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Abstract. Suppose f is a map from a non-empty finite set X to a finite

group G. Define the map ζfG : G −→ N ∪ {0} by g 7→ |f−1(g)|. In

this article, we show that for a suitable choice of f , the map ζfG is a
character. We use our results to show that the solution function for

the word equation w(t1, t2, . . . , tn) = g (g ∈ G) is a character, where

w(t1, t2, . . . , tn) denotes the product of t1, t2, . . . , tn, t
−1
1 , t−1

2 , . . . , t−1
n in

a randomly chosen order.
Keywords: Finite groups, word equations, group characters.
MSC(2010): Primary: 20C15.

1. Introduction

Let G be a finite group and let X be a non-empty finite set. Suppose

that f : X −→ G is a map. Define the map ζfG : G −→ N ∪ {0} given by

g 7→ |f−1(g)|. We call the map ζfG, the solution function for the equation

f(x) = g, with g ∈ G. In general, ζfG need not be a characters of G. Suppose
w = w(t1, t2, . . . , tn) is a word in n symbols t1, t2, . . . , tn. Then w(t1, t2, . . . , tn)
defines the map w : Gn −→ G given by (g1, g2, . . . , gn) 7→ w(g1, g2, . . . , gn).
For any word w, the map ζwG is a class function on G but not necessarily a
character.

In [1], it is shown that if w(x) = xn, then ζwG is a generalized character of
G, i.e., Z-linear combination of irreducible character of G. In [6], Tambour
discussed the solution function for two types of words

(1) t1t2 · · · tnt−1
1 t−1

2 · · · t−1
n ,

(2)
n∏
i=1

[ti, si],
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and used his results to write a new proof of Itô’s theorem: the degree of
any irreducible character of G divides the index of any abelian normal sub-
group of G. A word w(t1, t2, . . . , tn) obtained from the word u(t1, t2, . . . , tn) =
t1t2 · · · tnt−1

1 t−1
2 · · · t−1

n , by shuffling t±1
1 , t±1

2 , . . . , t±1
n , is referred to as an ad-

missible word (cf. [2]). It is shown in [2] that if w is an admissible word, then
ζwG is a character of G. This is a generalization of a result of Frobenious ( [3]).

In [5], Strunkov proved the following:

Theorem 1.1. [5, Theorem 2] Let X1, X2 be two finite sets. Suppose that fi :

Xi −→ G (i = 1, 2) are maps. If ζf1G and ζf2G are characters (resp. generalized

characters), then so is ζfG where f : X1 × X2 −→ G is given by f(x1, x2) =
f1(x1)f2(x2).

In Section 2, we generalize this result in various ways. Our main results are:

Theorem 1.2. Let X1, X2 be two finite sets. Suppose H is a normal subgroup

of G and f1 : X1 → H, f2 : X2 → G are maps. Assume that ζf2G is a

constant map and ζf1H is constant on G-conjugacy classes of H. Define the

map ϕ : X1 × X2 −→ G by ϕ(x, y) = f1(x)
−1f2(y)

−1f1(x)f2(y). If ζf1H is a

generalized character (respectively, character), then so is ζϕG.

Theorem 1.3. For i = 1, . . . , n, let fi : Xi → G be a map, where Xi is

a finite set. Define for n ≥ 2, un :
n∏
i=1

Xi → G by un(x1, x2, . . . , xn) =

n−1∏
i=1

[fi(xi), fi+1(xi+1)] and u1 : X1 → G by u1(x) = 1. If ζf1G is a charac-

ter and ζfiG are constant maps for each i = 2, . . . , n, then ζun

G is a character.

In particular, if Xi = G and fi(x) = x for i = 1, 2, . . . , n, then un reduces

to an admissible word, namely, ωn(x1, x2, . . . , xn) =
n−1∏
i=1

[xi, xi+1] and ζ
wn

G is a

character of G. In Section 3, the main result in [2] is deduced from our result
by reducing the problem on admissible words to a problem essentially of the
words ωn for n ∈ N. Indeed, we extend the result of Das and Nath ( [2]) and
prove the following theorem.

Theorem 1.4. Suppose w is a word in t1, t2, . . . ,
tn such that each of t±1

1 , t±1
2 , . . . , t±1

n occurs in w at most once. Then ζwG is a
character of G.

