Title:

Linear Weingarten hypersurfaces in a unit sphere

Author(s):

X. Chao
LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE

X. CHAO

(Communicated by Jost-Hinrich Eschenburg)

Abstract. In this paper, by modifying Cheng-Yau’s technique to complete hypersurfaces in \(S^{n+1}(1) \), we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665–672].

Keywords: Linear Weingarten hypersurface, generalized maximum principle, rigidity theorem.

MSC(2010): Primary: 53C20; Secondary: 53C42.

1. Introduction

Let \(M \) be an \(n \)-dimensional hypersurfaces in the unit sphere \(S^{n+1}(1) \). The investigation of curvature structures of compact hypersurfaces of \(S^{n+1}(1) \) is important and interesting, with so much attention on it. Cheng and Yau [5] studied compact hypersurfaces with constant scalar curvature in the unit sphere \(S^{n+1}(1) \). They proved that if \(M \) is an \(n \)-dimensional hypersurface with constant scalar curvature \(n(n-1)r \), \(r \geq 1 \) and the sectional curvatures of \(M \) are nonnegative, then \(M \) is isometric to a totally umbilical hypersurface \(S^n(c) \) or to the Riemannian product \(S^k(c) \times S^{n-k}(\sqrt{1-c^2}) \), \(1 \leq k \leq n-1 \), where \(S^k(c) \) denote the sphere of radius \(c \).

Furthermore, by using of the same method which was used in [4] and the differential operator in [5], Li [6] prove that if \(M \) is an \(n \)-dimensional compact hypersurface with constant scalar curvature \(n(n-1)r \), \(r \geq 1 \) and \(S \leq (n-1) \frac{n(r-1)+2}{n-2} + \frac{n-2}{n(r-1)+2} \), then \(M \) is isometric to either totally umbilical hypersurface or the Riemannian product \(S^1(\sqrt{1-c^2}) \times S^{n-1}(c) \) with \(c^2 = \frac{n-2}{n} \leq \frac{n-2}{n} \), where \(S \) is the squared norm of the second fundamental form of \(M \). In the proof of these results, the fact that the differential operator \(\Box \) defined by \(\Box f = \sum_{i,j}^n (nH\delta_{ij} - h_{ij})f_{ij} \) is self-adjoint and degenerate elliptic...
is indispensable. So the condition of $r \geq 1$ and the assumption of constant scalar curvature is essential. Q.M.Cheng [3] generalized the results to the case $r \geq \frac{n-2}{n-1}$ under a topological condition. More precisely, he proved that if M is an n-dimensional compact hypersurface with infinite fundamental group in $S^{n+1}(1)$, if $r \geq \frac{n-2}{n-1}$ and $S \leq (n-1)\frac{n(r-1)+2}{n-2} + \frac{n-2}{n(r-1)+2}$, then M is isometric to the Riemannian product $S^1(\sqrt{1-c^2}) \times S^{n-1}(c)$, where $n(n-1)r$ is the scalar curvature of M and $c^2 = \frac{n-2}{n}$.

On the other hand, Li [7] studied some hypersurfaces in the unit sphere with scalar curvature proportional to the mean curvature and proved the following theorem.

Theorem 1.1 ([7]). Let M be an n-dimensional compact hypersurface in the unit sphere $S^{n+1}(1)$. If

1. M has nonnegative sectional curvature,
2. the normalized scalar curvature r and the mean curvature H of M satisfy the following conditions:

$$r = aH, \quad a^2 \geq \frac{4n}{n-1},$$

where a is a constant, then M is either totally umbilical, or $M = S^{n-k}(c) \times S^k(\sqrt{1-c^2}), 1 \leq k \leq n-1$.

Recently, Li, Suh and Wei [9] considered linear Weingarten hypersurfaces in an sphere and obtained the following rigidity theorems:

Theorem 1.2 ([9]). Let M be an n-dimensional compact hypersurface in the unit sphere $S^{n+1}(1)$. If

1. M has nonnegative sectional curvature,
2. the normalized scalar curvature r and the mean curvature H of M satisfy the following conditions:

$$r = aH + b, \quad (n-1)a^2 - 4n + 4nb \geq 0,$$

then M is either totally umbilical, or $M = S^{n-k}(c) \times S^k(\sqrt{1-c^2}), 1 \leq k \leq n-1$.

