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COHOMOGENEITY ONE ANTI DE SITTER SPACE H3
1
†

P. AHMADI AND S. M. B. KASHANI∗

Communicated by Karsten Grove

Abstract. We study cohomogeneity one anti de Sitter space H3
1 .

When the action is proper we determine the orbits up to isometry
and the acting groups up to conjugacy.

1. Introduction

One of the central problems in pseudo Riemannian geometry is to
study a pseudo Riemannian manifold M via its isometry group Iso(M).
The larger Iso(M) is, the simpler M is. Many manifolds have isometry
group large enough so that Lie theory can be applied. In non transitive
cases, Iso(M) is a geometric invariant of M ranking in importance with
its curvature and geodesics. This is one of the reasons that non tran-
sitive actions are of so much interest to mathematicians. A (pseudo)
Riemannian manifold M has cohomogeneity one if some closed Lie sub-
group G ⊂ Iso(M) acts on M with a codimension one orbit. So, the
isometry group of M , Iso(M), is quite large. This fact enables one
to study such manifolds quite successfully, and this is why there are
so many interesting papers on this subject (see [1], [2], [3], [5], [10],
[11], [13] for example). Here, continuing of our study of cohomogene-
ity one Lorentzian manifolds, we study H3

1 where a closed Lie subgroup
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G ⊂ Iso(H3
1 ) can act on H3

1 with an orbit of dimension 2. We character-
ize the orbits up to isometry, determine the possible acting groups up to
conjugacy and give the orbit space(s). Our main results are Theorems
3.1−3.4.

2. Preliminaries

We begin with the definition of proper action and recall some of its
properties from [6].

Definition 2.1. ([6], p.53). An action of the group G on the manifold M
is said to be proper if the mapping φ : G×M → M×M , (g, x) 7→ (g.x, x)
is proper.

The orbit space M/G of a proper action of G on M is Hausdorff,
the orbits are closed submanifolds in M , and the isotropy subgroups are
compact. Throughout the paper, we assume that the action is effective
and proper.

A result by Mostert (see [11]), for the compact case, and Berard
Bergery (see [4]), for the general case, says that the orbit space M/G,
equipped with the quotient topology, is homeomorphic to R, S1, [0,+∞)
or [0, 1].
Consider the projection map M → M/G to the orbit space. Given a
point x ∈ M , we say that the orbit G(x) is principal (resp. singular)
if the corresponding image in the orbit space M/G is an internal (resp.
boundary) point. A point x whose orbit is principal (resp. singular) will
be called regular (resp. singular). All principal orbits are diffeomor-
phic to each other, and each singular orbit is of dimension less than or
equal to n − 1, where n = dimM . A singular orbit of dimension n − 1
is called an exceptional orbit. Note that no exceptional orbit is simply
connected, and if M is simply connected no exceptional orbit may exist.

Definition 2.2. Let M be a Lorentzian manifold and G be a closed and
connected Lie subgroup of Iso(M) which acts properly and isometrically
on M . The orbit G(x), for x ∈ M , is called degenerate if the induced
metric on G(x) is degenerate.

Notation: Throughout the paper, R4
2 denotes the 4-dimensional real

vector space R4 with the scalar product of signature (2, 2) given by

〈X, Y 〉 = −1
2
(x1y4 − x2y3 − x3y2 + x4y1),
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and
H3

1 = {X ∈ R4
2|〈X, X〉 = −1}

is the anti de Sitter space of dimension 3. The notation G1
∼= G2

means that G1 is isomorphic to G2. We use Aff◦(R) for the connected
component of the Lie group of affine transformations of the real line
(this group is simply connected with trivial center).
Let π : R2

1 −→ R2
1/Z2 be the pseudo Riemannian covering (map) space

of the Lorentzian Torus T 2
1 (see [12], p.191), where R2

1 is the Minkowski
space with the metric generated by the form ds2 = −dx2

1 + dx2
2. Then,

T 2
1 is a compact flat 2-dimensional Lorentzian space.
We need the following lemma to prove our main results.

Lemma 2.3. ([9]). Let G be a Lie group which acts on a manifold M .
Let H be a closed Lie subgroup of G such that G/H is compact. Then,
G acts properly if and only if H does.

3. Main results

We now state our results.

