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Abstract. It is known that the directed cycle of order n uniquely achieves
the minimum spectral radius among all strongly connected digraphs of

order n ≥ 3. In this paper, among others, we determine the digraphs
which achieve the second, the third and the fourth minimum spectral
radii respectively among strongly connected digraphs of order n ≥ 4.
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1. Introduction

We consider digraphs without loops and multiple arcs. Let D be a digraph
of order n with vertex set V (D) and arc set E(D). Let V (D) = {v1, v2, . . . , vn}.
The adjacency matrix of D is the (0, 1)-matrix A(D) = (aij) of order n where
aij = 1 if there is an arc from vi to vj , and aij = 0 otherwise. The eigenvalues of
D are the eigenvalues of A(D). The spectral radius of D is the largest modulus
of an eigenvalue of D, denoted by ρ(D). Obviously, the eigenvalues of D are
the roots of the characteristic polynomial of D, denoted by P (D,x), defined to
be the characteristic polynomial of the matrix A(D), which is det(xIn−A(D)),
where In is the identity matrix of order n. The spectra of digraphs have been
studied to some extent, see e.g., [3–5], and for a survey, see [1].

A digraphD is strongly connected if for every pair x, y ∈ V (D), there exists a
directed path from x to y and a directed path from y to x. D is called a strongly
connected bicyclic digraph if D is strongly connected with |E(D)| = |V (D)|+1.
For n ≥ 3, let Bn be the set of strongly connected bicyclic digraphs of order n.

Note that D is strongly connected if and only if A(D) is irreducible. It
follows from the Perron-Frobenius Theorem that if D is strongly connected,
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then ρ(D) is an eigenvalue of D and there is a corresponding eigenvector whose
coordinates are all positive.

Let Pn be a directed path of order n. If Pn = u1u2 . . . un, then u1 is the initial
vertex, and un is the terminal vertex of Pn. The θ-digraph with parameters a,
b and c with a ≤ b, denoted by θ(a, b, c), consists of three directed paths Pa+2,
Pb+2 and Pc+2 such that the initial vertex of Pa+2 and Pb+2 is the terminal
vertex of Pc+2, and the initial vertex of Pc+2 is the terminal vertex of Pa+2 and
Pb+2. These three directed paths are called the basic directed paths of θ(a, b, c).
A ∞-digraph with parameters k and l with k ≤ l, denoted by ∞(k, l), consists
of two directed cycles of lengths k and l respectively with exactly one vertex
in common. Note that any digraph in Bn is a θ-digraph or a ∞-digraph.

Recently, Lin and Shu [4] showed that θ(0, 1, n−3) (respectively, ∞(2, n−1))
is the unique digraph in Bn which achieve the minimum (respectively, maxi-
mum) spectral radius for n ≥ 4. Let Cn be the directed cycle of order n. Note
that Cn uniquely achieves the minimum spectral radius among all strongly
connected digraphs of order n ≥ 3. This is because the spectral radius of an
irreducible nonnegative matrix is bounded below by the minimum row sum,
and it is attained if and only if all row sums are equal [6]. Lin and Shu [4]
proposed the following problem.

Problem 1.1. Does θ(0, 1, n− 3) achieve the second minimum spectral radius
among all n-vertex strongly connected digraphs for n ≥ 4?

In this paper, we determine the unique digraphs which achieve the second,
the third and the fourth minimum spectral radii respectively among strongly
connected digraphs of order n ≥ 4, and thus we answer Problem 1.1 affirma-
tively. To do this, we also determine the unique digraphs in Bn with the second
and the third minimum spectral radii respectively for n ≥ 4. Finally, we deter-
mine the unique digraph in Bn with the second maximum spectral radius for
n ≥ 4.

2. Preliminaries

We list some lemmas that will be used in our proofs.

Lemma 2.1. [4] For n ≥ 4, θ(0, 1, n − 3) is the unique digraph in Bn which
achieves the minimum spectral radius, and ∞

(⌊
n+1
2

⌋
,
⌈
n+1
2

⌉)
is the unique ∞-

digraph in Bn which achieves the minimum spectral radius among ∞-digraphs.

