t) ∈ LΣ

Fy
(t) + JGy (t). We can

conclude that

E

(
sup

0≤s≤t
∥x(s)− y(s)∥2

)
≤ 2M1

∫ t

0

sup
0≤τ≤s

∥x(τ)− y(τ)∥2 ds, ∀t ∈ [0, T ],

where M1 is a positive constant. Then, by Gronwall’s inequality, we have

E

(
sup

0≤s≤t
∥x(s)− y(s)∥2

)
= 0,
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for all t ∈ [0, T ]. □
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