In these theorems, M is compact and M has nonnegative sectional curvature. Without the assumption of nonnegative sectional curvature, Li, Suh and Wei [9] obtained the following result, as well.

Theorem 1.3 ([9]). Let M be an n-dimensional compact hypersurface in the unit sphere $S^{n+1}(1)$. If

1. $r = aH + b, (n-1)a^2 - 4n + 4nb \geq 0$,
2. $|B|^2 \leq 2\sqrt{n-1}$,

then either $|B|^2 = 0$ and M is a totally umbilical hypersurface or $|B|^2 = 2\sqrt{n-1}$ and $M = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.
In this paper, we consider complete linear Weingarten hypersurface in $S^{n+1}(1)$ with no sectional curvature restriction. By modifying Cheng-Yau's technique for complete hypersurfaces in $S^{n+1}(1)$, we will prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related. More precisely, we prove the following theorem.

Theorem 1.4. Let M^n be a complete hypersurface of $S^{n+1}(1)$ with bounded mean curvature. If $r = aH + b$, $a \leq 0$, $b \geq 1$, then M^n is either totally umbilical, or $M = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.

If we choose $a = 0$ and $b \geq 1$ in Theorem 1.4, we get

Corollary 1.5. Let M^n be a complete hypersurface of $S^{n+1}(1)$ with constant normalized scalar curvature r satisfying $r \geq 1$. If M^n has bounded mean curvature, then M^n is either totally umbilical, or $M = S^1(c) \times S^{n-1}(\sqrt{1-c^2})$.

Remark 1.6. Corollary 1.5 is a real improvement of the result in [6] because it has no compactness restriction on M and no restriction on $|B|^2$.

2. Preliminaries

Let M be an n-dimensional complete hypersurface in the $(n+1)$-dimensional unit sphere $S^{n+1}(1)$. For any $p \in M$, we choose a local orthonormal frame $e_1, \cdots, e_n, e_{n+1}$ on $S^{n+1}(1)$ around p such that e_1, \cdots, e_n are tangent to M. Take the corresponding dual coframe $\omega_1, \cdots, \omega_n, \omega_{n+1}$. We shall make use of the following standard convention on the range of indices:

$$1 \leq A, B, C, D \cdots \leq n + 1, \quad 1 \leq i, j, k, l \cdots \leq n.$$

Then the structure equations of $S^{n+1}(1)$ are given by

$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0, \quad (2.1)$$

$$d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB} - \omega_A \wedge \omega_B, \quad (2.2)$$

Restricting those forms to M, we have $\omega_{n+1} = 0$ and

$$0 = d\omega_{n+1} = \sum_i^n \omega_{n+1i} \wedge \omega_i. \quad (2.3)$$

By Cartan's lemma, there exist functions h_{ij} such that

$$\omega_{n+1i} = \sum_j^n h_{ij} \omega_j, \quad h_{ij} = h_{ji}. \quad (2.4)$$
The structure equations of M are given by

\[(2.5) \quad d\omega_i = \sum_{j=1}^{n} \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,\]

\[(2.6) \quad d\omega_{ij} = \sum_{k=1}^{n} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l=1}^{n} R_{ijkl} \omega_k \wedge \omega_l.\]

The Gauss equations are

\[(2.7) \quad R_{ijkl} = \delta_{ik} \delta_{jl} - \delta_{jl} \delta_{ik} + h_{ik} h_{jl} - h_{ij} h_{jk},\]

\[(2.8) \quad n(n-1)r = n(n-1) + n^2 H^2 - |B|^2,\]

where R_{ijkl} denotes the components of the Riemannian curvature tensor of M, r is the normalized scalar curvature of M and $|B|^2 = \sum_{i,j} h_{ij}^2$ is the norm square of the second fundamental form of M.

