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Abstract. In the present paper, measure differential equations involving

the distributional Henstock-Kurzweil integral are investigated. Theorems
on the existence and structure of the set of solutions are established by
using Schauder′s fixed point theorem and Vidossich theorem. Two ex-

amples of the main results paper are presented. The new results are
generalizations of some previous results in the literatures.
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1. Introduction

In this paper, we consider the following measure differential equation (MDE
for short) {

Dx = f(x, t) + g(x, t)Du,
x(a) = x0,

(1.1)

where t ∈ [a, b] ⊂ R, −∞ < a < b < +∞, x ∈ C([a, b]), u : [a, b] → R
is a right continuous function of bounded variation, f : Rn × [a, b] → Rn is
distributionally Henstock-Kurzweil integrable, g : Rn×[a, b] → Rn is Henstock-
Stieltjes (HS) integrable.

MDEs have been studied by many authors, we refer the readers to [5, 6,
11, 13, 15, 19] and the references therein. For instance, in [15], Tanwani, et al.
considered the MDE (1.1) in a special case where f(x, t) = f(x(t)), g(x, t) =
g(x(t)). Schmaedeke [11] considered the equation (1.1) in a complicated case
where g(x(t)) is a continuous n×m matrix. Furthermore, Das and Sharma [6]
generalized the results in [11] for a functional differential equation, i.e. Dx =
f(t, xt) + g(t, xt)Du.
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All these papers use the ordinary derivative to discuss the MDEs. In this
paper, we will use the distributional derivative to study the MDE (1.1). It is
well known that the notion of a distributional derivative is a general concept,
including ordinary derivatives and approximate derivatives. The distributional
Henstock-Kurzweil integral is defined by the distributional derivative. In this
case, we present some new results which are generalizations of the previous
results in [5, 19].

The paper is organized as follows. In Section 2, we introduce some fun-
damental concepts and basic results of the distributional Henstock-Kurzweil
integral. In Section 3, we apply the Schauder′s fixed point theorem to verify
the existence of solutions of the MDE (1.1). We also show that the set of solu-
tions of the MDE (1.1) is an Rδ by using the Vidossich theorem stated in [16].
Here, an Rδ is the intersection of a decreasing sequence of compact absolute
retracts (see [2] for details). In Section 4, we give two examples to show that
Theorem 3.3 in Section 3 is more extensive.

2. The distributional Henstock-Kurzweil integral

In this section, we present the definition and some basic properties of the
distributional Henstock-Kurzweil integral.

Define the space

C∞
c = {ϕ : R → R |ϕ ∈ C∞/R and has compact support in R},

where support of ϕ is denoted by supp(ϕ). A sequence {ϕn} ⊂ C∞
c converges

to ϕ ∈ C∞
c if there is a compact set K such that all ϕn have supports in K and

the sequence of derivatives ϕ
(m)
n converges to ϕ(m) uniformly on K for every

m ∈ N ∪ {0}, ϕ(0) = ϕ. Denote C∞
c endowed with this convergence property

by D. Also, ϕ is called a test function if ϕ ∈ D. The dual space to D is
denoted by D′ and its elements are called distributions. That is, if f ∈ D′ then
f : D → R, and we write ⟨f, ϕ⟩ ∈ R, for ϕ ∈ D.

For all f ∈ D′, we define the distributional derivative Df of f to be a
distribution satisfying ⟨Df, ϕ⟩ = −⟨f, ϕ′⟩, where ϕ is a test function and ϕ′

is the ordinary derivative of ϕ. With this definition, all distributions have
derivatives of all orders and each derivative is a distribution.

Let (a, b) be an open interval in R. We define

D((a, b)) = {ϕ : (a, b) → R | ϕ ∈ C∞
c and

has compact support in (a, b)} .

The dual space of D((a, b)) is denoted by D′((a, b)).
Define

BC = {F ∈ C([a, b]) | F (a) = 0}.
BC is a Banach space with the uniform norm ∥F∥∞ = max[a,b] |F |.

Now we are able to introduce the definition of the DHK-integral.
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Definition 2.1. A distribution f is distributionally Henstock-Kurzweil inte-
grable or briefly DHK-integrable on [a, b] if f is the distributional derivative of
a continuous function F ∈ BC .