Theorem 3.1. If H3
1 is of cohomogeneity one under the proper action

of a connected, closed Lie subgroup G ⊂ Iso(H3
1 ), then there is no space-

like orbit.

Theorem 3.2. Let H3
1 be as in Theorem 3.1. If there is a degenerate

orbit, then we have:
(1) There is no singular orbit and each principal orbit is diffeomorphic
to R2.
(2) The orbit space H3

1/G is homeomorphic to S1.
(3) The action is free, and the group G is isomorphic to either the Lie
group R2 or Aff◦(R). Furthermore, if all orbits are degenerate, then G
is isomorphic to Aff◦(R).

Theorem 3.3. Let H3
1 be as in Theorem 3.1. Then, the following as-

sertions are equivalent:
(1) There is neither a degenerate nor a singular orbit.
(2) The orbit space H3

1/G is homeomorphic to R.
(3) G is isomorphic to R× SO(2).
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(4) Each principal orbit is isometric to R × B, where B is anti-
isometric to S1.

Theorem 3.4. Let H3
1 be as in Theorem 3.1. Then, the following state-

ments are equivalent:
1) There is a singular orbit B anti-isometric to S1.
2) The orbit space H3

1/G is homeomorphic to [0,+∞).
3) G is conjugate to SO(2)× SO(2).
4) Each principal orbit is isometric to a flat Lorentzian torus.

Proof. We first determine the acting groups up to conjugacy. Then, we
find the orbits up to isometry. Finally, we characterize the orbit space
H3

1/G. As the result, we get the proof of Theorems 3.1 to 3.4.
Let M(2, R) be the 2 × 2 matrices with real entries equiped with the
metric defined by

〈X|X〉 = −det(X) , X ∈ M(2, R),

using polarization. Consider the isometry

(R4
2, 〈, 〉) −→ (M(2, R), 〈 | 〉),

defined by

(a, b, c, d) 7→
[

a b
c d

]
,

which implies that (H3
1 , 〈, 〉) is isometric to (M = SL(2, R), 〈 | 〉). Con-

sider the isometric action of SL(2, R)× SL(2, R) on M defined by:

((g, g′), h)) 7→ ghg′
−1

.

Then, there exists the homomorphism,

θ : SL(2, R)× SL(2, R) −→ Iso(M),

with
θ(g, g′)(h) = ghg′−1, ∀h ∈ M

and
ker(θ) = {(I, I), (−I,−I)},

where I denotes the identity matrix. Thus, we have (see [14]):

Iso◦(H3
1 ) = SO◦(2, 2) ∼=

SL(2, R)× SL(2, R)
Z2

= Iso◦(M).
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Therefore, we may assume that (M, 〈 | 〉) is of cohomogeneity one under
the proper action of a connected and closed Lie subgroup,

G ⊆ SL(2, R)× SL(2, R).

It is known that each connected one dimensional Lie subgroup of SL(2, R)
is conjugate to one of the groups (see [8], p.436),

A =
{[

et 0
0 e−t

]
| t ∈ R

}
,

N =
{[

1 t
0 1

]
| t ∈ R

}
,

K =
{[

cos t − sin t
sin t cos t

]
| t ∈ R

}
,

and each one of them is a one parameter subgroup defined by,

X◦ =
[

1 0
0 −1

]
, Y◦ =

[
0 1
0 0

]
, Z◦ =

[
0 −1
1 0

]
,

respectively. ({X◦, Y◦, Z◦} is a basis for sl(2, R) and we fix this basis
throughout the discussion.)
Each two dimensional connected closed Lie subgroup of SL(2, R) is con-
jugate to {[

et s
0 e−t

]
| t, s ∈ R

}
,

which is isomorphic to Aff◦(R).
Let M be of cohomogeneity one under the proper action of a connected
and closed Lie subgroup G ⊂ SL(2, R) × SL(2, R) and let pi : G →
SL(2, R), i = 1, 2, be projections on the first and the second factor. We
continue the proof by considering the following cases.

Case 1. dim(p1(G)) = dim(p2(G)) = 1.

