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Abstract. In this paper we define a new type of rings “almost power-

hermitian rings” (a generalization of almost hermitian rings) and establish
several sufficient conditions over a ring R such that, every regular matrix
admits a diagonal power-reduction.
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1. Introduction

The purpose of this paper is to investigate power-diagonalizability of regular
matrices over some rings. Let us say that an m × n matrix A over a ring R
admits a diagonal reduction if there exist invertible matrices C and D such that
CAD is a diagonal matrix, where by the diagonal matrix, we mean a matrix
(aij)m×n, such that aij = 0 for all i ̸= j, we also say that A admits a diagonal
power-reduction provided that there exists a t ∈ N, such that (aijIt)mt×nt is
a diagonal matrix. In 1861, Smith [9] proved that over the ring of integers,
every matrix admits a diagonal reduction. This subject was investigated by
Dickson [3], Wedderborn [12], Warden [11] and Jacobson [5] over some com-
mutative and non commutative Euclidean domains and commutative principal
ideal domains. Teichmuller [10] extended it over noncommutative principal
ideal domains. The following question was proposed by Kaplansky in 1973 [6].
Kaplansky asked for a ring R and a matrix A over R, is it possible to find
invertible matrices B and C such that BAC is a diagonal matrix.
In 1974 Levy in [7] proved that the answer of Kaplansky’s question is yes for
square matrices over serial rings, even though we have some rectangular matri-
ces that don’t admit diagonal reduction. For example if R isn’t a Bezout ring
we have some a, b ∈ R such that aR + bR ̸= cR for all c ∈ R and so
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isn’t diagonalized. Menal and Moncasi in [8] proved that all rectangular matri-
ces over a given regular ring R are equivalent to a diagonal matrix if and only
if the following cancellation law holds, for all finitely generated projective right
R-modules:

2R⊕A ∼= R⊕B =⇒ R⊕A ∼= B.

In 1997 Ara, Goodearl, O’mera and Pardo in [1] extended that from regular
rings to exchange rings and showed that every regular matrix over an exchange
ring R admits a diagonal reduction if and only if 2R⊕A ∼= R⊕B implies that
R⊕A ∼= B for all finitely generated projective R-modules A and B.
Here we show that an m × n matrix A = (aij)m×n may not admit a diagonal
reduction, but we may find some t ∈ N such that (aijIt) admits a diagonal
reduction. For example over a regular Dedekind domain which is not Bezout,
There exist regular matrices that don’t admit diagonal reduction, while by
Lemma 8, we show that every regular matrix over such a ring admits diagonal
power reduction.

Throughout this paper R is an associative ring. Ideals are two sided ideals
and modules are right R-modules. We also use Mn(R) for the ring of n × n
matrices over R with identity In, GLn(R) the invertible n×n matrices over R
and FP (R) the class of finitely generated projective R-modules.

2. Almost power-hermitian ring

Definition 2.1. Following [2], We say that R satisfies power-substitution in
the case where aR + bR = R with a, b ∈ R implies that there exist n ∈ N and
Y ∈ Mn(R) such that aIn + bY ∈ GLn(R).

As we see in the following example a ring R may satisfy power-substitution
while Mn(R) for some n ∈ N does not. Recall that a ring R satisfies stable
power-substitution in the case that for any n ∈ N, Mn(R) satisfies power-
substitution.

Example 2.2. Let X = [−1, 1]4. Then CR(X) satisfies power-substitution,
while M3(CR(X)) does not. (see [2], Example 10.4.1)

Kaplansky defined a ring R to be right(left) Hermite provided that every
1× 2(2× 1) matrix over R admits a diagonal reduction (See [1]).

Definition 2.3. A ring R is said to be an almost hermitian ring provided that
every regular matrix over R admits a diagonal reduction (see [2]).

Recall that a ring R satisfies the n-stable range condition if and only if
ax+ b = 1 with a ∈ Rn, x ∈n R, b ∈ R implies that there exists some y ∈ Rn

such that a+ by ∈ Rn is unimodular.

Proposition 2.4. Let R be a separative exchange ring. Then the following are
equivalent:
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(1) R satisfies the finite stable range condition.
(2) R satisfies 2-stable range condition.
(3) For any A,B ∈ FP (R), 2R⊕A ∼= R⊕B implies that R⊕A ∼= B

Proof. See [2], Proposition 12.1.12. □

Example 2.5. Let V be an infinite-dimensional vector space over a division
ring D and let R = EndD(V ). Then R is not an almost hermitian ring.

As V is an infinite dimensional vector space, we have V ∼= V ⊕ V , so

EndD(V ) = HomD(V, V ) ∼= HomD(V ⊕ V, V ) ∼= 2HomD(V, V ) = 2EndD(V )

=⇒ 2R ∼= R.