The DHK-integral of f on [a, b] is denoted by (DHK)
∫ b

a
f = F (b), where F

is called the primitive of f and “(DHK)
∫
” denotes the DHK-integral. Notice

that if f ∈ DHK then f has many primitives in C([a, b]), but f has exactly one
primitive in BC .

The space of DHK-integrable distributions is defined by

DHK = {f ∈ D′((a, b)) | f = DF for some F ∈ BC}.
With this definition, if f ∈ DHK then, for all ϕ ∈ D((a, b)),

⟨f, ϕ⟩ = ⟨DF, ϕ⟩ = −⟨F, ϕ′⟩ = −
∫ b

a

Fϕ′.

Now we show that DHK-integral includes the HK-integral, and hence in-
cludes Lebesgue and Riemann integrals (See [8–10] for details). So our results
will extend the previous ones in [3, 4].

Remark 2.2. In [9], Lee pointed out that if F is a continuous function and
pointwise differentiable nearly everywhere on [a, b], then F is ACG∗. So the
primitive F of the HK-integrable function f is generalized absolutely continu-
ous or briefly ACG∗ (see [9, 10]). Furthermore, if F is a continuous function
which is differentiable nowhere on [a, b], then F is not ACG∗. Therefore, if
F ∈ C([a, b]) but is differentiable nowhere on [a, b], then DF exists and is
DHK-integrable but not HK-integrable. Conversely, if F is ACG∗ then it be-
longs to C([a, b]). Hence F ′ is not only HK-integrable but also DHK-integrable.

Let us introduce some basic properties of the distributional Henstock-Kurzweil
integral needed later.

Lemma 2.3 ( [14, Theorem 4], Fundamental Theorem of Calculus).

(a) Let f ∈ DHK , and define F (t) = (DHK)
∫ t

a
f . Then F ∈ BC and DF = f .

(b) Let F ∈ C([a, b]). Then (DHK)
∫ t

a
DF = F (t)− F (a) for all t ∈ [a, b].

From definition of the positive measure, we impose a partial ordering on
DHK : for f, g ∈ DHK , we say that f ⪰ g (or g ⪯ f) if and only if f − g is a

positive measure on [a, b]. By this definition, if f, g ∈ DHK then (DHK)
∫ b

a
f ≥

(DHK)
∫ b

a
g, whenever f ⪰ g. See [1] for details.

It is shown that the following result holds.

Lemma 2.4 ( [1, Corollary 1]). If f1, f2, f3 ∈ D′((a, b)), f1 ⪯ f2 ⪯ f3, and if
f1 and f3 are DHK-integrable, then f2 is also DHK-integrable.

We now define the Alexiewicz norm by ∥f∥ = ∥F∥∞ = max[a,b] |F | for
f ∈ DHK and F ∈ BC with DF = f . Also, we say a sequence {fn} ⊂ DHK

converges strongly to f ∈ DHK if ∥fn − f∥ → 0 as n → ∞.
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Then the following holds.

Lemma 2.5 ( [14, Theorem 2]). With the Alexiewicz norm, DHK is a Banach
space.

The Lebesgue integral has very important applications since the space L1

of Lebesgue integrable functions is a Banach space and there are excellent
convergence theorems. We have shown that DHK is a Banach space, and
by [14], BV is the dual space of DHK . Next we will look at convergence
theorems of DHK-integral.

Lemma 2.6 ( [1, Corollary 5, Dominated convergence theorem for the DHK-
integral]). Let {fn}∞n=0 be a sequence in DHK such that fn → f in D′. Suppose
there exist f−, f+ ∈ DHK satisfying f− ⪯ fn ⪯ f+, ∀ n ∈ N. Then f ∈ DHK

and limn→∞(DHK)
∫ b

a
fn = (DHK)

∫ b

a
f .

If g : [a, b] → R, its variation is V g = sup
∑

n |g(tn) − g(sn)|, where the
supremum is taken over every sequence {(tn, sn)} of disjoint intervals in [a, b].
If V g < ∞ then g is called a function with bounded variation. Denote the set
of functions with bounded variation by BV. As it is known that the dual space
of DHK is BV (see details in [14]), the next results have been presented.

Lemma 2.7 ( [14, Definition 6, Integration by parts]). Let f ∈ DHK , and

g ∈ BV. Define fg = DH, where H(t) = F (t)g(t)−
∫ t

a
Fdg. Then fg ∈ DHK

and ∫ b

a

fg = F (b)g(b)−
∫ b

a

Fdg.