Subcase 1.1. p1(G) and p2(G) are noncompact.
Since dim(p1(G)) = dim(p2(G)) = 1, then,

G = {(gt = exp(tV ), hs = exp(sW )) | s, t ∈ R},

where V,W ∈ sl(2, R). If V = W , then the isotropy subgroup GI is
not compact, and so the action is not proper. We show that if V,W are



226 Ahmadi and Kashani

conjugate in SL(2, R), then the action is not proper either. In fact, if
V = pWp−1 for some p ∈ M , then,

exp(tV ) = p exp(tW )p−1 =⇒ gt = phtp−1,

for each t ∈ R. Hence, the isotropy subgroup at p is:

Gp = {(gt, hs) ∈ G | (gt, hs).p = p} = {(gt, ht) ∈ G | gt = phtp−1},
which is a noncompact subgroup of G, and so the action is not proper.
Hence, we may assume:

V = X◦ =
[

1 0
0 −1

]
, W = Y◦ =

[
0 1
0 0

]
.

Fix an arbitrary p =
[

x y
z w

]
∈ M,

(gt, hs).p = gtph−s = exp (tX◦)p exp (−sY◦)
For arbitrary fixed α ∈ R, let s = αt and

Ψt(p) = (gt, hαt).p .

then

−det(
d

dt
Ψt(p)|t=0) = −det(X◦p− αpY◦) = 1 + 2αxz

Hence, if xz 6= 0 then the polynomial 1+2αxz can be positive, zero and
negative for various values of α, which shows that the orbit G(p) is a
Lorentzian orbit. If xz = 0, then,

−det(X◦p− αpY◦) = 1,

for each α ∈ R. On the other hand, for

Φs(p) = (I, hs).p = p exp(−sY◦)

we have,

−det(
d

dt
Φs(p)|s=0) = −det(pY◦) = 0,

which shows that the orbit G(p) is a degenerate principal orbit when
xz = 0.

One can see that Gp = {I}, for each p ∈ M , and so the action is free,
which implies that there is no singular orbit, and G is isomorphic to the
Lie group R2, and the orbit space M/G is diffeomorphic to R or S1. If
M/G is diffeomorphic to R, then M (so H3

1 ) must be diffeomorphic to
R×G(p) = R×R2, which is obviously not true, since H3

1 is diffeomorphic
to S1 ×R2 by Lemma 4.25 of [12]. Hence, M/G is diffeomorphic to S1.
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Subcase 1.2 dim(p1(G)) = dim(p2(G)) = 1 and pi(G) is compact
for some 1 ≤ i ≤ 2. Hence, by the cohomogeneity one assumption, G is
conjugate to one of the following groups:

G1 = {(exp(tX◦), exp(sZ◦)| t, s ∈ R},
G2 = {(exp(tY◦), exp(sZ◦)| t, s ∈ R},
G3 = {(exp(tZ◦), exp(sZ◦)| t, s ∈ R}.

So, the action is proper by Lemma 2.3.

If G = G1
∼= R× SO(2), then for fix p =

[
x y
z w

]
∈ M let,

Ψ(t) = exp(tX◦)p exp(αtZ◦),

where α is an arbitrary fixed real number. Then,

−det(
d

dt
Ψt(p)|t=0) = −det(X◦p− αpZ◦) = −(α2 + 2(xz + yw)α− 1).

Since the polynomial u2 + 2(xz + yw)u − 1 = 0 has two roots, then
−det(X◦p − αpZ◦) can be negative, zero or positive, which shows that
all orbits are Lorentzian. So for each p ∈ M , Gp = {I}, there is no
singular orbit, and hence the orbit space M/G is homeomorphic to R or
S1. We claim that the orbit space M/G is homeomorphic to R. If M/G
is homeomorphic to S1, then the projection π : M → S1 is a fibration
with fiber G/K, where K is the isotropy subgroup of a regular point (see
[3]). By Theorem 4.41 in [7, p.379] we get the following exact sequence,

0 → π1(G/K) → π1(M) → π1(S1) → 0,

that is, the short exact sequence,

0 → Z → Z → Z → 0,

which obviously can not occur. Thus M/G is homeomorphic to R.
For G = G2, the discussion is similar to that of the case G = G1 .

