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Abstract. In this paper, by modifying Cheng-Yau′s technique to com-

plete hypersurfaces in Sn+1(1), we prove a rigidity theorem under the
hypothesis of the mean curvature and the normalized scalar curvature
being linearly related which improve the result of [H. Li, Hypersurfaces
with constant scalar curvature in space forms, Math. Ann. 305 (1996),
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1. Introduction

Let M be an n-dimensional hypersurfaces in the unit sphere Sn+1(1). The
investigation of curvature structures of compact hypersurfaces of Sn+1(1) is
important and interesting, with so much attention on it. Cheng and Yau [5]
studied compact hypersurfaces with constant scalar curvature in the unit sphere
Sn+1(1). They proved that if M is an n-dimensional hypersurface with con-
stant scalar curvature n(n − 1)r, r ≥ 1 and the sectional curvatures of M are
nonnegative, then M is isometric to a totally umbilical hypersurface Sn(c) or

to the Riemannian product Sk(c)×Sn−k(
√
1− c2), 1 ≤ k ≤ n−1, where Sk(c)

denote the sphere of radius c. Furthermore, by using of the same method which
was used in [4] and the differential operator in [5], Li [6] prove that if M is an
n-dimensional compact hypersurface with constant scalar curvature n(n− 1)r,

r ≥ 1 and S ≤ (n−1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , then M is isometric to either totally

umbilical hypersurface or the Riemannian product S1(
√
1− c2)×Sn−1(c) with

c2 = n−2
nr ≤ n−2

n , where S is the squared norm of the second fundamental form
of M . In the proof of these results, the fact that the differential operator □
defined by □f =

∑n
ij(nHδij − hij)fij is self-adjoint and degenerate elliptic
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is indispensable. So the condition of r ≥ 1 and the assumption of constant
scalar curvature is essential. Q.M.Cheng [3] generalized the results to the case
r ≥ n−2

n−1 under a topological condition. More precisely, he proved that if M
is an n-dimensional compact hypersurface with infinite fundamental group in

Sn+1(1), If r ≥ n−2
n−1 and S ≤ (n−1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , then M is isometric to

the Riemannian product S1(
√
1− c2)× Sn−1(c), where n(n− 1)r is the scalar

curvature of M and c2 = n−2
nr .

On the other hand, Li [7] studied some hypersurfaces in the unit sphere with
scalar curvature proportional to the mean curvature and proved the following
theorem.

Theorem 1.1 ( [7]). Let M be an n-dimensional compact hypersurface in the
unit sphere Sn+1(1). If

(1) M has nonnegative sectional curvature,
(2) the normalized scalar curvature r and the mean curvature H of M satisfy

the following conditions:

r = aH, a2 ≥ 4n

n− 1
,

where a is a constant, then M is either totally umbilical, or M = Sn−k(c) ×
Sk(

√
1− c2), 1 ≤ k ≤ n− 1.

Recently, Li, Suh and Wei [9] considered linear Weingarten hypersurfaces in
an sphere and obtained the following rigidity theorems:

Theorem 1.2 ( [9]). Let M be an n-dimensional compact hypersurface in the
unit sphere Sn+1(1). If

(1) M has nonnegative sectional curvature,
(2) the normalized scalar curvature r and the mean curvature H of M satisfy

the following conditions:

r = aH + b, (n− 1)a2 − 4n+ 4nb ≥ 0,

then M is either totally umbilical, or M = Sn−k(c) × Sk(
√
1− c2), 1 ≤ k ≤

n− 1.

In these theorems, M is compact andM has nonnegative sectional curvature.
Without the assumption of nonnegative sectional curvature, Li, Suh and Wei [9]
obtained the following result, as well.

Theorem 1.3 ( [9]). Let M be an n-dimensional compact hypersurface in the
unit sphere Sn+1(1). If

(1) r = aH + b, (n− 1)a2 − 4n+ 4nb ≥ 0,
(2) |B|2 ≤ 2

√
n− 1,

then either |B|2 = 0 and M is a totally umbilical hypersurface or |B|2 =

2
√
n− 1 and M = S1(c)× Sn−1(

√
1− c2).
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In this paper, we consider complete linear Weingarten hypersurface in Sn+1(1)

with no sectional curvature restriction. By modifying Cheng-Yau’s technique
for complete hypersurfaces in Sn+1(1), we will prove a rigidity theorem un-
der the hypothesis of the mean curvature and the normalized scalar curvature
being linearly related. More precisely, we prove the following theorem.

Theorem 1.4. Let Mn be a complete hypersurface of Sn+1(1) with bounded
mean curvature. If r = aH+b, a ≤ 0, b ≥ 1, then Mn is either totally umbilical,
or M = S1(c)× Sn−1(

√
1− c2).

