ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 41 (2015), No. 2, pp. 353-362

Title:

Linear Weingarten hypersurfaces in a unit sphere

Author(s):

X. Chao

LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE

X. CHAO

(Communicated by Jost-Hinrich Eschenburg)

ABSTRACT. In this paper, by modifying Cheng-Yau's technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, Math.~Ann.~305~(1996),~665-672].

Keywords: Linear Weingarten hypersurface, generalized maximum principle, rigidity theorem.

MSC(2010): Primary: 53C20; Secondary: 53C42.

1. Introduction

Let M be an n-dimensional hypersurfaces in the unit sphere $S^{n+1}(1)$. The investigation of curvature structures of compact hypersurfaces of $S^{n+1}(1)$ is important and interesting, with so much attention on it. Cheng and Yau [5] studied compact hypersurfaces with constant scalar curvature in the unit sphere $S^{n+1}(1)$. They proved that if M is an n-dimensional hypersurface with constant scalar curvature n(n-1)r, $r \geq 1$ and the sectional curvatures of M are nonnegative, then M is isometric to a totally umbilical hypersurface $S^n(c)$ or to the Riemannian product $S^k(c) \times S^{n-k}(\sqrt{1-c^2})$, $1 \leq k \leq n-1$, where $S^k(c)$ denote the sphere of radius c. Furthermore, by using of the same method which was used in [4] and the differential operator in [5], Li [6] prove that if M is an n-dimensional compact hypersurface with constant scalar curvature n(n-1)r, $r \geq 1$ and $S \leq (n-1)\frac{n(r-1)+2}{n-2} + \frac{n-2}{n(r-1)+2}$, then M is isometric to either totally umbilical hypersurface or the Riemannian product $S^1(\sqrt{1-c^2}) \times S^{n-1}(c)$ with $c^2 = \frac{n-2}{nr} \leq \frac{n-2}{n}$, where S is the squared norm of the second fundamental form of M. In the proof of these results, the fact that the differential operator \square defined by $\square f = \sum_{ij}^n (nH\delta_{ij} - h_{ij}) f_{ij}$ is self-adjoint and degenerate elliptic

Article electronically published on April 29, 2015. Received: 4 January 2013, Accepted: 18 February 2014. is indispensable. So the condition of $r\geq 1$ and the assumption of constant scalar curvature is essential. Q.M.Cheng [3] generalized the results to the case $r\geq \frac{n-2}{n-1}$ under a topological condition. More precisely, he proved that if M is an n-dimensional compact hypersurface with infinite fundamental group in $S^{n+1}(1)$, If $r\geq \frac{n-2}{n-1}$ and $S\leq (n-1)\frac{n(r-1)+2}{n-2}+\frac{n-2}{n(r-1)+2}$, then M is isometric to the Riemannian product $S^1(\sqrt{1-c^2})\times S^{n-1}(c)$, where n(n-1)r is the scalar curvature of M and $c^2=\frac{n-2}{nr}$.

On the other hand, Li [7] studied some hypersurfaces in the unit sphere with scalar curvature proportional to the mean curvature and proved the following theorem.

Theorem 1.1 ([7]). Let M be an n-dimensional compact hypersurface in the unit sphere $S^{n+1}(1)$. If

- (1) M has nonnegative sectional curvature,
- (2) the normalized scalar curvature r and the mean curvature H of M satisfy the following conditions:

$$r = aH, a^2 \ge \frac{4n}{n-1},$$

where a is a constant, then M is either totally umbilical, or $M = S^{n-k}(c) \times S^k(\sqrt{1-c^2}), 1 \le k \le n-1.$

Recently, Li, Suh and Wei [9] considered linear Weingarten hypersurfaces in an sphere and obtained the following rigidity theorems:

Theorem 1.2 ([9]). Let M be an n-dimensional compact hypersurface in the unit sphere $S^{n+1}(1)$. If

- (1) M has nonnegative sectional curvature,
- (2) the normalized scalar curvature r and the mean curvature H of M satisfy the following conditions:

$$r = aH + b, (n-1)a^2 - 4n + 4nb > 0,$$

then M is either totally umbilical, or $M = S^{n-k}(c) \times S^k(\sqrt{1-c^2}), 1 \le k \le n-1.$

In these theorems, M is compact and M has nonnegative sectional curvature. Without the assumption of nonnegative sectional curvature, Li, Suh and Wei [9] obtained the following result, as well.

