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ABSTRACT. In this paper, by modifying Cheng-Yau’s technique to com-
plete hypersurfaces in S”+1(1), we prove a rigidity theorem under the
hypothesis of the mean curvature and the normalized scalar curvature
being linearly related which improve the result of [H. Li, Hypersurfaces
with constant scalar curvature in space forms, Math. Ann. 305 (1996),
665—672].
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1. Introduction

Let M be an n-dimensional hypersurfaces in the unit sphere S"*1(1). The
investigation of curvature structures of compact hypersurfaces of S™*1(1) is
important and interesting, with so much attention on it. Cheng and Yau [5]
studied compact hypersurfaces with constant scalar curvature in the unit sphere
S"+1(1). They proved that if M is an n-dimensional hypersurface with con-
stant scalar curvature n(n — 1)r, r > 1 and the sectional curvatures of M are
nonnegative, then M is isometric to a totally umbilical hypersurface S™(c) or
to the Riemannian product S*(c) x S"¥(v/1 — ¢2), 1 < k < n—1, where S*(c)
denote the sphere of radius ¢. Furthermore, by using of the same method which
was used in [4] and the differential operator in [5], Li [6] prove that if M is an
n-dimensional compact hypersurface with constant scalar curvature n(n — 1)r,

r>1and S < (n—1)21F2 n(rn:1§+2’ then M is isometric to either totally

umbilical hypersurface or the Riemannian product S (v/1 — ¢2) x §"7(c) with
= ”n—_f < ”7_2, where S is the squared norm of the second fundamental form
of M. In the proof of these results, the fact that the differential operator [J

defined by Of = 327" (nHdij — hij) fi; is self-adjoint and degenerate elliptic
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Linear Weingarten hypersurfaces in a unit sphere 354

is indispensable. So the condition of » > 1 and the assumption of constant
scalar curvature is essential. Q.M.Cheng [3] generalized the results to the case
r > Z—:f under a topological condition. More precisely, he proved that if M
is an m-dimensional compact hypersurface with infinite fundamental group in

SnHL(1), Ifr > 2=2 and S < (n—1) "(Tn_j%"r? + n(r":SH, then M is isometric to

the Riemannian product S'(v/1 — ¢2) x S"~1(c), where n(n — 1)r is the scalar
curvature of M and ¢? = =2,

On the other hand, Li [7] studied some hypersurfaces in the unit sphere with
scalar curvature proportional to the mean curvature and proved the following
theorem.

Theorem 1.1 ( [7]). Let M be an n-dimensional compact hypersurface in the
unit sphere STT(1). If

(1) M has nonnegative sectional curvature,

(2) the normalized scalar curvature r and the mean curvature H of M satisfy
the following conditions:
4dn

n—1’

r=aH,a® >

where a is a constant, then M is either totally umbilical, or M = S"*(c) x

SE(V1T—e2),1<k<n-1.

Recently, Li, Suh and Wei [9] considered linear Weingarten hypersurfaces in
an sphere and obtained the following rigidity theorems:

Theorem 1.2 ( [9]). Let M be an n-dimensional compact hypersurface in the
unit sphere S"t1(1). If

(1) M has nonnegative sectional curvature,

(2) the normalized scalar curvature r and the mean curvature H of M satisfy
the following conditions:

r=aH +b,(n—1)a*> —4n + 4nb > 0,

then M s either totally umbilical, or M = S™" F(c) x S*¥(v/1—¢2),1 < k <
n—1.

In these theorems, M is compact and M has nonnegative sectional curvature.
Without the assumption of nonnegative sectional curvature, Li, Suh and Wei [9]
obtained the following result, as well.

Theorem 1.3 ( [9]). Let M be an n-dimensional compact hypersurface in the
unit sphere STT(1). If

(1) r =aH +b,(n —1)a® — 4n + 4nb > 0,

(2) B> <2vn —1,

then either |B|?> = 0 and M is a totally umbilical hypersurface or |B|? =

2y/n—1 and M = S*(c) x S"~1(v/1—¢2).
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In this paper, we consider complete linear Weingarten hypersurface in $"**(1)
with no sectional curvature restriction. By modifying Cheng-Yau’s technique
for complete hypersurfaces in S"*1(1), we will prove a rigidity theorem un-
der the hypothesis of the mean curvature and the normalized scalar curvature
being linearly related. More precisely, we prove the following theorem.