By taking the exterior differentiation of (2.4), we obtain the Codazzi equations

\[(2.9) \quad h_{ijk} = h_{ikj} = h_{jik},\]

where the covariant derivative of h_{ij} is defined by

\[(2.10) \quad \sum_k h_{ijk} \omega_k = dh_{ij} + \sum_k h_{kj} \omega_{ik} + \sum_k h_{ik} \omega_{kj}.\]

Similarly, the components h_{ijkl} of the second derivative $\nabla^2 h$ are given by

\[(2.11) \quad \sum_l h_{ijkl} \omega_l = dh_{ijk} + \sum_l h_{jkl} \omega_{il} + \sum_l h_{ilk} \omega_{lj} + \sum_l h_{ijl} \omega_{kl}.\]

By exterior differentiation of (2.10), we can get the following Ricci identities

\[(2.12) \quad h_{ijkl} - h_{ijk} = \sum_m h_{im} R_{mjk} + \sum_m h_{jm} R_{mkj}.\]

The Laplacian Δh_{ij} of h_{ij} is defined by $\Delta h_{ij} = \sum_k h_{ijkk}$, from the Codazzi equation (2.9) and Ricci identities (2.12), we have

\[(2.13) \quad \Delta h_{ij} = \sum_k h_{kkij} + \sum_{m,k} h_{km} R_{mijk} + \sum_{m,k} h_{im} R_{mkjk}.\]

Set $\phi_{ij} = h_{ij} - H \delta_{ij}$, it is easy to check that ϕ is traceless and $|\phi|^2 = \sum_{i,j} \phi_{ij}^2 = |B|^2 - nH^2$. Following Cheng-Yau [5], as in [1] and [2], for any $a \geq 0$, we introduce a modified operator \square acting on any C^2 function f by

\[(2.14) \quad \square(f) = \sum_{i,j} \left((nH - \frac{n-1}{2}a)\delta_{ij} - h_{ij}\right) f_{ij},\]
where \(f_{ij} \) is given by the following

\[
\sum_j f_{ij}\omega_j = df_i + f_j\omega_{ij}.
\]

Lemma 2.1 ([9]). Let \(M^n \) be a hypersurface of \(S^{n+1}(1) \) with \(r = aH + b, a, b \in \mathbb{R} \) and \((n-1)a^2 - 4n + 4nb \geq 0\). Then we have

\[
|\nabla B|^2 \geq n^2|\nabla H|^2.
\]

Lemma 2.2. Let \(M^n \) be a complete hypersurface of \(S^{n+1}(1) \) with \(r = aH + b, a, b \in \mathbb{R} \). Then we have

\[
\Box(nH) \geq |\nabla B|^2 - n^2|\nabla H|^2 + |\phi|^2 \left(-|\phi|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}|H||\phi| + n(1 + H^2) \right).
\]

Proof. First, from (2.12), we have

\[
\frac{1}{2} \Delta |B|^2 = \frac{1}{2} \Delta \sum_{i,j} h_{ij}^2 = \sum_{i,j} h_{ij} \Delta h_{ij} + \sum_{i,j,k} h_{ijk}^2
\]

\[
= \sum_{i,j,k} h_{ijk}^2 + n \sum_{i,j} h_{ij} H_{ij} + n(|B|^2 - nH^2) + nHf_3 - |B|^4,
\]

where \(f_3 = \sum_{i,j,k} h_{ij}h_{jk}h_{ki} \). On the other hand, from Gauss equation and \(r = aH + b \), we have

\[
\Delta |B|^2 = \Delta(n^2H^2 - n(n-1)(r-1))
\]

\[
= \Delta(n^2H^2 - n(n-1)(aH + b - 1))
\]