Lemma 2.8 ( [17, Theorem 2]). Let f(t) be a vector-valued function such that
f(t) is Henstock-Stieltjes integrable with respect to g(t) on [a, b]. If g(t) satisfies
Lipschitz condition on [a, b], then F (t) is continuous on [a, b], where

F (t) = (HS)

∫ t

a

f(s)dg(s).

Lemma 2.9 ( [18, Theorem 2]). Let g(t) be a function of bounded variation on
[a, b] and, {fn(t)}∞n=1 be a sequence of vector-valued functions such that fn(t)
is Henstock-Stieltjes integrable with respect to g(t) on [a, b]. If fn(t) converges
uniformly to f(t), then f(t) is Henstock-Stieltjes integrable with respect to g(t)
on [a, b] and

lim
n→∞

(HS)

∫ b

a

fn(t)dg(t) = (HS)

∫ b

a

f(t)dg(t).

3. Main results

In this section, we shall consider the existence of solutions and investigate
the topological characterization of the set of solutions of the MDE (1.1). The
main results are Theorems 3.3 and 3.5.
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Define

B = {x ∈ C([a, b]) : ∥x− x0∥∞ ≤ r, r > 0},

E = {(x, t) : t ∈ [a, b], x ∈ B}.

Now, we impose some assumptions on f and g in (1.1).
(C1) f(x(·), ·) is DHK -integrable for each x ∈ B;
(C2) f(·, t) is continuous for all t ∈ [a, b];
(C3) There exist f−, f+ ∈ DHK such that f−(·) ⪯ f(x, ·) ⪯ f+(·)

for each x ∈ B;
(C4) g(x(·), ·) is Henstock-Stieltjes integrable for each x ∈ B;
(C5) g(·, t) is continuous for all t ∈ [a, b];
(C6) There exist g−, g+ such that

g−(·) ≤ g(x, ·) ≤ g+(·), (x, t) ∈ E,

where g−, g+ are Henstock-Stieltjes (HS) integrable.
Here f(x(·), ·) is DHK-integrable if each component of f(x(·), ·) is DHK-

integrable. In the space of DHK , f ⪯ g if and only if f i ⪯ gi, where f i, gi

denote the ith component of f, g, i = 1, 2, · · · , n.
The following two lemmas will play an important role to study the existence

of solutions of MDE (1.1).

Lemma 3.1. Under assumptions (C1) − (C6), the solutions of MDE (1.1)
satisfy the integral equation for all t ∈ [a, b],

(3.1) x(t) = x0 + (DHK)

∫ t

a

f(x(s), s)ds+ (HS)

∫ t

a

g(x(s), s)du(s).

The converse also holds.

Proof. It follows from (C3), (C6) and Lemma 2.4 that the two integrals (DHK)∫ t

a
f(x(s), s)ds and (HS)

∫ t

a
g(x(s), s)du(s) exist. Denote Xi = xi(·), where

xi(·) is the ith component of x(·).
Let x(·) satisfies (3.1). Obviously, x(a) = x0. Since φ ∈ C∞

c ((a, b)), define

⟨Xi, φ⟩ =
∫ b

a

[
xi
0 +

∫ t

a

f i(x(s), s)ds

+

∫ t

a

gi(x(s), s)du(s)

]
φ(t)dt, i = 1, 2, · · · , n.

(3.2)
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Therefore,

⟨DXi, φ⟩ = −⟨Xi, φ
′
⟩

= −
∫ b

a

[
xi
0 +

∫ t

a

f i(x(s), s)ds

+

∫ t

a

gi(x(s), s)du(s)

]
φ

′
(t)dt,

i = 1, 2, · · · , n.

(3.3)

Since φ ∈ C∞
c ((a, b)), using Lemma 2.7, we have

−
∫ b

a

[
xi
0 +

∫ t

a

f i(x(s), s)ds

]
φ

′
(t)dt =

∫ b

a

φ(t)f i(x(t), t)dt,

i = 1, 2, · · · , n.
(3.4)

Moreover,
∫ t

a
gi(x(s), s)du(s) is right continuous on [a, b],∫ b

a

[∫ t

a

gi(x(s), s)du(s)

]
φ

′
(t)dt

=−
∫ b

a

φ(t)d

[∫ t

a

gi(x(s), s)du(s)

]
=−

∫ b

a

gi(x(t), t)φ(t)du(t), i = 1, 2, · · · , n.