Theorem 1.3 ([9]). Let M be an n-dimensional compact hypersurface in the unit sphere $S^{n+1}(1)$. If

- (1) $r = aH + b, (n-1)a^2 4n + 4nb \ge 0,$
- (2) $|B|^2 \le 2\sqrt{n-1}$,

then either $|B|^2 = 0$ and M is a totally umbilical hypersurface or $|B|^2 = 2\sqrt{n-1}$ and $M = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.

In this paper, we consider complete linear Weingarten hypersurface in $S^{n+1}(1)$ with no sectional curvature restriction. By modifying Cheng-Yau's technique for complete hypersurfaces in $S^{n+1}(1)$, we will prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related. More precisely, we prove the following theorem.

Theorem 1.4. Let M^n be a complete hypersurface of $S^{n+1}(1)$ with bounded mean curvature. If r = aH + b, $a \le 0$, $b \ge 1$, then M^n is either totally umbilical, or $M = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.

If we choose a = 0 and $b \ge 1$ in Theorem 1.4, we get

Corollary 1.5. Let M^n be a complete hypersurface of $S^{n+1}(1)$ with constant normalized scalar curvature r satisfying $r \geq 1$. If M^n has bounded mean curvature, then M^n is either totally umbilical, or $M = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.

Remark 1.6. Corollary 1.5 is a real improvement of the result in [6] because it has no compactness restriction on M and no restriction on $|B|^2$.

2. Preliminaries

Let M be an n-dimensional complete hypersurface in the (n+1)-dimensional unit sphere $S^{n+1}(1)$. For any $p \in M$, we choose a local orthonormal frame e_1, \dots, e_n, e_{n+1} on $S^{n+1}(1)$ around p such that e_1, \dots, e_n are tangent to M. Take the corresponding dual coframe $\omega_1, \dots, \omega_n, \omega_{n+1}$, We shall make use of the following standard convention on the range of indices:

$$1 \le A, B, C, D \cdots \le n+1, \quad 1 \le i, j, k, l \cdots \le n.$$

Then the structure equations of $S^{n+1}(1)$ are given by

(2.1)
$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,$$

(2.2)
$$d\omega_{AB} = \sum_{C} \omega_{AC} \wedge \omega_{CB} - \omega_{A} \wedge \omega_{B}.$$

Restricting those forms to M, we have $\omega_{n+1} = 0$ and

$$(2.3) 0 = d\omega_{n+1} = \sum_{i}^{n} \omega_{n+1i} \wedge \omega_{i}.$$

By Cartan's lemma, there exist functions h_{ij} such that

(2.4)
$$\omega_{n+1i} = \sum_{j=1}^{n} h_{ij}\omega_i, \quad h_{ij} = h_{ji}.$$

The structure equations of M are given by

(2.5)
$$d\omega_i = \sum_{j=1}^n \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,$$

(2.6)
$$d\omega_{ij} = \sum_{k=1}^{n} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l=1}^{n} R_{ijkl} \omega_k \wedge \omega_l.$$

The Gauss equations are

$$(2.7) R_{ijkl} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk} + h_{ik}h_{jl} - h_{il}h_{jk},$$

(2.8)
$$n(n-1)r = n(n-1) + n^2H^2 - |B|^2,$$

where R_{ijkl} denotes the components of the Riemannian curvature tensor of M, r is the normalized scalar curvature of M and $|B|^2 = \sum_{i,j} h_{ij}^2$ is the norm square of the second fundamental form of M.