It is well known that R is a regular ring and satisfies general comparability, So
R is a separative exchange ring. If 2R ⊕ A ∼= R ⊕ B implies that R ⊕ A ∼= B
for all finitely generated projective R-modules A,B, we have R ∼= 0, that is a
contradiction. Then R is not an almost hermitian ring.

Definition 2.6. A ring R is said an almost power-hermitian ring provided that
every regular matrix over R admits a diagonal power-reduction.

Proposition 2.7. Let R be an exchange ring satisfying stable power-substitution.
Then R is an almost power-hermitian ring.

Proof. Following [2], Theorem 10.4.14, every regular matrix over R admits a
diagonal reduction, so R is an almost power-hermitian ring. □

Corollary 2.8. Let R be an exchange ring satisfies n-stable range condition
such that Mn(R) has power-substitution property. Then R is an almost power-
hermitian ring.

Proof. As R satisfies stable power-substitution property, so R is an almost
power-hermitian ring. □

Corollary 2.9. Let R be a commutative exchange ring having power-substitution
property, then R is an almost power-hermitian ring.

Proof. We know from [4], Proposition 2.9, that R has stable power-substitution
property, so the result is obtained from Proposition 2.7. □

Lemma 2.10. Let R be a regular ring satisfying 2-stable range condition, then
every matrix over R admits a diagonal power-reduction.

Proof. It suffices to show that every 1 × 2 matrix over R admits a diagonal
power-reduction.
Let A = (aij)1×2, for positive integer t = 2, we have (aijIt)2×4 is a 2×4 matrix,
now we have |2− 4| = 2 and the stable range of R is 2, so we deduce from [13]
that A = (aij)1×2 admits diagonal power-reduction. □
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Example 2.11. Let R = Z[
√
−5], then R isn’t a hermitian ring.

Set A =
(
2 1 +

√
−5

)
A doesn’t admit diagonal reduction since 2R+(1+√

−5)R is a right ideal of R that can’t be generated by only one element, and
it’s hard to investigate wether R is an almost power-hermitian ring, however R
is a Dedekind domain so its stable range is 2.

We use F (Q) to denote the category of of all nQ for n ≥ 0 and all mor-
phisms from F1 to F2 for each F1, F2 ∈ F (Q) and M(Q) to denote the category
(M,morM(Q), ◦), where M is the set of all nonnegative integers and for every
m,n ≥ 0, morM (Q)(n,m) is the set of all m × n matrices over EndR(Q) and
◦ is the usual product of matrices.

Lemma 2.12. Let Q be a right R-module. Then there exist covariant functor
F : F (Q) −→ M(Q) and G : M(Q) −→ F (Q) such that FG = IM(Q), GF =
IF (Q) both identity functors

Proof. It follows from [2], Lemma 14.1.2. □
Recall that a right R-homomorphism f : 2Q −→ Q is said to admits a

diagonal reduction if F (f) ∈ M1×2(End(Q)) admits a diagonal reduction.
For a right R-module Q and a nonnegative integer n, we use λn to denote the
injection homomorphism from Q to 2nQ, (λn : Q −→ 2nQ) and Pn to stand
for the projection homomorphism from 2nQ to 2Q, (Pn : 2nQ −→ 2Q).

Definition 2.13. Let Q be an R-module and f : 2Q −→ Q be an R-homomorph-
ism. We say f admits a diagonal power-reduction where there exists n ∈ N
such that F (λnfPn) ∈ M1×2(End(2nQ)) admits a diagonal reduction. Here
λn : Q −→ 2nQ is injection and Pn : 2nQ −→ 2Q is projection map.

Recall that an R-homomorphism f ∈ Hom(mQ,nQ) for nonnegative inte-
gers n,m is said to be regular if there exists an R-homomorphism g : nQ −→
mQ such that fogof = f .

Lemma 2.14. Let Q be a right R-module, and let f : 2Q −→ Q be regular.
Then f admits a diagonal power-reduction if and only if there exist n ∈ N and
decomposition ker(λnfPn) ∼= K1⊕K2 such that K1⊕ im(λnfPn) ∼= nQ ∼= K2.

Proof. Assume there is a decomposition ker(λnfPn) ∼= K1⊕K2 and n ∈ N such
that K1⊕im(λnfPn) ∼= nQ ∼= K2. Since f is regular, so λnfPn is regular, then
we haveK1⊕im(λnfPn) ∼= nQ ∼= im(λnfPn)⊕coker(λnfPn). By Lemma 2.12,
there is a regular g : nQ −→ nQ such that ker(g) ∼= K1, im(g) ∼= im(fλnfPn)
and coker(g) ∼= coker(λnfPn). So we have (g, 0) : 2nQ −→ nQ such that
ker(g, 0) = ker(g) ⊕ nQ ∼= K1 ⊕ K2