Theorem 1.4. Let M™ be a complete hypersurface of S"t1(1) with bounded
mean curvature. If r = aH+b,a < 0,b > 1, then M™ is either totally umbilical,

or M = S'(c) x S"71(V/1—¢2).
If we choose a = 0 and b > 1 in Theorem 1.4, we get

Corollary 1.5. Let M™ be a complete hypersurface of ST1(1) with constant
normalized scalar curvature r satisfying r > 1. If M™ has bounded mean cur-
vature, then M™ is either totally umbilical, or M = S*(c) x S"71(v/1 — ¢2).

Remark 1.6. Corollary 1.5 is a real improvement of the result in [6] because
it has mo compactness restriction on M and no restriction on |B|?.

2. Preliminaries

Let M be an n-dimensional complete hypersurface in the (n+1)-dimensiomal
unit sphere S"*t1(1). For any p € M, we choose a local orthonormal frame
€1, ,En,Ent1 ON S”‘*‘l(l) around p such that eq,--- , e, are tangent to M.
Take the corresponding dual coframe wy,--- ,wy,wn4+1, We shall make use of
the following standard convention on the range of indices:

1§A,B,C,DSR+1, 1S2,j,k‘,l§n

Then the structure equations of S"*1(1) are given by

(2.1) de:ZwAB Awp, wap+wpa =0,
B
(2.2) deB:ZwAcchg—wA/\wB.
C

Restricting those forms to M, we have wy,4+1 = 0 and
(23) 0=dwp4+1 = an+1i N\ wj.

By Cartan’s lemma, there exist functions h;; such that

(2.4) Wn+1i = Z hijwi,  hij = hji.
J
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The structure equations of M are given by

(25) dwi = Zwij A Wi, Wij + Wi = 0,
j=1
n 1 n
(2'6) dwij = Zwik Nwij — 5 Z Rijklwk A wy.
k=1 k=1
The Gauss equations are
(2.7) Rijri = 0051 — 0055 + hinhji — hahjg,
(2.8) n(n —1)r =n(n — 1) +n*H? — |BJ?,

where R;j;j; denotes the components of the Riemannian curvature tensor of M,
7 is the normalized scalar curvature of M and |B|?> = Zl j h?j is the norm
square of the second fundamental form of M.

By taking the exterior differentiation of (2.4), we obtain the Codazzi equa-
tions

(2.9) hijk = hikj = hjik,

where the covariant derivative of h;; is defined by
(210) Z hijkwk = dh” + Z hkjw;ﬂ- + Z hikwkj.
k k k

Similarly, the components h;;j; of the second derivative V2h are given by
(2.11) > hijwr = dhige + Y higrwi + > hakwig + Y hijio.

l 1 l l
By exterior differentiation of (2.10), we can get the following Ricci identities
(2.12) hijki = hijik = Y Pim Rt + D Mjm o

The Laplacian Ah;; of h,j; is defined by Ah;; = Y, hijkk, from the Codazzi
equation (2.9) and Ricci identities (2.12), we have

(2.13) Ahij = Z hkkij + Z Pm Bmijr + Z him Rmkjik-
k m,k m,k

Set ¢;; = hy; — Hd,j, it is easy to check that ¢ is traceless and |¢|* = D 3=
|B|? — nH?. Following Cheng-Yau [5], as in [1] and [2], for any a > 0, we
introduce a modified operator O acting on any C- function f by

(2.14) af) = Z ((nH — nT_la)@j — hij) fij,

]
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where f;; is given by the following

Z fijw; = dfs + fjwij.

J

Lemma 2.1 ([9]). Let M™ be a hypersurface of S"T1(1) withr = aH+b,a,b €
R and (n — 1)a® — 4n + 4nb > 0. Then we have

(2.15) |VB|* > n?|VH|?.