\[
= \Delta(n^2H^2 - (n-1)anH) = \Delta(nH - \frac{1}{2}(n-1)a)^2.
\]
Then from (2.17) and Okumura’s inequality [10], we get
\[
\Box(nH) = \sum_{i,j} ((nH - \frac{1}{2}(n-1)a)\delta_{ij} - h_{ij})(nH)_{ij} \\
= (nH - \frac{1}{2}(n-1)a)\Delta(nH) - \sum_{i,j} \sum_{i,j} h_{ij}(nH)_{ij} \\
= (nH - \frac{1}{2}(n-1)a)\Delta(nH - \frac{1}{2}(n-1)a) - \sum_{i,j} \sum_{i,j} h_{ij}(nH)_{ij} \\
= \frac{1}{2}\Delta(nH - \frac{1}{2}(n-1)a)^2 - \|\nabla(nH - \frac{1}{2}(n-1)a)\|^2 \\
- \sum_{i,j} \sum_{i,j} h_{ij}(nH)_{ij} \\
= \frac{1}{2}\Delta|B|^2 - n^2|\nabla H|^2 - \sum_{i,j} \sum_{i,j} h_{ij}(nH)_{ij} \\
= \sum_{i,j,k} h_{ijk}^2 - n^2|\nabla H|^2 + n(|B|^2 - nH^2) + nHf_3 - |B|^4 \\
\geq |\nabla B|^2 - n^2|\nabla H|^2 \\
+ |\phi|^2\left(-|\phi|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}|H||\phi| + n(1 + H^2)\right).
\]
\[\text{(2.18)}\]

On the other hand, we choose \(e_1, \ldots, e_n\) such that \(h_{ij} = \lambda_i \delta_{ij}\), then we can deduce from (2.9) and (2.12) that
\[
\frac{1}{2}\Delta|B|^2 = \sum_{i,j,k} h_{ijk}^2 + \sum_{i,j} h_{ij}(nH)_{ij} + \frac{1}{2}R_{ijij}(\lambda_i - \lambda_j)^2 \\
\text{(2.19)}
\]
and, as (2.18),
\[
\Box(nH) = \frac{1}{2}\Delta|B|^2 - n^2|\nabla H|^2 - \sum_{i,j} \sum_{i,j} h_{ij}(nH)_{ij} \\
= \sum_{i,j,k} h_{ijk}^2 - n^2|\nabla H|^2 + \frac{1}{2}R_{ijij}(\lambda_i - \lambda_j)^2 \\
\geq |\nabla B|^2 - n^2|\nabla H|^2 + \frac{1}{2}R_{ijij}(\lambda_i - \lambda_j)^2. \\
\text{(2.20)}
\]

Proposition 2.3. Let \(M^n\) be a complete hypersurface of \(S^{n+1}(1)\) with bounded mean curvature. If \(r = aH + b, b \geq 1\), then there is a sequence of points
\{p_k\} \in \mathcal{M}^n \text{ such that }
\lim_{k \to \infty} nH(p_k) = n \sup H; \quad \lim_{k \to \infty} |\nabla(nH)(p_k)| = 0; \quad \limsup_{k \to \infty}(\nabla(nH)(p_k)) \leq 0.

Proof. Choose a local orthonormal frame field \(e_1, \ldots, e_n\) at a neighbourhood of \(p \in \mathcal{M}^n\) such that \(h_{ij} = \delta_{ij}\). Thus

\begin{equation}
\Box(nH) = \sum_i [(nH - \frac{1}{2}(n-1)a) - \lambda_i](nH)_{ii}.
\end{equation}

If \(H \equiv 0\), the proposition is obvious. Let us suppose that \(H\) is not identically zero. By changing the orientation of \(\mathcal{M}^n\) if necessary, we may assume \(\sup H > 0\). From Gauss equation, we have

\begin{equation}
\lambda_i^2 \leq |\mathcal{B}|^2 = n^2H^2 - n(n-1)(r-1)
= n^2H^2 - n(n-1)(aH + b - 1)
= (nH)^2 - (n-1)a(nH) - n(n-1)(b - 1)
= (nH - \frac{1}{2}(n-1)a)^2 - \frac{1}{4}(n-1)((n-1)a^2 - 4n + 4b)
\leq (nH - \frac{1}{2}(n-1)a)^2, \quad (i = 1, 2, \ldots, n).
\end{equation}