If G = G3
∼= SO(2)× SO(2), then,

GI = {exp(tZ◦), exp(tZ◦)| t ∈ R} ∼= SO(2),
where I is the identity matrix. So, G(I) is a singular orbit diffeomorphic

to S1. For fix p =
[

x y
z w

]
∈ M , let
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Φ(t) = exp(tZ◦)p exp(αtZ◦),

where α is an arbitrary fixed real number. Then,

−det(
d

dt
Φt(p)|t=0) = −det(Z◦p−αpZ◦) = −(α2+(x2+y2+z2+w2)α+1).

Since p ∈ SL(2, R), then x2 + y2 + z2 +w2 ≥ 2. If x2 + y2 + z2 +w2 = 2,
then G(p) is a time-like singular orbit anti isometric to S1. By Theo-
rem 3.1 in [5], the singular orbit G(p) is unique, and so all such points p,
where x2+y2+z2+w2 = 2, belong to the orbit G(I). If x2+y2+z2+w2 >
2, then,

−det( d
dtΦt(p)|t=0)

can be positive, zero or negative for different values of α, and so G(p)
is a Lorentzian principal orbit. The Lie group G is compact, and so
G(p) is compact for each p ∈ M . We give the results related to Case 1
in Table 1.

G = {(exp(tV ), exp(sW ))|t, s ∈ R}
Number of

singular orbits

Causal character of
principal orbit G(p)

p =
[

x y
z w

]
∈ M

M/G

V = X◦ =
[

1 0
0 −1

]
W = Z◦ =

[
0 −1
1 0

] 0 Lorentzian R

V = X◦ =
[

1 0
0 −1

]
W = Y◦ =

[
0 1
0 0

] 0 xz = 0 → degenerate
xz 6= 0 → Lorentzian

S1

V = Z◦ =
[

0 −1
1 0

]
W = Y◦ =

[
0 1
0 0

] 0 Lorentzian R

V = W = Z◦ =
[

0 −1
1 0

]
1 (time− like) Lorentzian (torus) [0,+∞)

Table 1. p1(G) and p2(G) are one dimensional
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Case 2. dim(pi(G)) ≥ 2, for some 1 ≤ i ≤ 2.
Without loss of generality, we may assume that dim(p1(G)) = 2, and so
p1(G) = Aff◦(R) up to conjugacy.

Subcase 2.1 p2(G) is noncompact. Then, p2(G) is isomorphic to
either SL(2, R) or Aff◦(R) or R. The action is of cohomogeneity one,
and so the case SL(2, R) can not occur. Hence, G is simply connected.
Thus, by the properness of the action each isotropy subgroup is trivial;
i.e., the action is free, and so dim(G) = 2. Hence, the kernel of the map
p1 : G −→ Aff◦(R) is discrete, and hence p1 is a covering map. Since
Aff◦(R) is simply connected, then the map p1 is injective. Therefore,
G is the group consists of the elements of the form,

(g, ρ(g)) ∈ SL(2, R)× SL(2, R),

where g ∈ Aff◦(R) and ρ = p2op
−1
1 . There are two cases.

Subsubcase 2.1.1 p2(G) is isomorphic to R. Since p2(G) is abelian,
then the commutator subgroup [Aff◦(R), Aff◦(R)] must be contained in
the kernel of ρ. On the other hand, [Aff◦(R), Aff◦(R)] is the one dimen-
sional subgroup spanned by unipotent elements exp(Y◦), which shows
that there is only one homomorphism ρ : Aff◦(R) −→ R up to conjugacy
in Aff◦(R). If ρ(Aff◦(R)) is conjugate to {exp(tX◦) | t ∈ R}, then the
action is not proper. So, ρ(Aff◦(R)) is conjugate to {exp(tY◦) | t ∈ R}
in SL(2, R). Hence, up to conjugacy,

ρ

([
et s
0 e−t

])
=

[
1 at
0 1

]
,

where a is a fixed nonzero real number. Thus,

G =
{([

et s
0 e−t

]
,

[
1 at
0 1

])
| t, s ∈ R

}
.

Hence, {(X◦, aY◦), (Y◦, 0)} is a basis for the Lie algebra g.

Now, we determine the causal character of the orbits. Fix p =
[

x y
z w

]
∈

M . Then, for (Y◦, 0) ∈ g let
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Φt(p) = exp(tY◦)p.
We then have,
−det( d

dtΦt(p)|t=0) = 0.