By taking the exterior differentiation of (2.4), we obtain the Codazzi equations

$$(2.9) h_{ijk} = h_{ikj} = h_{jik},$$

where the covariant derivative of h_{ij} is defined by

(2.10)
$$\sum_{k} h_{ijk}\omega_k = dh_{ij} + \sum_{k} h_{kj}\omega_{ki} + \sum_{k} h_{ik}\omega_{kj}.$$

Similarly, the components h_{ijkl} of the second derivative $\nabla^2 h$ are given by

(2.11)
$$\sum_{l} h_{ijkl}\omega_{l} = dh_{ijk} + \sum_{l} h_{ljk}\omega_{li} + \sum_{l} h_{ilk}\omega_{lj} + \sum_{l} h_{ijl}\omega_{lk}.$$

By exterior differentiation of (2.10), we can get the following *Ricci identities*

$$(2.12) h_{ijkl} - h_{ijlk} = \sum_{m} h_{im} R_{mjkl} + \sum_{m} h_{jm} R_{mikl}.$$

The Laplacian $\triangle h_{ij}$ of h_{ij} is defined by $\triangle h_{ij} = \sum_k h_{ijkk}$, from the Codazzi equation (2.9) and Ricci identities (2.12), we have

Set $\phi_{ij} = h_{ij} - H\delta_{ij}$, it is easy to check that ϕ is traceless and $|\phi|^2 = \sum_{i,j} \phi_{ij}^2 = |B|^2 - nH^2$. Following Cheng-Yau [5], as in [1] and [2], for any $a \geq 0$, we introduce a modified operator \square acting on any C^2 - function f by

(2.14)
$$\square(f) = \sum_{i,j} \left(\left(nH - \frac{n-1}{2} a \right) \delta_{ij} - h_{ij} \right) f_{ij},$$

where f_{ij} is given by the following

$$\sum_{j} f_{ij}\omega_{j} = df_{i} + f_{j}\omega_{ij}.$$

Lemma 2.1 ([9]). Let M^n be a hypersurface of $S^{n+1}(1)$ with $r=aH+b, a, b \in \mathbb{R}$ and $(n-1)a^2-4n+4nb \geq 0$. Then we have

$$(2.15) |\nabla B|^2 \ge n^2 |\nabla H|^2.$$

Lemma 2.2. Let M^n be a complete hypersurface of $S^{n+1}(1)$ with $r = aH + b, a, b \in \mathbb{R}$. Then we have

$$\Box(nH) \ge |\nabla B|^2 - n^2 |\nabla H|^2 + |\phi|^2 \Big(- |\phi|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} |H| |\phi| + n(1+H^2) \Big).$$

Proof. First, from (2.12), we have

$$\frac{1}{2}\triangle|B|^2 = \frac{1}{2}\triangle\sum_{i,j}h_{ij}^2 = \sum_{i,j}h_{ij}\triangle h_{ij} + \sum_{i,j,k}h_{ijk}^2
= \sum_{i,j,k}h_{ijk}^2 + n\sum_{i,j}h_{ij}H_{ij} + n(|B|^2 - nH^2) + nHf_3 - |B|^4,$$

where $f_3 = \sum_{i,j,k} h_{ij} h_{jk} h_{ki}$. On the other hand, from Gauss equation and r = aH + b, we have

$$\Delta |B|^2 = \Delta (n^2 H^2 - n(n-1)(r-1))$$

$$= \Delta (n^2 H^2 - n(n-1)(aH+b-1))$$

$$= \Delta (n^2 H^2 - (n-1)anH) = \Delta (nH - \frac{1}{2}(n-1)a)^2.$$

Then from (2.17) and Okumura's inequality [10], we get

$$\Box(nH) = \sum_{i,j} ((nH - \frac{1}{2}(n-1)a)\delta_{ij} - h_{ij})(nH)_{ij}$$

$$= (nH - \frac{1}{2}(n-1)a)\triangle(nH) - \sum_{i,j} h_{ij}(nH)_{ij}$$

$$= (nH - \frac{1}{2}(n-1)a)\triangle(nH - \frac{1}{2}(n-1)a) - \sum_{i,j} h_{ij}(nH)_{ij}$$

$$= \frac{1}{2}\triangle(nH - \frac{1}{2}(n-1)a)^2 - |\nabla(nH - \frac{1}{2}(n-1)a)|^2$$