Notation. Throughout the article, G denotes a finite group and Irr(G), the
set of all irreducible characters of G. If a, b ∈ G, then ba = b−1ab, [a, b] =
a−1b−1ab. For class functions χ and ψ on G, the expression ⟨χ, ψ⟩G denotes
the standard inner product on the space of class functions on G, that is,

⟨χ, ψ⟩G =
1

|G|
∑
g∈G

χ(g)ψ(g).
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For simplicity we prefer to denote the inner product simply by ⟨χ, ψ⟩ if there
is no ambiguity. Furthermore, if H is a subgroup of G and χ a character of G,
χ↓GH denotes the restriction of χ to H.

2. Equations in finite groups

We start by recalling the well know result, which are used frequently.

Lemma 2.1. [4, Lemma 2.25 ] Let ρ be an irreducible C-representation of G
of degree n. Suppose A is an n × n matrix over C which commutes with ρ(g)
for all g ∈ G. Then A = λIn for some λ ∈ C.

Theorem 2.2. [4, Theorem 2.13 ] The following holds for every h ∈ G.

1

|G|
∑
g∈G

χi(gh)χj(g
−1) = δij

χi(h)

χi(1)
,

where χi, χj ∈ Irr(G).

Proposition 2.3. Let H be a subgroup of G and let X1, X2 be two finite
sets. Suppose f1 : X1 → H and f2 : X2 → G are maps. Define the map

ψ : X1 × X2 −→ G by ψ(x, y) = f2(y)
−1f1(x)f2(y) and assume that ζf2G is a

constant map. If ζf1H is a generalized character (resp. character), then so is

ζψG. In particular, if H = G, then ζψG = |X2| ζf1G .

Proof. Since H is a subgroup of G, for any χ ∈ Irr(G), we have

χ↓GH =
∑

ϕi∈Irr(H)

niϕi,

for some ni ∈ N ∪ {0}. Suppose χ is afforded by the irreducible representation
ρ of G. Consider an element

z =
∑

x∈X1,y∈X2

f2(y)
−1f1(x)f2(y).(2.1)

then, ρ(z) =
∑

x∈X1,y∈X2

ρ(f2(y)
−1f1(x)f2(y)). Now take the trace on both sides,

χ(z) = |X2|
∑
x∈X1

χ↓GH(f1(x))

= |H||X2|
∑

ϕi∈Irr(H)

ni⟨ζf1H , ϕi⟩.(2.2)

By definition of ζψG, we have

χ(z) = |G| ⟨ζψG, χ⟩.(2.3)
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Therefore, from (2.2) and (2.3), we get

⟨ζψG, χ⟩ =
|H||X2|
|G|

∑
ϕi∈Irr(H)

ni⟨ζf1H , ϕi⟩.

Hence, the result follows from the hypothesis.
Let H = G. Then (2.2) reduces to

χ(z) = |X2||G| ⟨ζf1G , χ⟩.(2.4)

So, by (2.3) and (2.4), ζψG = |X2| ζf1G . □
With the help of the above proposition, we have the following corollary.

Corollary 2.4. Let H be a subgroup of a group G. Suppose w : H ×G −→ G
is defined by w(x1, x2) = x−1

2 x1x2. Then ζwG is a character of G.

Proof of Theorem 1.2. Let χ1, χ2, ..., χr be the irreducible characters ofG. Sup-
pose χi is afforded by the irreducible representation ρi of G. Consider an

element z =
∑
x∈X1
y∈X2

f1(x)
−1f2(y)

−1f1(x)f2(y).

Then

ρi(z) =
∑
x∈X1

ρi(f1(x)
−1)Ai(x)(2.5)

where,

(2.6) Ai(x) =
∑
y∈X2

ρi(f2(y)
−1f1(x)f2(y)).

As ζf2G is a constant function, Ai(x) commutes with ρi(g), ∀ g ∈ G. By Lemma
2.1,

(2.7) Ai(x) = λxI

for some λx ∈ C. Now take the trace on the both sides of (2.7) and use (2.6)
to obtain

λx =
|X2|
χi(1)

χi(f1(x)).(2.8)

Again take the trace on both side of (2.5) and use (2.7),(2.8) to get

χi(z) =
|X2|
χi(1)

∑
h∈H

ζf1H (h)χi(h)χi(h
−1)

=
|X2|
χi(1)

|H|⟨ζf1H χi, χi⟩H .(2.9)

By definition of ζϕG, we have

χi(z) = |G|⟨ζϕG, χi⟩.(2.10)
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Therefore, by (2.9) and (2.10), we get

(2.11) ζϕG =
|X2|
|G|

r∑
i=1

|H|
χi(1)

⟨ζf1H χi, χi⟩H χi.