(3.5)

It follows from (3.4), (3.5) that

⟨DXi, φ⟩ =
∫ b

a

φ(t)f i(x(t), t)dt+

∫ b

a

gi(x(t), t)φ(t)du(t),

i = 1, 2, · · · , n.
(3.6)

Thus, DXi is identified with f i(x(t), t) + gi(x(t), t)Du, i = 1, 2, · · · , n. There-
fore, x(·) satisfies (1.1).

On the other side, suppose that x(·) satisfies (1.1). According to assumptions
(C1) and (C4), by integrating equation (1.1) from a to t, we obtain that the
integral equation (3.1) holds.

Hence the MDE (1.1) is equivalent to the integral equation (3.1).
This completes the proof. □

Lemma 3.2 ( [12, Theorem 6.15]). Let M be a convex, closed subset of a
normed space X. Let T be a continuous map of M into a compact subset K of
M . Then T has a fixed point.

The first main result based on Lemma 3.2, is the existence of solutions of
the MDE (1.1).
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Theorem 3.3. Assume that the functions f, g in (1.1) satisfy assumptions
(C1)− (C6). Then there exists at least one solution of the MDE (1.1).

Proof. We first assume that

h1 = max
t∈[a,b]

{∣∣∣∣(DHK)

∫ t

a

f−

∣∣∣∣ , ∣∣∣∣(DHK)

∫ t

a

f+

∣∣∣∣} .

Then for each t ∈ [a, b], we have

(3.7) − h1 ≤ (DHK)

∫ t

a

f−, (DHK)

∫ t

a

f+ ≤ h1.

According to Lemma 2.8, let

h2 = max
t∈[a,b]

{∣∣∣∣(HS)

∫ t

a

g−du

∣∣∣∣ , ∣∣∣∣(HS)

∫ t

a

g+du

∣∣∣∣} .

It follows from Lemma 2.4 and assumptions (C3) and (C6) that

(3.8)

∣∣∣∣(DHK)

∫ t

a

f(x(s), s)ds

∣∣∣∣ ≤ h1,

(3.9)

∣∣∣∣(HS)

∫ t

a

g(x(s), s)du(s)

∣∣∣∣ ≤ h2.

Let B = {x ∈ C([a, b]) : ∥x− x0∥∞ ≤ r, r = h1 + h2 > 0}. For each x ∈ B,
we define an operator T : B → C([a, b]), satisfying

T (x)(t) = x0 + (DHK)

∫ t

a

f(x(s), s)ds

+ (HS)

∫ t

a

g(x(s), s)du(s), t ∈ [a, b].

(3.10)

Now we prove this theorem in three steps.
Step 1: T : B → B.
By (3.10),

∥T (x)− x0∥∞ = max
t∈[a,b]

∣∣∣∣(DHK)

∫ t

a

f(x(s), s)ds

+(HS)

∫ t

a

g(x(s), s)du(s)

∣∣∣∣ .(3.11)

Furthermore, by using (3.7)-(3.11), we have

∥T (x)− x0∥∞ ≤ max
t∈[a,b]

∣∣∣∣(DHK)

∫ t

a

f(x(s), s)ds

∣∣∣∣
+ max

t∈[a,b]

∣∣∣∣(HS)

∫ t

a

g(x(s), s)du(s)

∣∣∣∣
≤ h1 + h2 = r.

(3.12)
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This implies that T (x) ∈ B. Hence, T (B) ⊆ B.
Step 2: T (B) is equi-continuous.
Let t1, t2 ∈ [a, b], t1 < t2, x ∈ B. By (C3) and (C6), one has

|Tx(t1)− Tx(t2)| ≤
∣∣∣∣(DHK)

∫ t2

t1

f(x(s), s)ds

∣∣∣∣
+

∣∣∣∣(HS)

∫ t2

t1

g(x(s), s)du(s)

∣∣∣∣
≤

∣∣∣∣(HS)

∫ t2

t1

g−(s)du(s)

∣∣∣∣
+

∣∣∣∣(HS)

∫ t2

t1

g+(s)du(s)

∣∣∣∣
+

∣∣∣∣(DHK)

∫ t2

t1

f−

∣∣∣∣+ ∣∣∣∣(DHK)

∫ t2

t1

f+

∣∣∣∣ .