$$- \sum_{i,j} h_{ij}(nH)_{ij}$$

$$= \frac{1}{2}\triangle(nH - \frac{1}{2}(n-1)a)^2 - n^2|\nabla H|^2 - \sum_{i,j} h_{ij}(nH)_{ij}$$

$$= \frac{1}{2}\triangle|B|^2 - n^2|\nabla H|^2 - \sum_{i,j} h_{ij}(nH)_{ij}$$

$$= \sum_{i,j,k} h_{ijk}^2 - n^2|\nabla H|^2 + n(|B|^2 - nH^2) + nHf_3 - |B|^4$$

$$\ge |\nabla B|^2 - n^2|\nabla H|^2$$

$$+ |\phi|^2 \Big(- |\phi|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} |H||\phi| + n(1+H^2) \Big).$$
(2.18)

On the other hand, we choose e_1, \ldots, e_n such that $h_{ij} = \lambda_i \delta_{ij}$, then we can deduce from (2.9) and (2.12) that

(2.19)
$$\frac{1}{2}\Delta|B|^2 = \sum_{i,j,k} h_{ijk}^2 + \sum_{i,j} h_{ij}(nH)_{ij} + \frac{1}{2}R_{ijij}(\lambda_i - \lambda_j)^2$$

and, as (2.18),

(2.20)
$$\Box(nH) = \frac{1}{2}\triangle|B|^2 - n^2|\nabla H|^2 - \sum_{i,j} h_{ij}(nH)_{ij}$$
$$= \sum_{i,j,k} h_{ijk}^2 - n^2|\nabla H|^2 + \frac{1}{2}R_{ijij}(\lambda_i - \lambda_j)^2$$
$$\geq |\nabla B|^2 - n^2|\nabla H|^2 + \frac{1}{2}R_{ijij}(\lambda_i - \lambda_j)^2.$$

Proposition 2.3. Let M^n be a complete hypersurface of $S^{n+1}(1)$ with bounded mean curvature. If $r = aH + b, b \ge 1$, then there is a sequence of points

 $\{p_k\} \in M^n$ such that

$$\lim_{k \to \infty} nH(p_k) = n \sup H; \quad \lim_{k \to \infty} |\nabla(nH)(p_k)| = 0; \quad \limsup_{k \to \infty} (\Box(nH)(p_k)) \le 0.$$

Proof. Choose a local orthonormal frame field e_1, \ldots, e_n at a neighbourhood of $p \in M^n$ such that $h_{ij} = \lambda_i \delta_{ij}$. Thus

(2.21)
$$\Box(nH) = \sum_{i} [(nH - \frac{1}{2}(n-1)a) - \lambda_{i}](nH)_{ii}.$$

If $H \equiv 0$, the proposition is obvious. Let us suppose that H is not identically zero. By changing the orientation of M^n if necessary, we may assume $\sup H > 0$. From Gauss equation, we have

$$\lambda_i^2 \le |B|^2 = n^2 H^2 - n(n-1)(r-1)$$

$$= n^2 H^2 - n(n-1)(aH+b-1)$$

$$= (nH)^2 - (n-1)a(nH) - n(n-1)(b-1)$$

$$= (nH - \frac{1}{2}(n-1)a)^2 - \frac{1}{4}(n-1)((n-1)a^2 - 4n + 4nb)$$

$$(2.22) \qquad \le (nH - \frac{1}{2}(n-1)a)^2, \quad (i=1,2,\ldots,n).$$

Therefore

(2.23)
$$|\lambda_i| \le |nH - \frac{1}{2}(n-1)a|, \quad (i = 1, 2, \dots, n).$$

and

(2.24)
$$R_{ijij} = 1 + \lambda_i \lambda_j \ge 1 - (nH - \frac{1}{2}(n-1)a)^2.$$