As ζf2G is a constant map, |G| divides |X2|. Hence, to make the assertion it is

enough to prove that |H|
χi(1)

⟨ζf1H χi, χi⟩H is an integer. Since H is normal in G,

H =
∪

1≤j≤k

ClG(xj) for some xj ∈ H. For any irreducible character χi of G,

we have

|H| ⟨ζf1H χi, χi⟩H =
∑
h∈H

ζf1H (h)χi(h)χi(h
−1)

=
∑

1≤j≤k

|ClG(xj)| ζf1H (xj) χi(xj) χi(xj)

Suppose Kj =
∑

x∈ClG(xj)

x, for 1 ≤ j ≤ k. Then by [4, Theorem 3.7], wχi(Kj) =

χi(xj)|ClG(xj)|
χi(1)

is an algebraic integer for any irreducible character. Hence, we

have

|H| ⟨ζf1H χi, χi⟩H =
∑

1≤j≤k

ζf1H (xj)χi(1)wχi(Kj)χi(x
−1
j ).

Therefore,

| H |
χi(1)

⟨ζf1H χi, χi⟩H =
∑

1≤j≤k

ζf1H (xj)wχi(Kj)χi(x
−1
j ).

The right-hand side of the latter equality is an algebraic integer. Therefore the
result follows by the hypothesis. □

In Theorem 1.2, if we take H = G, then we get the following result.

Corollary 2.5. Let X1, X2 be two finite sets. Suppose fi : Xi → G is a map

for i = 1, 2. Set ϕ(x, y) := f1(x)
−1f2(y)

−1f1(x)f2(y). If ζf2G is a constant map

and ζf1G is a generalized character (resp. character), then ζϕG is a generalized
character (resp. character).

Proof. From Theorem 1.2, we have

ζϕG =

r∑
i=1

| X2 |
χi(1)

⟨ζf1G χi, χi⟩χi.

As ζf2G is a constant map, χi(1) divides |X2|. Hence, the assertion follows. □

Corollary 2.6. Let H be a normal subgroup of a group G. Suppose w : H ×
G −→ G is defined by w(x, y) = x−1y−1xy. Then ζwG is a character of G.
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Proof. In view of Theorem 1.2, ζwG is a character. □

In Theorem 1.3, we discuss the solution function ζfG, where f is a product
of commutators of functions.

Proof of Theorem 1.3. Suppose for n ≥ 1, the map vn :
n∏
i=1

Xi −→ G is defined

by

(2.12) vn := fn(xn)un(x1, x2, . . . , xn)fn(xn)
−1.

By induction, we show that for any finite group G, ζun

G and ζvnG are characters
of G. For n = 2, in view of Corollary 2.5, ζu2

G and ζv2G are characters. Let n ≥ 3.
Now we assume that ζui

G and ζviG are characters ofG for 3 ≤ i ≤ (n−1). Suppose

ρ1, ρ2, . . . , ρr are irreducible representations of G. Since ζfiG is a constant map

for i ≥ 2, ζfiG (g) = ci for some ci ∈ N. Now consider an element

ω =
∑
xi∈Xi
i=1,...,n

un(x1, x2, . . . , xn).

Then,

(2.13) ρi(ω) =
∑
xi∈Xi

i=1,...,n−1

ρi(Bn−1) ·A(xn−1),

where

(2.14) A(xn−1) =
∑

xn∈Xn

ρi(fn(xn)
−1fn−1(xn−1)fn(xn))

and Bn−1 = un−1(x1, x2, . . . , xn−1)fn−1(xn−1)
−1. Since ζfn is a constant func-

tion, A(xn−1) commutes with ρi(g) ∀g ∈ G. Therefore, by Lemma 2.1,

(2.15) A(xn−1) = λ(xn−1)I

for a scalar λ(xn−1) ∈ C. Take the trace on both sides of (2.14) and use (2.15)
to get

(2.16) λ(xn−1) =
|Xn|
χi(1)

· χi(fn−1(xn−1)).

