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ABSTRACT. In this paper we define a new type of rings “almost power-
hermitian rings” (a generalization of almost hermitian rings) and establish
several sufficient conditions over a ring R such that, every regular matrix
admits a diagonal power-reduction.
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1. Introduction

The purpose of this paper is to investigate power-diagonalizability of regular
matrices over some rings. Let us say that an m x n matrix A over a ring R
admits a diagonal reduction if there exist invertible matrices C' and D such that
CAD is a diagonal matrix, where by the diagonal matrix, we mean a matrix
(@ij)mxn, such that a;; = 0 for all i # j, we also say that A admits a diagonal
power-reduction provided that there exists a ¢t € N, such that (a;;1;)mixnt 1S
a diagonal matrix. In 1861, Smith [9] proved that over the ring of integers,
every matrix admits a diagonal reduction. This subject was investigated by
Dickson [3], Wedderborn [12], Warden [11] and Jacobson [5] over some com-
mutative and non commutative Euclidean domains and commutative principal
ideal domains. Teichmuller [10] extended it over noncommutative principal
ideal domains. The following question was proposed by Kaplansky in 1973 [6].
Kaplansky asked for a ring R and a matrix A over R, is it possible to find
invertible matrices B and C such that BAC is a diagonal matrix.

In 1974 Levy in [7] proved that the answer of Kaplansky’s question is yes for
square matrices over serial rings, even though we have some rectangular matri-
ces that don’t admit diagonal reduction. For example if R isn’t a Bezout ring
we have some a,b € R such that aR + bR # cR for all ¢ € R and so ( a b )
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isn’t diagonalized. Menal and Moncasi in [8] proved that all rectangular matri-
ces over a given regular ring R are equivalent to a diagonal matrix if and only
if the following cancellation law holds, for all finitely generated projective right
R-modules:

2ROAXR®B—RDPA=B.

In 1997 Ara, Goodearl, O’mera and Pardo in [1] extended that from regular

rings to exchange rings and showed that every regular matrix over an exchange
ring R admits a diagonal reduction if and only if 2R ® A = R ® B implies that
R ® A = B for all finitely generated projective R-modules A and B.
Here we show that an m x n matrix A = (@i;)mxn» may not admit a diagonal
reduction, but we may find some ¢t € N such that (a;;I;) admits a diagonal
reduction. For example over a regular Dedekind domain which is not Bezout,
There exist regular matrices that don’t admit diagonal reduction, while by
Lemma 8, we show that every regular matrix over such a ring admits diagonal
power reduction.

Throughout this paper R is an associative ring. Ideals are two sided ideals
and modules are right R-modules. We also use M,,(R) for the ring of n x n
matrices over R with identity I,,, GL,(R) the invertible n x n matrices over R
and FP(R) the class of finitely generated projective R-modules.

2. Almost power-hermitian ring

Definition 2.1. Following [2], We say that R satisfies power-substitution in
the case where aR 4+ bR = R with a,b € R tmplies that there exist n € N and
Y € M, (R) such that al, +bY € GL,(R).

As we see in the following example a ring R may satisfy power-substitution
while M, (R) for some n € N does not. Recall that a ring R satisfies stable
power-substitution in the case that for any n € N, M, (R) satisfies power-
substitution.

Example 2.2. Let X = [-1,1]*. Then Cr(X) satisfies power-substitution,
while M3(Cr(X)) does not. (see [2], Example 10.4.1)

Kaplansky defined a ring R to be right(left) Hermite provided that every
1 x 2(2 x 1) matrix over R admits a diagonal reduction (See [1]).

Definition 2.3. A ring R is said to be an almost hermitian ring provided that
every reqular matriz over R admits a diagonal reduction (see [2]).

Recall that a ring R satisfies the n-stable range condition if and only if
ar+b=1witha € R", x €" R, b € R implies that there exists some y € R"
such that a 4+ by € R™ is unimodular.

Proposition 2.4. Let R be a separative exchange ring. Then the following are
equivalent:
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(1) R satisfies the finite stable range condition.
(2) R satisfies 2-stable range condition.
(3) For any A,B € FP(R), 2R® A= R® B implies that R® A= B

Proof. See [2], Proposition 12.1.12. a

Example 2.5. Let V' be an infinite-dimensional vector space over a division
ring D and let R = Endp (V). Then R is not an almost hermitian ring.