(3.13)

Since g−, g+ ∈ HS and u(t) is a right continuous function of bounded varia-
tion on [a, b], by Lemma 2.8, we know that (HS)

∫ t2
t1

g−du(s) and (HS)
∫ t2
t1

g+du(s)

are continuous on [a, b] and, hence, uniformly continuous on [a, b]. Besides,
f−, f+ ∈ DHK , the primitives of them are also uniformly continuous on [a, b].
Thus, T (B) is equiuniformly continuous on [a, b] for all x ∈ B.

In view of Ascoli-Arzelà theorem, T (B) is relatively compact.
Step 3: T is a continuous mapping.
Let x ∈ B, {xn}n∈N be a sequence in B and xn → x as n → ∞.
By (C2) and (C5), one has

f(xn, ·) → f(x, ·) as n → ∞,

g(xn, ·) → g(x, ·) as n → ∞.

According to assumption (C1) and Lemma 2.6, we have

lim
n→∞

(DHK)

∫ t

a

f(xn(s), s)ds = (DHK)

∫ t

a

f(x(s), s)ds, t ∈ [a, b].

It follows from Lemma 2.9 that

lim
n→∞

(HS)

∫ t

a

g(xn(s), s)du(s) = (HS)

∫ t

a

g(x(s), s)du(s).

Then limn→∞ T (xn) = T (x), so T is continuous.
Hence T satisfies the hypotheses of Lemma 3.2, then there exists a fixed

point of T which is a solution of the MDE (1.1). □

We now consider the topological characterization of the set of solutions of
the MDE (1.1).

Let Cu(K,Y ) be the space of all continuous mappings x : K → Y , where K
is a compact convex subset of a normed space and Y is a metric space equipped
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with the topology of uniform convergence. Denote by B(t0, ε) the closed ball
with center t0 and radius ε. Denote by x|A the restriction of the map x to A.

Now we present the well-known Vidossich theorem.

Lemma 3.4 ( [16, Corollary 1.2, Vidossich theorem]). Let K be a compact
convex subset of a normed space, Y a closed convex subset of a Banach space
Y0, F a compact mapping Cu(K,Y ) → Cu(K,Y ). Suppose that there exist
t0 ∈ K and y0 ∈ Y such that the following two conditions hold.
(i) F (x)(t0) = y0 (x ∈ C(K,Y )).
(ii) For every ε > 0,

x|Kε = y|Kε ⇒ F (x)|Kε = F (y)|Kε (x, y ∈ C(K,Y )),

where Kε = B(t0, ε) ∩K. Then the set of fixed points of F is an Rδ.

Recall that if a set is an Rδ, it is homeomorphic to the intersection of a
decreasing sequence of compact absolute retracts. Furthermore, G. Vidossich
pointed out that Rδ is a nonempty, compact and connected set in [16].

The second main result concerned with the structure of the set of solutions
of the MDE (1.1) can be stated as follow.

Theorem 3.5. Under the above assumptions (C1) − (C6), the solution set of
MDE (1.1) on [a, b] is an Rδ.

Proof. In Theorem 3.3, we have verified that the mapping T : B → B is
compact. Hence, conditions (i) and (ii) of Lemma 3.4 hold. Therefore, the
solution set of the MDE (1.1) is an Rδ. □

4. Examples

In this section, we first show a lemma which is obtained by Y. T. Xu in
literature [19]. And then, we will give two examples to explain that Theorem
3.3 in Section 3 is more generalized than Theorem 6.2 in [19] and Theorem 1
in [5].

Lemma 4.1 ( [19, Theorem 6.2]). Let f and g in (1.1) satisfy the following
conditions:

(1) f(x, t) is measurable in t for each x and continuous in x for all t;
(2) there exists a Lebesgue integrable function f(t) such that

|f(x, t)| ≤ f(t), (x, t) ∈ E;

(3) g(x, t) is continuous in x for all t and du−integrable for each
x ∈ BV([a, b], B);

(4) there exists a dVu−integrable function g(t) such that

|g(x, t)| ≤ g(t), (x, t) ∈ E,

where Vu denotes the total variation function of u.
Then there exists at least one solution of the MDE (1.1).
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We can see that if f and g in (1.1) satisfy assumptions (1)− (4) in Lemma
4.1, then f and g satisfy (C1)−(C6). According to Theorem 3.3, the MDE (1.1)
has at least one solution. However, the following example shows that Lemma
4.1 is only a special case of Theorem 3.3.