Because H is bounded, it follows from (2.24) that the sectional curvatures are bounded from below. Therefore we may apply generalized maximum principle from [11,12] to nH, obtaining a sequence of points $\{p_k\} \in M^n$ such that (2.25)

$$\lim_{k \to \infty} nH(p_k) = n \sup H; \quad \lim_{k \to \infty} |\nabla nH(p_k)| = 0; \quad \limsup_{k \to \infty} ((nH)_{ii}(p_k)) \le 0.$$

From Gauss equation, we have

$$(2.26) |B|^2 = n^2 H^2 + n(n-1)(1 - aH - b),$$

and then

$$nH[nH - (n-1)a] = n(n-1)(b-1) + |B|^2 \ge 0,$$

if $b \ge 1$. If $|B|^2 = 0$, from $|B|^2 \ge nH^2$, we deduce that H = 0 which is the trivial case. So b > 1 or $|B|^2 \ne 0$ which implies $H \ne 0$. When $H \ne 0$, we can obtain from (2.26) that

$$-\frac{n-1}{2}a = \frac{1}{2nH}(|B|^2 - n^2H^2 + n(n-1)(b-1)).$$

Therefore,

$$nH - \frac{n-1}{2}a - \lambda_i$$

$$= nH - \lambda_i + \frac{1}{2nH} (|B|^2 - n^2H^2 + n(n-1)(b-1))$$

$$= \frac{n-1}{2H}(b-1) + \frac{1}{2nH} (|B|^2 + n^2H^2 - 2nH\lambda_i).$$

Observe now that

(2.28)
$$|B|^{2} + n^{2}H^{2} - 2nH\lambda_{i} = \sum_{j=1}^{n} \lambda_{j}^{2} + \left(\sum_{j=1}^{n} \lambda_{j}\right)^{2} - 2\left(\sum_{j=1}^{n} \lambda_{j}\right)\lambda_{i}$$
$$= \sum_{j=1, j\neq i}^{n} \lambda_{j}^{2} + \left(\sum_{j=1, j\neq i}^{n} \lambda_{j}\right)^{2} \ge 0.$$

So (2.27), (2.28) and $b \ge 1$ imply that

$$(2.29) nH - \frac{n-1}{2}a - \lambda_i \ge 0.$$

On the other hand, from (2.23) we get

$$nH(p_k) - \frac{1}{2}(n-1)a - \lambda_i(p_k)$$

$$\leq nH(p_k) - \frac{1}{2}(n-1)a + |\lambda_i(p_k)|$$

$$\leq 2nH(p_k) - (n-1)a.$$
(2.30)

Using once more the fact that H is bounded, from (2.29) and (2.30), we infer that $nH(p_k) - \frac{1}{2}(n-1)a - \lambda_i(p_k)$ is nonnegative and bounded. By applying $\Box(nH)$ at p_k , taking the limit and using (2.25), we have

$$\limsup_{k \to \infty} (\Box(nH)(p_k))$$

$$\leq \sum_{i} \limsup_{k \to \infty} [(nH - \frac{1}{2}(n-1)a) - \lambda_i](p_k)(nH)_{ii}(p_k) \leq 0.$$

3. Proof of the main result

Proof of Theorem 1.4. If M^n is minimal, i.e., if $H \equiv 0$, then $r = b \ge 1$. So, from Gauss equation, we have $|B|^2 \equiv 0$ and M^n is totally geodesic. Let us suppose that H is not identically zero. In this case, by Proposition 2.3 it is possible to obtain a sequence of points $\{p_k\} \in M^n$ such that

(3.1)
$$\limsup_{k \to \infty} (\Box(nH)(p_k)) \le 0, \quad \lim_{k \to \infty} H(p_k) = \sup H > 0.$$

Moreover, using the Gauss equation, we have that

(3.2)
$$|\phi|^2 = |B|^2 - nH^2 = n(n-1)(H^2 - aH - b + 1).$$

In view of $\lim_{k\to\infty} H(p_k) = \sup H$ and $a \le 0$, (3.2) implies that $\lim_{k\to\infty} |\phi|^2(p_k) = \sup |\phi|^2$. Now we consider the following polynomial given by

(3.3)
$$P_{\sup H}(x) = -x^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} \sup Hx + n(1 + \sup H^2).$$