As V is an infinite dimensional vector space, we have V=2V @V, so
Endp(V)=Homp(V,V) =2 Homp(Ve&V,V)=2Homp(V,V) =2Endp(V)
— 2R = R.

It is well known that R is a regular ring and satisfies general comparability, So
R is a separative exchange ring. If 2R® A = R@® B implies that RO A= B

for all finitely generated projective R-modules A, B, we have R 22 0, that is a
contradiction. Then R is not an almost hermitian ring.

Definition 2.6. A ring R is said an almost power-hermitian ring provided that
every regular matrix over R admits a diagonal power-reduction.

Proposition 2.7. Let R be an exchange ring satisfying stable power-substitution.
Then R is an almost power-hermitian ring.

Proof. Following [2], Theorem 10.4.14, every regular matrix over R admits a
diagonal reduction, so R is an almost power-hermitian ring. |

Corollary 2.8. Let R be an exchange ring satisfies n-stable range condition
such that M, (R) has power-substitution property. Then R is an almost power-
hermitian ring.

Proof. As R satisfies stable power-substitution property, so R is an almost
power-hermitian ring. O

Corollary 2.9. Let R be a commutative exchange ring having power-substitution
property, then R is an almost power-hermitian ring.

Proof. We know from [4], Proposition 2.9, that R has stable power-substitution
property, so the result is obtained from Proposition 2.7. O

Lemma 2.10. Let R be a regular ring satisfying 2-stable range condition, then
every matrix over R admits a diagonal power-reduction.

Proof. 1t suffices to show that every 1 x 2 matrix over R admits a diagonal
power-reduction.

Let A = (a;;)1x2, for positive integer ¢ = 2, we have (a;;I;)2x4 is a 2 x4 matrix,
now we have |2 — 4| = 2 and the stable range of R is 2, so we deduce from [13]
that A = (a;j)1x2 admits diagonal power-reduction. O
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Example 2.11. Let R = Z[/—5|, then R isn’t a hermitian ring.

Set A= (2 1++/=5 ) Adoesn’t admit diagonal reduction since 2R+ (1+
v/—b5)R is a right ideal of R that can’t be generated by only one element, and
it’s hard to investigate wether R is an almost power-hermitian ring, however R
is a Dedekind domain so its stable range is 2.

We use F(Q) to denote the category of of all n@ for n > 0 and all mor-
phisms from Fj to Fy for each Fy, Fy € F(Q) and M(Q) to denote the category
(M, morM(Q), o), where M is the set of all nonnegative integers and for every
m,n > 0, mory (Q)(n,m) is the set of all m x n matrices over Endg(Q) and
o is the usual product of matrices.

Lemma 2.12. Let Q be a right R-module. Then there exist covariant functor
F:F(Q) — M(Q) and G : M(Q) — F(Q) such that FG = Iy, GF =
Ir(q) both identity functors

Proof. Tt follows from [2], Lemma 14.1.2. O

Recall that a right R-homomorphism f : 2QQ — @ is said to admits a
diagonal reduction if F(f) € Mix2(End(Q)) admits a diagonal reduction.
For a right R-module 2 and a nonnegative integer n, we use A, to denote the
injection homomorphism from @ to 2nQ@, (A, : @ — 2nQ) and P, to stand
for the projection homomorphism from 2n@Q to 2Q, (P, : 2n@Q — 2Q).

Definition 2.13. Let Q be an R-module and f : 2Q — @ be an R-homomorph-
ism. We say f admits a diagonal power-reduction where there exists n € N
such that F(A,fP,) € Mix2(End(2nQ)) admits a diagonal reduction. Here
An : Q — 2nQ s injection and P, : 2nQ — 2Q) is projection map.

Recall that an R-homomorphism f € Hom(m@,nQ) for nonnegative inte-
gers n,m is said to be regular if there exists an R-homomorphism g : nQ —
m() such that fogof = f.

Lemma 2.14. Let @ be a right R-module, and let f : 2Q — @Q be regular.
Then f admits a diagonal power-reduction if and only if there exist n € N and

decomposition ker(\, fP,) = K1 ® Ko such that Ky ®im(\,fP,) 2 n@Q = Ks.