Now take the trace on both sides of (2.13) and use (2.15) and (2.16) to get

χi(ω) =
|Xn|
χi(1)

∑
xi∈Xi

i=1,...,n−1

χi(Bn−1) · χi(fn−1(xn−1)).
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Set Cn−1 = fn−1(xn−1)
−1vn−2(x1, x2, . . . , xn−2). It is easy to see that Bn−1

and Cn−1 are conjugates, for any f1(x1), f2(x2), . . . , fn−1(xn−1) ∈ G. There-
fore, we have

χi(ω) =
|Xn|
χi(1)

∑
xi∈Xi

i=1,...,n−1

χi(Cn−1) · χi(fn−1(xn−1))

=
|Xn|
χi(1)

∑
h∈G

ζ
vn−2

G (h)
∑
g∈G

ζ
fn−1

G (g−1)χi(g
−1h)χi(g) (set vn−2 = h)

=
|Xn||G|cn−1

χi(1)2

∑
h∈G

ζ
vn−2

G (h) · χi(h) (use Theorem 2.2)

=
|Xn||G|2cn−1

χi(1)2
⟨
ζ
vn−2

G , χ̄i

⟩
(since ζ

vn−2

G is a character of G)(2.17)

Now use the definition of ζun

G to write

(2.18) χi(ω) = |G|
⟨
ζun

G , χ̄i
⟩
.

From (2.17) and (2.18), we have

ζun

G =

r∑
i=1

|Xn||G|cn−1

χi(1)2
⟨
ζ
vn−2

G , χ̄i
⟩
χi

so that ζun

G is a character of G. Next to show that ζvnG is a character. In Z[G],
set

z :=
∑

xi∈Xi,i=1,...,n

fn(xn)un(x1, x2, . . . , xn)fn(xn)
−1.

Then,

χi(z) =
∑

xi∈Xi,i=1,...,n

χi(un(x1, x2, . . . , xn))

=
∑
h∈G

ζun

G (h)χi(h)

= |G|
⟨
ζun

G , χ̄i
⟩
.(2.19)

On the other hand, use the definition of ζvnG to write

(2.20) χi(z) = |G|
⟨
ζvnG , χ̄i

⟩
.

Finally, by (2.19) and (2.20), ζvnG = ζun

G . Hence ζvnG is a character. This
completes the proof. □

In particular, if Xi = G and fi(x) = x for i = 1, 2, . . . , n, then we have the
following corollary.

Corollary 2.7. Suppose w(x1, . . . , xn) :=
n−1∏
i=1

[xi, xi+1], where x1, . . . , xn are

n distinct letters. Then ζwG is a character of G.
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Corollary 2.8. Let w :
2n∏
i=1

G −→ G be the map defined by

w(x1, . . . , xn, y1, . . . , yn) := [ [. . . [ [y1x1,
y2 x2],

y3 x3] , . . . ]
yn xn] .

Then ζwG is a character of G.

Observe that if (|G|, k) = 1, then the map g 7→ gk is a bijection on G. Hence,
in view of Corollary 2.7, we have the following.

Corollary 2.9. Let w(x1, . . . , xn) := [xk11 , x
k2
2 ][xk33 , x

k4
4 ] . . . [x

kn−1

n−1 , x
kn
n ], where

ki ∈ N with (|G|, ki) = 1 for each i = 1, . . . , n. Then ζwG is a character of G.

3. Application

In this section we prove Theorem 1.4. In the Theorem 1.4, we extend the
main result of Das and Nath ( [2]) a little bit. We begin to prove the following
lemmas.

Lemma 3.1. Let w1 and w2 be words in t1, t2, . . . , tn. If w := w1 tn+1 w2, then
ζwG is a constant function on G.

Proof. Observe that (a1, a2, . . . , an, an+1) ∈ Gn+1 is a solution of w = g if and
only if

an+1 = w1(a1, a2, . . . , an)
−1 g w2(a1, a2, . . . , an)

−1.

Therefore, ζw(g) = |G|n. □

Lemma 3.2. Suppose w1 is a word in t1, . . . , tk and w2, in tk+1, . . . , tn such
that both ζw1

G and ζw2

G are characters of G. If w = w1 t
−1
k w2 tk, then ζwG is a

character of G.

Proof. Observe that w(x1, . . . , xn) = g if and only if w2(xk+1, . . . , xn) =
xkw1(x1, . . . , xk)

−1gx−1
k . Therefore,

ζwG(g) =
∑

x1,...,xk∈G

ζw2

G (xkw1(x1, . . . , xk)
−1gx−1

k )

=
∑

x1,...,xk∈G
ζw2

G (w1(x1, . . . , xk)
−1g) (since ζw2

G is a character)

=
∑
h∈G

ζw2

G (hg)ζw1

G (h−1) (use the equation: w1 = h−1).