Because the discriminant of $P_{\sup H}(x)$ is always positive, the smallest root of $P_{\sup H}(x)$ is negative and the biggest root μ of $P_{\sup H}(x)$ is positive. We claim that $P_{\sup H}(\sup |\phi|) \geq 0$. It's easy to check that $\sup |\phi|^2 - \mu^2 \leq 0$ provided $b \geq \frac{n-2}{n-1}$. In fact,

$$(\sup |\phi|)^2 = \sup |\phi|^2 = n(n-1)(\sup H^2 - a\sup H - b + 1)$$

$$\leq n(n-1)(\sup H^2 - b + 1),$$

it is straightforward to verify that

$$\sup |\phi|^2 - \mu^2 \le \frac{n-2}{2(n-1)} \Big(n^2 \sup H^2 - n \sup H \sqrt{n^2 \sup H^2 + 4(n-1)} + \frac{2n(n-1)}{n-2} (-(n-1)b + (n-2)) \Big).$$
(3.5)

It can be easily seen that $\sup |\phi|^2 - \mu^2 \le 0$ if and only if

$$n^{2} \sup H^{2} - n \sup H \sqrt{n^{2} \sup H^{2} + 4(n-1)}$$
$$- \frac{2n(n-1)}{n-2} ((n-1)b - (n-2)) \le 0.$$

So, if b>1, the last inequality is true. We deduce that $\sup |\phi|\leq \mu$ and $P_{\sup H}(\sup |\phi|)\geq 0$.

Using Lemma 2.1 and evaluating (2.16) at the points p_k of the sequence, taking the limit and using (3.1), we obtain that

$$0 \ge \limsup_{k \to \infty} (\Box(nH)(p_k)) \ge \sup |\phi|^2 P_{\sup H}(\sup |\phi|) \ge 0,$$

so $\sup |\phi|^2 P_{\sup H}(\sup |\phi|) = 0$. Then we have either $\sup |\phi|^2 = 0$ which shows that M^n is totally umbilical or $P_{\sup H}(\sup |\phi|) = 0$. So (2.16) is also equality, then the Okumura's formula implies that M^n has two distinct principal curvatures one of which is simple and $M^n = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.

Remark 3.1. Using our method, we can easily generalize Theorem 1.2 and Theorem 1.3 to the complete case. But we don't state it here.

Acknowledgments

I would like to express my gratitude to anonymous referees for valuable comments and suggestions.

References

- [1] X. L. Chao, On complete spacelike submanifolds in semi-Riemannian space forms with parallel normalized mean curvature vector, *Kodai Math. J.* **34** (2011), no. 1, 42–54.
- [2] X. L. Chao and P. J. Wang, Linear Weingarten hypersurfaces in Riemannian space forms, Bull. Korean Math. Soc. 51 (2014), no. 2, 567–577.
- [3] Q. M. Cheng, Compact hypersurfaces in a unit sphere with infinite fundamental group, Pacific J. Math. 212 (2003), no. 1, 46–56.
- [4] Q. M. Cheng and H. Nakagawa, Totally umbilic hypersurfaces, *Hiroshima Math. J.* 20 (1990), no. 1, 1–10.
- [5] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 255 (1977), no. 3, 195–204.
- [6] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), no. 4, 665–672.
- [7] H. Li, Global rigidity theorems of hypersurfaces, Ark. Math. 35 (1997), no. 2, 327–351.
- [8] H. Li, Rigidity theorems of hypersurfaces in a sphere, Publ. Inst. Math. (N.S.) 67(81) (2000) 112–120.
- [9] H. Li, Y. J. Suh and G. X. Wei, Linear Weingarten hypersurfaces in a unit sphere, Bull. Korean Math. Soc. 46 (2009), no. 2, 321–329
- [10] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974) 207–213.
- [11] H. Omori, Isometric Immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967) 205–214.
- [12] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975) 201–228.

(Xiaoli Chao) Department of Mathematics, Southeast University, 210096, Nanjing, P. R. China

 $E ext{-}mail\ address: {\tt xlchao@seu.edu.cn}$