Lemma 2.2. Let M™ be a complete hypersurface of S"t1(1) with r = aH +
b,a,b € R. Then we have

O(nH) > |VB|? —n*|VH?
(216) + 1o ( - ot - 22

vn(n—1)

[H||¢] +n(1 + H?)).

Proof. First, from (2.12), we have

1 1
§A|B|2 = §Azh?j = hijShig+ Y b,
7 i,

.5,k

=Y hij+nd hiHy+n(B
2%}

ig.k

2 _nH?) 4 nHfs — |B|*,

where f3 = Z”k hijhjkhi;. On the other hand, from Gauss equation and
r = aH + b, we have

A|B|? = A(n*H? —n(n —1)(r — 1))
= A(n?H?* —n(n—1)(aH +b—1))

(2.17) = A(n*H?* — (n —1)anH) = N(nH — %(n —1)a)*
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Then from (2.17) and Okumura’s inequality [10], we get

Q) = 3 (nH = 30— 1a)di; — hig)(nH )y
= (nH — %(n —1)a)A(nH) — Z hij(nH ),
= (nH — %(n —1)a)A(nH — %(n —1)a) — Zhij(nﬂ)ij

= %A(nH - %(n —1)a)? — |V(nH — %(n —1)a)|?

= hi(nH);;
.7
1 1
= SAMH = S (n - 1)a)? — n?|VH|? - ZJ hij(nH)y;
1
= §A‘B|2 — ’I’L2|VH|2 — lzj: hij(nH)ij
= Z hij —n*|[VH? +n(|B|* —nH?) +nH fs — |B[*
i,k
> |VB* —n?|VH|?
— 2)
2.18 lol2( =162 = =D i) 4 n(1 4+ H2)).
(2.18) 012~ o) i el + ))
U
On the other hand, we choose ey, ..., e, such that h;; = A\;d;;, then we can
deduce from (2.9) and (2.12) that
1 1
(219)  GABIP =Y ki D hij(nH)ij + 5 Rijis(hi = )

N %7
and, as (2.18),
1
O(nH) = SAIBE [ THE = 3 hiy(n),
2%
1
(2.20) = Z h?jk — n2|VH|2 + §Rijij(/\i — /\j)2
ik
1
> |VB|2 - n2|VH|2 + §Rijij(>\i - )\j)z.

Proposition 2.3. Let M™ be a complete hypersurface of S (1) with bounded
mean curvature. If r = aH + b,b > 1, then there is a sequence of points
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{pr} € M™ such that
klim nH(py) = nsup H; klirn |V(nH)(pg)| = 0; limsup(d(nH)(pr)) < 0.
—00 — 00

k—o0

Proof. Choose a local orthonormal frame field ey, ..., e, at a neighbourhood
of p € M™ such that h;; = A\;d;;. Thus

1

(2.21) O(nH) = [(nH — = (n — 1)a) — A (nH ).

- 2
If H = 0, the proposition is obvious. Let us suppose that H is not identically
zero. By changing the orientation of M™ if necessary, we may assume sup H >
0. From Gauss equation, we have

A <|B)? =n*H? —n(n—1)(r —1)
=n?’H? —n(n—1)(aH +b—1)

= (nH)* - (n— Da(nH) —n(n —1)(b—1)

= (nH — %(n —1)a)? - i(n —1)((n —1)a® — 4n + 4nb)
(2.22) gmH_%m_n@% (i=1,2,...,n).
Therefore
(2.23) I\i| < |nH—%(n—1)a’, (i=1,2,...,n).
and
(2.24) Rijij =1+ X\X\; > 1— (nH — %(n —1)a)*

Because H is bounded, it follows from (2.24) that the sectional curvatures are
bounded from below. Therefore we may apply generalized maximum principle
from [11,12] to nH, obtaining a sequence of points {py} € M™ such that
(2.25)
lim nH(py) =nsup H; lim |VnH(pg)| =0; limsup((nH):(pr)) < 0.
k—o0 k—o0 k— 00