Since ζw1

G and ζw2

G are characters, write ζw1

G =
r∑
i=1

niχi, ζ
w2

G =
r∑
i=1

miχi, where

mi, ni are non-negative integers for 1 ≤ i ≤ r and χ1, χ2, . . . , χr are the distinct
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irreducible characters of G. Then,

ζwG(g) =
∑
h∈G

∑
1≤i,j≤r

minjχi(hg)χj(h
−1)

=
∑

1≤i,j≤r

minj
∑
h∈G

χi(hg)χj(h
−1)

=
∑

1≤i,j≤r

minj
|G|
χi(1)

δi,j χi(g) (use the Theorem 2.2)

=
∑

1≤i≤r

mini
|G|
χi(1)

χi(g).

Since the coefficients of χi are non-negative integers, ζ
w
G is a character of G. □

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 3.1, it suffices to show that ζwG is a character
of G if w is an admissible word. The proof is by induction on n. The case n = 1
is trivial. The case n = 2 is essentially the case w = ω2. Now assume that ζwG is
a character for any admissible word w in t1, t2, . . . , tk for k ≤ (n− 1). Suppose
w is a word in t1, t2, . . . , tn, without loss of generality, we may assume

w(t1, t2, . . . , tn) = t−1
1 w1t1w2

where w1, w2 are words in the letters t2, t3, . . . , tn. Observe that if w1(t2, t3, . . . ,
tn) is an admissible word in ti1 , ti2 , . . . , tik for some 1 ≤ k ≤ (n − 1), then
ti1 , ti2 , . . . , tik do not occur in w2(t2, t3, . . . , tn) and w2(t2, t3, . . . , tn) is an ad-
missible word in the rest of the letters. Therefore, in this case, use the induction
hypothesis and Theorem 1.1 to conclude that ζwG is a character of G. Thus,
we assume that w1(t2, t3, . . . , tn) and hence, w2(t2, t3, . . . , tn) is not admissible.
Again, without loss of generality, assume that t−1

2 occurs in w1(t2, t3, . . . , tn)
and t2 does not. Then,

w1(t2, t3, . . . , tn) = w3t
−1
2 w4,(3.1)

w2(t2, t3, . . . , tn) = w5t2w6,(3.2)

where w3, w4, w5, w6 are words in t3, . . . , tn such that each of t±1
3 , . . . , t±1

n occurs
at most once. Apply the automorphism σ to F ({t1, t2, . . . , tn}) given by

σ(ti) =

{
ti if i ∈ {1, 2, . . . , n} − {2},
w4(t3, t4, . . . , tn)t2w3(t3, t4, . . . , tn) if i = 2.

Then

σ(w)(t1, t2, . . . , tn) = t−1
1 t−1

2 t1w5w4t2w3w6.

Since ζwG = ζ
σ(w)
G , we may assume without loss of generality that

w(t1, t2, . . . , tn) = t−1
1 t−1

2 t1w7t2w8
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where w7, w8 are words in letters t3, . . . , tn. Observe that t3, . . . , tn and their
inverses occur at most once in w7 and w8, and that w7w8 is admissible. Thus
we have following three cases. Case 1: w7 = 1, case 2: w8 = 1 and case 3:
neither w7 nor w8 is the empty word. In case 3, if w7 admissible then so is w8

and therefore, the result follows from Theorem 1.1. Otherwise, we will split
w7 and w8, in the same way that we have split w1, w2 in (3.1) and (3.2) and
continue the process. Thus, we have the following three possibilities:

(a) w =
k−1∏
i=1

[ti, ti+1]w9(tk+1, tk+2, . . . , tn),

(b) w =
k−1∏
i=1

[ti, ti+1] t
−1
k w10(tk+1, tk+2, . . . , tn) tk,

(c) w =
n−1∏
i=1

[ti, ti+1],

where 3 ≤ k ≤ n, and w9, w10 are admissible words in tk+1, tk+2, . . . , tn. Use
Theorem 1.1 and the induction hypothesis for (a), Lemma 3.2, the induction
hypothesis and Corollary 2.7 for (b), and Corollary 2.7 for (c) to complete the
proof of the theorem. □
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