If we choose a = 0 and b ≥ 1 in Theorem 1.4, we get

Corollary 1.5. Let Mn be a complete hypersurface of Sn+1(1) with constant
normalized scalar curvature r satisfying r ≥ 1. If Mn has bounded mean cur-
vature, then Mn is either totally umbilical, or M = S1(c)× Sn−1(

√
1− c2).

Remark 1.6. Corollary 1.5 is a real improvement of the result in [6] because
it has no compactness restriction on M and no restriction on |B|2.

2. Preliminaries

LetM be an n-dimensional complete hypersurface in the (n+1)-dimensiomal
unit sphere Sn+1(1). For any p ∈ M , we choose a local orthonormal frame
e1, · · · , en, en+1 on Sn+1(1) around p such that e1, · · · , en are tangent to M .
Take the corresponding dual coframe ω1, · · · , ωn, ωn+1, We shall make use of
the following standard convention on the range of indices:

1 ≤ A,B,C,D · · · ≤ n+ 1, 1 ≤ i, j, k, l · · · ≤ n.

Then the structure equations of Sn+1(1) are given by

dωA =
∑
B

ωAB ∧ ωB , ωAB + ωBA = 0,(2.1)

dωAB =
∑
C

ωAC ∧ ωCB − ωA ∧ ωB .(2.2)

Restricting those forms to M , we have ωn+1 = 0 and

(2.3) 0 = dωn+1 =

n∑
i

ωn+1i ∧ ωi.

By Cartan’s lemma, there exist functions hij such that

(2.4) ωn+1i =
n∑
j

hijωi, hij = hji.
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The structure equations of M are given by

dωi =
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0,(2.5)

dωij =
n∑

k=1

ωik ∧ ωkj −
1

2

n∑
k,l=1

Rijklωk ∧ ωl.(2.6)

The Gauss equations are

Rijkl = δikδjl − δilδjk + hikhjl − hilhjk,(2.7)

n(n− 1)r = n(n− 1) + n2H2 − |B|2,(2.8)

where Rijkl denotes the components of the Riemannian curvature tensor of M ,
r is the normalized scalar curvature of M and |B|2 =

∑
i,j h

2
ij is the norm

square of the second fundamental form of M .
By taking the exterior differentiation of (2.4), we obtain the Codazzi equa-

tions

hijk = hikj = hjik,(2.9)

where the covariant derivative of hij is defined by∑
k

hijkωk = dhij +
∑
k

hkjωki +
∑
k

hikωkj .(2.10)

Similarly, the components hijkl of the second derivative ∇2h are given by∑
l

hijklωl = dhijk +
∑
l

hljkωli +
∑
l

hilkωlj +
∑
l

hijlωlk.(2.11)

By exterior differentiation of (2.10), we can get the following Ricci identities

hijkl − hijlk =
∑
m

himRmjkl +
∑
m

hjmRmikl.(2.12)

The Laplacian △hij of hij is defined by △hij =
∑

k hijkk, from the Codazzi
equation (2.9) and Ricci identities (2.12), we have

△hij =
∑
k

hkkij +
∑
m,k

hkmRmijk +
∑
m,k

himRmkjk.(2.13)

Set ϕij = hij−Hδij , it is easy to check that ϕ is traceless and |ϕ|2 =
∑

i,j ϕ
2
ij =

|B|2 − nH2. Following Cheng-Yau [5], as in [1] and [2], for any a ≥ 0, we
introduce a modified operator □ acting on any C2- function f by

(2.14) □(f) =
∑
i,j

(
(nH − n− 1

2
a)δij − hij

)
fij ,
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where fij is given by the following

∑
j

fijωj = dfi + fjωij .

Lemma 2.1 ( [9]). Let Mn be a hypersurface of Sn+1(1) with r = aH+b, a, b ∈
R and (n− 1)a2 − 4n+ 4nb ≥ 0. Then we have

(2.15) |∇B|2 ≥ n2|∇H|2.