Proof. Assume there is a decomposition ker(\, fP,) = K1@® K3 and n € N such
that Ky @im(A, fP,) = n@Q = K. Since f is regular, so A, f P, is regular, then
we have K1 @im(\, fP,) = n@Q = im(A\, fP,)®coker (A, fP,). By Lemma 2.12,
there is a regular g : nQQ — n@ such that ker(g) = K1, im(g) = im(fAnfPn)
and coker(g) = coker(AnfP,). So we have (g,0) : 2nQ) — nQ such that
ker(g,0) = ker(g) ® nQ = K; ® Ko = ker(AnfPy), im(g,0) = im(g) =
im(A, fP,) and coker(g,0) = coker(g) = coker(A,fP,). By virtue of [2],
Lemma 7.2.1, A, fP, admits a diagonal power-reduction. Conversely, assume
now that f : 2QQ — @ admits a diagonal power-reduction. By definition we
have some n € N such that \,fP, admits a diagonal reduction. Consider



379 Ashrafi, Sheibani and Dehghany

(g,0) with g : n@Q — n@. Then g is also regular; hence, nQ = ker(g) ®im(g).
By [2], Lemma 7.2.1 again, ker (A, fP,) = ker(g,0), im(A. fP,) = im(g,0) and
coker(An fPy) = coker(g,0). It is easy to check that ker(g,0) = ker(g) ® n@,
im(g,0) = im(g), coker(g,0) = coker(g). Set K1 = ker(g) and Ky = nQ.
Then ker (A, fP,) 2 K1 ® Ka, K1 ®im(A, fP,) = ker(g) ®im(g) = nQ = Ko,
as required. O

Lemma 2.15. Let @ be a right R-module, and let f : 2Q — Q be regular.
Then f admits a diagonal power-reduction if and only if nQ @ coker(\, fP,) =
ker(AnfPy) for some n € N.

Proof. Assume that f admits a diagonal power-reduction. According to Lemma
2.14, there exists a decomposition ker(\,fP,) & K; ® Ky such that K; @®
im(AnfP,) =2 n@Q = Ky. Therefore ker(A,fP,) = K1 ® Ko & K; ® nQ =
K1 @ (coker(M, fPn) @ im(fAnfPn)) = (K1 ®im(\,fP,)) ® coker( A, fP,) =
coker(An fP,) ® n@. Assume that nQ @ coker(A,fP,) = ker(A,fP,). Set
K1 = coker(MA fP,) and Ky = n@. Then ker(A,fP,) = K1 ® K5 and K; &
im(AnfPy) & n@Q = Ks. Tt follows from lemma 2.14 that f admits a diagonal
power-reduction. O

Theorem 2.16. Let QQ be a right R-module having finite exchange property
and let E = Endgr(Q), also assume that there exists some s € N such that
25Q ® A > sQ@ B for any A, B € FP(R) implies that sQ ® A = B, then E is
an almost power-hermitian ring.

Proof. Let f : nQQ — mQ@Q be regular, so \sfPs is regular. Then ns@Q =
ker(AsfPs) @ I and msQ = I & coker(AsfPs) for a right R-module I. This
implies that msQ @ ker(AsfPs) = nsQ & coker(AsfPs). Assume that m =
n(> 2). Given any decompositions ns@Q = K @I =2 I @ C, then K has the
finite exchange property. Hence, we have K = X; & X5, I = Y; & Y5 such that
X181 =2Tand Xo®Ye 2 C. Thus ns@Q & Ye = ns@ & X;. By hypothesis,
we get sQ P Yo = sQ @ X;. Further, sQ = Ry & Ry, Yo = C; & C5 such that
Ri®Cy = sQ and Ry®Cy 22 X;. This implies that nsQ = Re® (IS X2 Cs)
(I ® X2 @ C3) ® Cy. One can easily check that 2sQ @ (n — 2)sQ & Ry
sQ & I ® Xo & Cy. By hypothesis, we get (n — 1)sQ @ Ry = I & Xy & Cs.
Consequently, we have Ry & Ro ®0®...400, I®XoDCo X R1®sQP...PsQ,
Ci12C808...60 with Ry ® Ry &£ C1 & Ry & sQ. so \sfPs admits a
diagonal reduction. If n > m, then msQ @ ker(A;fPs) & 2sQ & (n — 2)sQ &
coker(AsfPs). By hypothesis, ker(AsfPs) = (n — m)sQ @ coker(AsfPs). If
n<m,2sQ ® (m—2)sQ ® ker(As fPs) = nsQ & coker(As f Ps). By hypothesis,
coker(AsfPs) =2 (m —n)sQ @ ker(AsfPs). Similar to [2], Proposition 7.2.11
and Lemma 14.1.4, A\ f P admits a diagonal reduction, as required. O
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