Therefore

\begin{equation}
|\lambda_i| \leq |nH - \frac{1}{2}(n-1)a|, \quad (i = 1, 2, \ldots, n).
\end{equation}

and

\begin{equation}
R_{ijij} = 1 + \lambda_i\lambda_j \geq 1 - (nH - \frac{1}{2}(n-1)a)^2.
\end{equation}

Because \(H\) is bounded, it follows from (2.24) that the sectional curvatures are bounded from below. Therefore we may apply generalized maximum principle from [11, 12] to \(nH\), obtaining a sequence of points \(\{p_k\} \in \mathcal{M}^n\) such that

\begin{equation}
\lim_{k \to \infty} nH(p_k) = n \sup H; \quad \lim_{k \to \infty} |\nabla(nH)(p_k)| = 0; \quad \limsup_{k \to \infty}(\nabla(nH)(p_k)) \leq 0.
\end{equation}

From Gauss equation, we have

\begin{equation}
|\mathcal{B}|^2 = n^2H^2 + n(n-1)(1 - aH - b),
\end{equation}

and then

\[nH[nH - (n-1)a] = n(n-1)(b-1) + |\mathcal{B}|^2 \geq 0, \]

if \(b \geq 1\). If \(|\mathcal{B}|^2 = 0\), from \(|\mathcal{B}|^2 \geq nH^2\), we deduce that \(H = 0\) which is the trivial case. So \(b > 1\) or \(|\mathcal{B}|^2 \neq 0\) which implies \(H \neq 0\). When \(H \neq 0\), we can obtain from (2.26) that

\[-\frac{n-1}{2}a = \frac{1}{2nH}(|\mathcal{B}|^2 - n^2H^2 + n(n-1)(b-1)).\]
Therefore,
\[
nH - \frac{n-1}{2}a - \lambda_i
\]
\[
= nH - \lambda_i + \frac{1}{2nH}(|B|^2 - n^2H^2 + n(n-1)(b-1))
\]
(2.27)
\[
= \frac{n-1}{2H}(b-1) + \frac{1}{2nH}(|B|^2 + n^2H^2 - 2nH\lambda_i).
\]
Observe now that
\[
|B|^2 + n^2H^2 - 2nH\lambda_i = \sum_{j=1}^{n} \lambda_j^2 + \left(\sum_{j=1}^{n} \lambda_j\right)^2 - 2\left(\sum_{j=1}^{n} \lambda_j\right)\lambda_i
\]
(2.28)
\[
= \sum_{j=1, j \neq i}^{n} \lambda_j^2 + \left(\sum_{j=1, j \neq i}^{n} \lambda_j\right)^2 \geq 0.
\]
So (2.27), (2.28) and \(b \geq 1\) imply that
(2.29)
\[
nH - \frac{n-1}{2}a - \lambda_i \geq 0.
\]
On the other hand, from (2.23) we get
\[
nH(p_k) - \frac{1}{2}(n-1)a - \lambda_i(p_k)
\]
\[
\leq nH(p_k) - \frac{1}{2}(n-1)a + |\lambda_i(p_k)|
\]
(2.30)
\[
\leq 2nH(p_k) - (n-1)a.
\]
Using once more the fact that \(H\) is bounded, from (2.29) and (2.30), we infer that \(nH(p_k) - \frac{1}{2}(n-1)a - \lambda_i(p_k)\) is nonnegative and bounded. By applying \(\Box(nH)\) at \(p_k\), taking the limit and using (2.25), we have
\[
\lim_{k \to \infty} \sup(\Box(nH)(p_k)) \leq \sum_{i} \lim_{k \to \infty} \sup[(nH - \frac{1}{2}(n-1)a - \lambda_i(p_k)(nH)_{ii}(p_k) \leq 0.
\]
\[
\square
\]
3. Proof of the main result