Lemma 2.2. Let Mn be a complete hypersurface of Sn+1(1) with r = aH +
b, a, b ∈ R. Then we have

□(nH) ≥ |∇B|2 − n2|∇H|2

+ |ϕ|2
(
− |ϕ|2 − n(n− 2)√

n(n− 1)
|H||ϕ|+ n(1 +H2)

)
.(2.16)

Proof. First, from (2.12), we have

1

2
△|B|2 =

1

2
△

∑
i,j

h2
ij =

∑
i,j

hij△hij +
∑
i,j,k

h2
ijk

=
∑
i,j,k

h2
ijk + n

∑
i,j

hijHij + n(|B|2 − nH2) + nHf3 − |B|4,

where f3 =
∑

i,j,k hijhjkhki. On the other hand, from Gauss equation and
r = aH + b, we have

△|B|2 = △(n2H2 − n(n− 1)(r − 1))

= △(n2H2 − n(n− 1)(aH + b− 1))

= △(n2H2 − (n− 1)anH) = △(nH − 1

2
(n− 1)a)2.(2.17)
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Then from (2.17) and Okumura’s inequality [10], we get

□(nH) =
∑
i,j

((nH − 1

2
(n− 1)a)δij − hij)(nH)ij

= (nH − 1

2
(n− 1)a)△(nH)−

∑
i,j

hij(nH)ij

= (nH − 1

2
(n− 1)a)△(nH − 1

2
(n− 1)a)−

∑
i,j

hij(nH)ij

=
1

2
△(nH − 1

2
(n− 1)a)2 − |∇(nH − 1

2
(n− 1)a)|2

−
∑
i,j

hij(nH)ij

=
1

2
△(nH − 1

2
(n− 1)a)2 − n2|∇H|2 −

∑
i,j

hij(nH)ij

=
1

2
△|B|2 − n2|∇H|2 −

∑
i,j

hij(nH)ij

=
∑
i,j,k

h2
ijk − n2|∇H|2 + n(|B|2 − nH2) + nHf3 − |B|4

≥ |∇B|2 − n2|∇H|2

+ |ϕ|2
(
− |ϕ|2 − n(n− 2)√

n(n− 1)
|H||ϕ|+ n(1 +H2)

)
.(2.18)

□

On the other hand, we choose e1, . . . , en such that hij = λiδij , then we can
deduce from (2.9) and (2.12) that

(2.19)
1

2
△|B|2 =

∑
i,j,k

h2
ijk +

∑
i,j

hij(nH)ij +
1

2
Rijij(λi − λj)

2

and, as (2.18),

□(nH) =
1

2
△|B|2 − n2|∇H|2 −

∑
i,j

hij(nH)ij

=
∑
i,j,k

h2
ijk − n2|∇H|2 + 1

2
Rijij(λi − λj)

2(2.20)

≥ |∇B|2 − n2|∇H|2 + 1

2
Rijij(λi − λj)

2.

Proposition 2.3. Let Mn be a complete hypersurface of Sn+1(1) with bounded
mean curvature. If r = aH + b, b ≥ 1, then there is a sequence of points
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{pk} ∈ Mn such that

lim
k→∞

nH(pk) = n supH; lim
k→∞

|∇(nH)(pk)| = 0; lim sup
k→∞

(□(nH)(pk)) ≤ 0.

Proof. Choose a local orthonormal frame field e1, . . . , en at a neighbourhood
of p ∈ Mn such that hij = λiδij . Thus

(2.21) □(nH) =
∑
i

[(nH − 1

2
(n− 1)a)− λi](nH)ii.

If H ≡ 0, the proposition is obvious. Let us suppose that H is not identically
zero. By changing the orientation of Mn if necessary, we may assume supH >
0. From Gauss equation, we have

λ2
i ≤ |B|2 = n2H2 − n(n− 1)(r − 1)

= n2H2 − n(n− 1)(aH + b− 1)

= (nH)2 − (n− 1)a(nH)− n(n− 1)(b− 1)

= (nH − 1

2
(n− 1)a)2 − 1

4
(n− 1)((n− 1)a2 − 4n+ 4nb)

≤ (nH − 1

2
(n− 1)a)2, (i = 1, 2, . . . , n).(2.22)

Therefore

(2.23) |λi| ≤
∣∣nH − 1

2
(n− 1)a

∣∣, (i = 1, 2, . . . , n).

and

(2.24) Rijij = 1 + λiλj ≥ 1− (nH − 1

2
(n− 1)a)2.

Because H is bounded, it follows from (2.24) that the sectional curvatures are
bounded from below. Therefore we may apply generalized maximum principle
from [11,12] to nH, obtaining a sequence of points {pk} ∈ Mn such that
(2.25)

lim
k→∞

nH(pk) = n supH; lim
k→∞

|∇nH(pk)| = 0; lim sup
k→∞

((nH)ii(pk)) ≤ 0.