So, the orbit G(p) can not be space-like. Now, for a fixed β ∈ R let
(Vt,Wt) = t(X◦, aY◦) + βt(Y◦, 0) and

Ψt(p) = exp(Vt)p exp(Wt)−1.
Then
−det( d

dtΨt(p)|t=0) = 1 + 2axz + aβz2,

which shows that if z = 0 then G(p) is a degenerate principal orbit and
if z 6= 0 then G(p) is a Lorentzian principal orbit.

Subsubcase 2.1.2 p2(G) is isomorphic to Aff◦(R). Since auto-
morphisms of Aff◦(R) are conjugacies, then for each automorphism
ρ ∈ Aut(Aff◦(R)), there is an h ∈ Aff◦(R) such that

ρ : Aff◦(R) −→ Aff◦(R)
g 7−→ h−1gh.

Hence, G = {(g, h−1gh) | g ∈ Aff◦(R)}, which shows that Gh =
Aff◦(R); i.e., the action is not proper. Thus, subsubcase 2.1.2 can not
occur.

Subcase 2.2 p1(G) = Aff◦(R) and p2(G) is compact. We study this
subcase by considering the following subsubcases.

Subsubcase 2.2.1 p1(G) = Aff◦(R) and p2(G) is trivial. This case
reduces to the left action of

G =
{[

et s
0 e−t

]
| t, s ∈ R

}
= Aff◦(R)

on M = SL(2, R), which is obviously proper and free. So, there is no
singular orbit, and the orbit space M/G is diffeomorphic to S1. Let{

X◦ =
[

1 0
0 −1

]
, Y◦ =

[
0 1
0 0

]}
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be a basis for the Lie algebra g. Then, for each p ∈ M define,

Ψt(p) = exp(tX◦)p,

and

Φt(p) = exp(tY◦)p.

Hence,

d
dtΨt(p)dt|t=0 = X◦p =⇒ −det( d

dtΨt(p)|t=0) = 1,

d
dtΦt(p)|t=0 = Y◦p =⇒ −det( d

dtΦt(p)|t=0) = 0,

which shows that the orbit G(p) is a degenerate orbit.

Subsubcase 2.2.2 p1(G) = Aff◦(R) and p2(G) is conjugate to
SO(2).
Without loss of generality, we may assume:

p1(g) =
{[

t s
0 −t

]
| s, t ∈ R

}
,

p2(g) =
{[

0 −u
u 0

]
| u ∈ R

}
,

where p1(g) and p2(g) are the Lie algebras of p1(G) and p2(G), respec-
tively. If u is independend of s and t, then there will be an orbit of dimen-
sion three which is in contrast with the cohomogeneity one assumption.
So, u = u(t, s) is a linear function u : R2 → R; i.e., u = at+ bs, for some
a, b ∈ R. But the relation [g, g] ⊆ g, implies b = 0 , and without loss of
generality, we can assume that a = 1. Thus,

g =
{([

t s
0 −t

]
,

[
0 −t
t 0

])
| s, t ∈ R

}
,

which implies:

G =
{([

et v
0 e−t

]
,

[
cos t − sin t
sin t cos t

])
| v, t ∈ R

}
.

The group G is isomorphic to Aff◦(R), and so the action is free (the
maximal compact subgroup of G is trivial) and there is no singular
orbit. Hence, the orbit space M/G is diffeomorphic to S1, and by a
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similar discussion to that of the subcases 1.1 and 2.1, one gets that each
orbit is Lorentzian.
Since the tables 1 and 2 illustrate all connected closed Lie subgroups
(up to conjugacy), which can act properly and of cohomogeneity one on
M , one gets the proof of Theorems 3.1−3.4 . �

G
Number of
singular
orbits

Causal character of
the principal orbit G(p)

p =
[

x y
z w

] M/G

Aff◦(R) = (
[

et s
0 e−t

]
, {I}) 0 degenerate S1

(
[

et s
0 e−t

]
,

[
cos t − sin t
sin t cos t

]
) 0 Lorentzian S1

(
[

et s
0 e−t

]
,

[
1 at
0 1

]
) 0 z 6= 0 → Lorentzian

z = 0 → degenerate
S1

Table 2. p1(G) is conjugate to Aff◦(R)
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