Proof of Theorem 1.4. If \(M^n\) is minimal, i.e., if \(H \equiv 0\), then \(r = b \geq 1\).
So, from Gauss equation, we have \(|B|^2 \equiv 0\) and \(M^n\) is totally geodesic. Let us suppose that \(H\) is not identically zero. In this case, by Proposition 2.3 it is possible to obtain a sequence of points \(\{p_k\} \in M^n\) such that
(3.1)
\[
\lim_{k \to \infty} \sup(\Box(nH)(p_k)) \leq 0, \quad \lim_{k \to \infty} H(p_k) = \sup H > 0.
\]
Moreover, using the Gauss equation, we have that
\begin{equation}
|\phi|^2 = |B|^2 - nH^2 = n(n-1)(H^2 - aH - b + 1). \tag{3.2}
\end{equation}
In view of \(\lim_{k \to \infty} H(p_k) = \sup H \) and \(a \leq 0 \), (3.2) implies that \(\lim_{k \to \infty} |\phi|^2(p_k) = \sup |\phi|^2 \). Now we consider the following polynomial given by
\begin{equation}
P_{\sup H}(x) = -x^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} \sup Hx + n(1 + \sup H^2). \tag{3.3}
\end{equation}
Because the discriminant of \(P_{\sup H}(x) \) is always positive, the smallest root of \(P_{\sup H}(x) \) is negative and the biggest root \(\mu \) of \(P_{\sup H}(x) \) is positive. We claim that \(\sup |\phi|^2 = 0 \). It’s easy to check that \(\sup |\phi|^2 - \mu^2 \leq 0 \) provided \(b \geq \frac{n-2}{n-1} \). In fact,
\begin{equation}
(\sup |\phi|)^2 = \sup |\phi|^2 = n(n-1)(\sup H^2 - a \sup H - b + 1)
\leq n(n-1)(\sup H^2 - b + 1), \tag{3.4}
\end{equation}
it is straightforward to verify that
\begin{equation}
\sup |\phi|^2 - \mu^2 \leq \frac{n-2}{2(n-1)} \left(n^2 \sup H^2 - n \sup H \sqrt{n^2 \sup H^2 + 4(n-1)} \right)
+ \frac{2n(n-1)}{n-2} \left(-(n-1)b + (n-2) \right). \tag{3.5}
\end{equation}
It can be easily seen that \(\sup |\phi|^2 - \mu^2 \leq 0 \) if and only if
\begin{align*}
n^2 \sup H^2 - n \sup H \sqrt{n^2 \sup H^2 + 4(n-1)}
- \frac{2n(n-1)}{n-2} \left((n-1)b - (n-2) \right) & \leq 0.
\end{align*}
So, if \(b > 1 \), the last inequality is true. We deduce that \(\sup |\phi| \leq \mu \) and \(P_{\sup H}(\sup |\phi|) \geq 0 \).

Using Lemma 2.1 and evaluating (2.16) at the points \(p_k \) of the sequence, taking the limit and using (3.1), we obtain that
\begin{equation*}
0 \geq \limsup_{k \to \infty}(\Box(nH)(p_k)) \geq \sup |\phi|^2 P_{\sup H}(\sup |\phi|) \geq 0,
\end{equation*}
so \(\sup |\phi|^2 P_{\sup H}(\sup |\phi|) = 0 \). Then we have either \(\sup |\phi|^2 = 0 \) which shows that \(M^n \) is totally umbilical or \(P_{\sup H}(\sup |\phi|) = 0 \). So (2.16) is also equality, then the Okumura’s formula implies that \(M^n \) has two distinct principal curvatures one of which is simple and \(M^n = S^1(c) \times S^{n-1}(\sqrt{1-c^2}) \).

\textbf{Remark 3.1.} \textit{Using our method, we can easily generalize Theorem 1.2 and Theorem 1.3 to the complete case. But we don’t state it here.}

\textbf{Acknowledgments}

I would like to express my gratitude to anonymous referees for valuable comments and suggestions.
REFERENCES

(Xiaoli Chao) DEPARTMENT OF MATHEMATICS, SOUTHEAST UNIVERSITY, 210096, NANJING, P. R. CHINA

E-mail address: xlchao@seu.edu.cn