From Gauss equation, we have

|B|2 = n2H2 + n(n− 1)(1− aH − b),(2.26)

and then

nH[nH − (n− 1)a] = n(n− 1)(b− 1) + |B|2 ≥ 0,

if b ≥ 1. If |B|2 = 0, from |B|2 ≥ nH2, we deduce that H = 0 which is the
trivial case. So b > 1 or |B|2 ̸= 0 which implies H ̸= 0. When H ̸= 0, we can
obtain from (2.26) that

−n− 1

2
a =

1

2nH

(
|B|2 − n2H2 + n(n− 1)(b− 1)

)
.
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Therefore,

nH − n− 1

2
a− λi

= nH − λi +
1

2nH

(
|B|2 − n2H2 + n(n− 1)(b− 1)

)
=

n− 1

2H
(b− 1) +

1

2nH

(
|B|2 + n2H2 − 2nHλi

)
.(2.27)

Observe now that

|B|2 + n2H2 − 2nHλi =

n∑
j=1

λ2
j +

( n∑
j=1

λj

)2

− 2
( n∑

j=1

λj

)
λi

=
n∑

j=1,j ̸=i

λ2
j +

( n∑
j=1,j ̸=i

λj

)2

≥ 0.(2.28)

So (2.27), (2.28) and b ≥ 1 imply that

(2.29) nH − n− 1

2
a− λi ≥ 0.

On the other hand, from (2.23) we get

nH(pk)−
1

2
(n− 1)a− λi(pk)

≤ nH(pk)−
1

2
(n− 1)a+ |λi(pk)|

≤ 2nH(pk)− (n− 1)a.(2.30)

Using once more the fact that H is bounded, from (2.29) and (2.30), we infer
that nH(pk) − 1

2 (n − 1)a − λi(pk) is nonnegative and bounded. By applying
□(nH) at pk, taking the limit and using (2.25), we have

lim sup
k→∞

(□(nH)(pk))

≤
∑
i

lim sup
k→∞

[(nH − 1

2
(n− 1)a)− λi](pk)(nH)ii(pk) ≤ 0.

□

3. Proof of the main result

Proof of Theorem 1.4. If Mn is minimal, i.e., if H ≡ 0, then r = b ≥ 1.
So, from Gauss equation, we have |B|2 ≡ 0 and Mn is totally geodesic. Let
us suppose that H is not identically zero. In this case, by Proposition 2.3 it is
possible to obtain a sequence of points {pk} ∈ Mn such that

(3.1) lim sup
k→∞

(□(nH)(pk)) ≤ 0, lim
k→∞

H(pk) = supH > 0.
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Moreover, using the Gauss equation, we have that

(3.2) |ϕ|2 = |B|2 − nH2 = n(n− 1)(H2 − aH − b+ 1).

In view of lim
k→∞

H(pk) = supH and a ≤ 0, (3.2) implies that lim
k→∞

|ϕ|2(pk) =

sup |ϕ|2. Now we consider the following polynomial given by

(3.3) PsupH(x) = −x2 − n(n− 2)√
n(n− 1)

supHx+ n(1 + supH2).

Because the discriminant of PsupH(x) is always positive, the smallest root of
PsupH(x) is negative and the biggest root µ of PsupH(x) is positive. We claim
that PsupH(sup |ϕ|) ≥ 0. It’s easy to check that sup |ϕ|2 − µ2 ≤ 0 provided
b ≥ n−2

n−1 . In fact,

(sup |ϕ|)2 = sup |ϕ|2 = n(n− 1)(supH2 − a supH − b+ 1)

≤ n(n− 1)(supH2 − b+ 1),(3.4)

it is straightforward to verify that

sup |ϕ|2 − µ2 ≤ n− 2

2(n− 1)

(
n2 supH2 − n supH

√
n2 supH2 + 4(n− 1)

+
2n(n− 1)

n− 2
(−(n− 1)b+ (n− 2))

)
.(3.5)

It can be easily seen that sup |ϕ|2 − µ2 ≤ 0 if and only if

n2 supH2 − n supH
√

n2 supH2 + 4(n− 1)

− 2n(n− 1)

n− 2
((n− 1)b− (n− 2)) ≤ 0.

So, if b > 1, the last inequality is true. We deduce that sup |ϕ| ≤ µ and
PsupH(sup |ϕ|) ≥ 0.

Using Lemma 2.1 and evaluating (2.16) at the points pk of the sequence,
taking the limit and using (3.1), we obtain that

0 ≥ lim sup
k→∞

(□(nH)(pk)) ≥ sup |ϕ|2PsupH(sup |ϕ|) ≥ 0,

so sup |ϕ|2PsupH(sup |ϕ|) = 0. Then we have either sup |ϕ|2 = 0 which shows
that Mn is totally umbilical or PsupH(sup |ϕ|) = 0. So (2.16) is also equal-
ity, then the Okumura’s formula implies that Mn has two distinct principal
curvatures one of which is simple and Mn = S1(c)× Sn−1(

√
1− c2). □

Remark 3.1. Using our method, we can easily generalize Theorem 1.2 and
Theorem 1.3 to the complete case. But we don’t state it here.
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