Example 1. Consider the following MDE

(4.1) Dx(t) = r(t) + x(t) +
2

t+ 1
x(t)DH(t), x(0) = 0, t ∈ [0, 2],

where x(t) is continuous and H(t) is the Heaviside function, i.e., H(t) = 0 if
t < 0 and H(t) = 1 if t ≥ 0, then DH = δ is the Dirac measure. Let r(t) be

the distributional derivative of Riemann function R(t) =
∑∞

n=1
sinn2πt

n2 . Then
equation (4.1) has at least one solution. Moreover, the solution set is an Rδ.

We can assume that f(x, t) = r(t)+x(t), g(x, t) = 2
t+1x(t) and u(t) = H(t),

then (4.1) can be regarded as the MDE (1.1).
It is easy to see that f(x, t) is continuous in x and DHK−integrable on [0, 2].

Since x(t) is continuous, there exists M0 > 0 such that −M0 ≤ x(t) ≤ M0.
Note that r(t) is DHK−integrable, we have r(t)±M0 ∈ DHK . Moreover,

r(t)−M0 ⪯ f(x, t) ⪯ r(t) +M0, t ∈ [0, 2].

Therefore, f(x, t) satisfies (C1)− (C3).
Obviously, 2

t+1x(t) is continuous in x. Because H(t) is of bounded variation

and right continuous on [a, b], so (HS)
∫ t

a
2

s+1x(s)dH(s) exists. Hence, we

obtain that (C4)− (C6) hold.
Applying Theorem 3.3, we can obtain that equation (4.1) has at least one

solution. Furthermore, by using Theorem 3.5, one can see that the solution set
is an Rδ.

Remark 4.2. Let F be the primitive of f . Since F is continuous but not
ordinarily differentiable in [7], f is neither Henstock-Kurzweil integrable nor
Lebesgue integrable in the above example. So f does not satisfy the hypotheses
(1) − (2) in Lemma 4.1. Hence Theorem 6.2 in [19] is not applicable for the
case of Example 1.

Moreover, we can use a similar method to verify that Theorem 3.3 is a
generalization of Theorem 1 in [5], where g(x, t) is an n×n matrix and u ∈ Rn

is a vector.
Let us give another example to illustrate this.

Example 2. Consider the following MDE

(4.2) Dx = r(t) + x(t) +A(t)x(t)Du, x(a) = 0, t ∈ [a, b],
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where

(4.3) x(t) =


x1(t)
x2(t)

· · ·
xn(t)

 , r(t) =


r1(t)

r2(t)
· · ·

rn(t),

 ,

(4.4) A(t) =


et 0 0 0
0 et 0 0
· · · · · · · · · · · ·
0 0 0 et

 , u =


u1

u2

· · ·
un


and xi(t) is continuous, ri(t) is the distributional derivative of the Riemann

function Ri(t) =
∑∞

n=1
sinn2πt

n2 , Dui = δ is the Dirac measure, i = 1, 2, · · · , n.
Then (4.2) has at least one solution.

Proof. According to (4.3) and (4.4), let

(4.5) f(x, t) = r(t) + x(t) =


x1(t) + r1(t)
x2(t) + r2(t)

· · ·
xn(t) + rn(t)

 ,

(4.6) g(x, t) = A(t)x(t) =


et 0 0 0

0 et 0 0
· · · · · · · · · · · ·
0 0 0 et




x1(t)

x2(t)
· · ·

xn(t)

 .

Since xi(t) is continuous, there exists Ni > 0 such that −Ni ≤ xi(t) ≤
Ni. Note that ri(t) is DHK−integrable, thus ri(t) ± Ni ∈ DHK . Let N =
max1≤i≤n Ni, one has

r(t)−N ⪯ f(x, t) ⪯ r(t) +N, t ∈ [a, b].

It is clear that g(x, t) is continuous in x, etxi(t) is Henstock-Kurzweil inte-
grable on [a, b] and u is bounded variation on [a, b], f(x, t) and g(x, t) satisfy
the assumptions of Theorem 3.3. So equation (4.2) has at least one solution.
However, equation (4.2) does not satisfy the conditions of Theorem 1 in [5].
Hence, Theorem 1 in [5] is not applicable. □

It follows from Examples 1 and 2 that Theorem 3.3 in Section 3 generalizes
not only Theorem 6.2 in [19] but also Theorem 1 in [5].
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