∼= ker(λnfPn), im(g, 0) = im(g) ∼=
im(λnfPn) and coker(g, 0) = coker(g) ∼= coker(λnfPn). By virtue of [2],
Lemma 7.2.1, λnfPn admits a diagonal power-reduction. Conversely, assume
now that f : 2Q −→ Q admits a diagonal power-reduction. By definition we
have some n ∈ N such that λnfPn admits a diagonal reduction. Consider
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(g, 0) with g : nQ −→ nQ. Then g is also regular; hence, nQ ∼= ker(g)⊕ im(g).
By [2], Lemma 7.2.1 again, ker(λnfPn) ∼= ker(g, 0), im(λnfPn) ∼= im(g, 0) and
coker(λnfPn) ∼= coker(g, 0). It is easy to check that ker(g, 0) ∼= ker(g)⊕ nQ,
im(g, 0) ∼= im(g), coker(g, 0) ∼= coker(g). Set K1 = ker(g) and K2 = nQ.
Then ker(λnfPn) ∼= K1 ⊕K2, K1 ⊕ im(λnfPn) ∼= ker(g)⊕ im(g) ∼= nQ ∼= K2,
as required. □
Lemma 2.15. Let Q be a right R-module, and let f : 2Q −→ Q be regular.
Then f admits a diagonal power-reduction if and only if nQ⊕ coker(λnfPn) ∼=
ker(λnfPn) for some n ∈ N.

Proof. Assume that f admits a diagonal power-reduction. According to Lemma
2.14, there exists a decomposition ker(λnfPn) ∼= K1 ⊕ K2 such that K1 ⊕
im(λnfPn) ∼= nQ ∼= K2. Therefore ker(λnfPn) ∼= K1 ⊕ K2

∼= K1 ⊕ nQ ∼=
K1 ⊕ (coker(λnfPn)⊕ im(fλnfPn)) ∼= (K1 ⊕ im(λnfPn))⊕ coker(λnfPn) ∼=
coker(λnfPn) ⊕ nQ. Assume that nQ ⊕ coker(λnfPn) ∼= ker(λnfPn). Set
K1 = coker(λnfPn) and K2 = nQ. Then ker(λnfPn) = K1 ⊕ K2 and K1 ⊕
im(λnfPn) ∼= nQ ∼= K2. It follows from lemma 2.14 that f admits a diagonal
power-reduction. □
Theorem 2.16. Let Q be a right R-module having finite exchange property
and let E = EndR(Q), also assume that there exists some s ∈ N such that
2sQ⊕A ∼= sQ⊕B for any A,B ∈ FP (R) implies that sQ⊕A ∼= B, then E is
an almost power-hermitian ring.

Proof. Let f : nQ −→ mQ be regular, so λsfPs is regular. Then nsQ ∼=
ker(λsfPs) ⊕ I and msQ ∼= I ⊕ coker(λsfPs) for a right R-module I. This
implies that msQ ⊕ ker(λsfPs) ∼= nsQ ⊕ coker(λsfPs). Assume that m =
n(≥ 2). Given any decompositions nsQ ∼= K ⊕ I ∼= I ⊕ C, then K has the
finite exchange property. Hence, we have K = X1 ⊕X2, I = Y1 ⊕ Y2 such that
X1 ⊕ Y1

∼= I and X2 ⊕ Y2
∼= C. Thus nsQ ⊕ Y2

∼= nsQ ⊕X1. By hypothesis,
we get sQ ⊕ Y2

∼= sQ ⊕X1. Further, sQ = R1 ⊕ R2, Y2 = C1 ⊕ C2 such that
R1⊕C1

∼= sQ and R2⊕C2
∼= X1. This implies that nsQ ∼= R2⊕(I⊕X2⊕C2) ∼=

(I ⊕ X2 ⊕ C2) ⊕ C1. One can easily check that 2sQ ⊕ (n − 2)sQ ⊕ R1
∼=

sQ ⊕ I ⊕ X2 ⊕ C2. By hypothesis, we get (n − 1)sQ ⊕ R1
∼= I ⊕ X2 ⊕ C2.

Consequently, we have R2
∼= R2⊕0⊕ . . .⊕0, I⊕X2⊕C2

∼= R1⊕sQ⊕ . . .⊕sQ,
C1

∼= C1 ⊕ 0 ⊕ . . . ⊕ 0 with R2 ⊕ R1
∼= C1 ⊕ R1

∼= sQ. so λsfPs admits a
diagonal reduction. If n > m, then msQ ⊕ ker(λsfPs) ⊕ 2sQ ⊕ (n − 2)sQ ⊕
coker(λsfPs). By hypothesis, ker(λsfPs) ∼= (n − m)sQ ⊕ coker(λsfPs). If
n < m, 2sQ⊕ (m− 2)sQ⊕ ker(λsfPs) ∼= nsQ⊕ coker(λsfPs). By hypothesis,
coker(λsfPs) ∼= (m − n)sQ ⊕ ker(λsfPs). Similar to [2], Proposition 7.2.11
and Lemma 14.1.4, λsfPs admits a diagonal reduction, as required. □
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