From Gauss equation, we have
(2.26) |B|? = n?H? +n(n—1)(1 — aH —b),
and then
nH[H — (1~ 1)a] = n(n — 1)(b— 1) + [B[* > 0,

it b> 1. If |[B]? = 0, from |B|?> > nH?, we deduce that H = 0 which is the
trivial case. So b > 1 or |B|? # 0 which implies H # 0. When H # 0, we can
obtain from (2.26) that

n—1 1

5= 2n—H(|B|2 —n*H? + n(n—1)(b—1)).
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Therefore,
-1
nH — i a— A\
1 22772
=nH -\ + m(\B\ —n*H? +n(n—1)(b—1))
n—1 1
2.2 = — 1)+ ——(|B + n*H? — 2nH);).
(2.27) 5 0= D+ 55 (1B +n nH\;)
Observe now that
n n 2 n
BE +n2H? = 2N =3 N+ (Do) —2( D n)A
j=1 j=1 j=1
(2:28) = X2+ z) 20,
j=1,j#i j=1,j#i
So (2.27), (2.28) and b > 1 imply that
-1
(2.29) nH—-"""a— ) >0.

On the other hand, from (2.23) we get

nH (py) — %(n —1a = Xi(pk)

1
<nH(py) — i(n — Da+ | Ai(pe)|
(2.30) < 2nH(py) — (n — 1)a.
Using once more the fact that H is bounded, from (2.29) and (2.30), we infer

that nH(py) — 2(n — 1)a — A\;(pk) is nonnegative and bounded. By applying
O(nH) at pg, taking the limit and using (2.25), we have

lil?l)sip(ﬂ(nH) (px))

k—o0 2

< Zlim sup[(nH — 1(n —1)a) — A\i](pr)(nH )i (pr) < 0.

3. Proof of the main result

Proof of Theorem 1.4. If M™ is minimal, i.e., if H = 0, then r = b > 1.
So, from Gauss equation, we have |B|?> = 0 and M" is totally geodesic. Let
us suppose that H is not identically zero. In this case, by Proposition 2.3 it is
possible to obtain a sequence of points {py} € M™ such that
(3.1) limsup(O(nH)(pr)) <0, klim H(py) =sup H > 0.

— 00

k— o0
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Moreover, using the Gauss equation, we have that
(3.2) 19|> = |B]*> —nH?* =n(n —1)(H? —aH — b+ 1).
In view of leH;O H(py) = supH and a < 0, (3.2) implies that kl;rlgo 10 (pr) =
sup |¢|%. Now we consider the following polynomial given by
(3.3) Papu(z) = —2% — MsupHx+n(l+supH2).
n(n—1)

Because the discriminant of Py, () is always positive, the smallest root of
P.up u () is negative and the biggest root u of Py, g (2) is positive. We claim
that Payp g(sup|¢|) > 0. It’s easy to check that sup|¢|*> — u? < 0 provided
b > =5 In fact,

(sup 9])? = sup 9[> = n(n — 1)(sup H2 — asup H — b+ 1)
(3.4) < n(n—1)(sup H> = b+ 1),

it is straightforward to verify that

-2
sup |2 — p? < h(rﬁsupfﬂ —nsup Hy/n2sup H2 + 4(n — 1)

2n(n —1)

(3.5) o

(~(n=1)b+ (n - 2)).
It can be easily seen that sup |¢|? — 2 < 0 if and only if
n?sup H> — nsup Hy/n2sup H2 + 4(n — 1)
~ 2n(n—1)
n—2

So, if b > 1, the last inequality is true. We deduce that sup|é| < p and

PsupH(SuP ‘¢|) > 0.
Using Lemma 2.1 and evaluating (2.16) at the points p; of the sequence,
taking the limit and using (3.1), we obtain that

0> hgmup(D(nH)(pk)) > sup |¢|” Paup 1 (sup [¢]) > 0,
—00

((n=1)b—(n-2) <0.

$0 sup |@|% Psup i (sup |#|) = 0. Then we have either sup |¢|*> = 0 which shows
that M™ is totally umbilical or Ps,p g(sup|¢|) = 0. So (2.16) is also equal-
ity, then the Okumura’s formula implies that M™ has two distinct principal
curvatures one of which is simple and M™ = S1(c) x S"71(/1 — ¢2). O

Remark 3.1. Using our method, we can easily generalize Theorem 1.2 and
Theorem 1.8 to the complete case. But we don’t state it here.
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