The following lemma was proved in [4] for c ≥ 1. However, its proof also
holds for c = 0.

Lemma 2.2. [4] If b ≥ 1, then ρ(θ(a, b, c)) > ρ(θ(a, b − 1, c + 1)). If a ≥ 1,
then ρ(θ(a, b, c)) > ρ(θ(a− 1, b, c+ 1)).

The following lemma was given in [4]. It is a consequence of the well known
coefficients theorem for digraphs, see e.g., [2, Theorem 1.2, p. 36].
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Lemma 2.3. P (θ(a, b, c), x) = xn − xa − xb with n = a + b + c + 2, and
P (∞(k, l), x) = xn − xk−1 − xl−1 with n = k + l − 1.

Lemma 2.4. For n ≥ 4, ρ(∞(⌊n+1
2 ⌋, ⌈n+1

2 ⌉)) > ρ(θ(0, 2, n− 4)).

Proof. Let D1 = θ(0, 2, n − 4) and D2 = ∞(⌊n+1
2 ⌋, ⌈n+1

2 ⌉). By Lemma 2.3,

P (D1, x) = xn−x2−1 and P (D2, x) = xn−x⌊n−1
2 ⌋−x⌈n−1

2 ⌉. For x ≥ ρ(D2) > 1,

P (D1, x)−P (D2, x) = −x2−1+2x
n−1
2 ≥ −x2−1+2x2 = x2−1 > 0 if n is odd

and P (D1, x)−P (D2, x) = −x2−1+x
n
2 −1+x

n
2 ≥ −x2−1+x+x2 = x−1 > 0

if n is even. Thus ρ(D2) > ρ(D1). □

Lemma 2.5. ρ(θ(0, 2, n− 4)) is strictly decreasing in n ≥ 4.

Proof. Suppose that n1 > n2 ≥ 4. By Lemma 2.3, P (θ(0, 2, n1 − 4), x) −
P (θ(0, 2, n2 − 4), x) = xn1 − xn2 > 0 for x ≥ ρ(θ(0, 2, n2 − 4)) > 1. Thus
ρ(θ(0, 2, n1 − 4)) < ρ(θ(0, 2, n2 − 4)). □

Recall that the spectral radius of a nonnegative irreducible matrix B is larger
than that of a principal submatrix of B and it increases when an entry of B
increases [6, p. 16, 38]. Thus we have the following well known lemma.

Lemma 2.6. Let D be a strongly connected digraph and H a strongly connected
proper subdigraph of D. Then ρ(D) > ρ(H).

Lemma 2.7. ρ(θ(0, n− 2, 0)) is strictly decreasing in n ≥ 4.

Proof. Suppose that n1 > n2 ≥ 4. By Lemma 2.3, P (θ(0, n1 − 2, 0), x) −
P (θ(0, n2−2, 0), x) = (xn2 −xn2−2)(xn1−n2 −1) > 0 for x ≥ ρ(θ(0, n2−2, 0)) >
1. Thus ρ(θ(0, n1 − 2, 0)) < ρ(θ(0, n2 − 2, 0)). □

Lemma 2.8. [4] For n ≥ 4, ∞(2, n − 1) is the unique digraph in Bn which
achieves the maximum spectral radius, and θ(0, n−2, 0) is the unique θ-digraph
in Bn which achieves the maximum spectral radius among θ-digraphs.

Lemma 2.9. [4] If k ≥ 1, then ρ(∞(k − 1, l + 1)) > ρ(∞(k, l)).

3. Results

To determine the unique digraphs with the second, the third and the fourth
minimum spectral radii respectively among strongly connected digraphs of or-
der n ≥ 4, we need first to determine the unique digraphs in Bn with the second
and the third minimum spectral radii respectively for n ≥ 4.

Theorem 3.1. For n ≥ 4, θ(1, 1, n − 4) and θ(0, 2, n − 4) are the unique
digraphs in Bn which achieve the second and the third minimum spectral radii
respectively.



On spectral radius of strongly connected digraphs 384

Proof. Let D ∈ Bn with D ̸= θ(0, 1, n − 3). Then D is a θ-digraph or a ∞-
digraph. Suppose that D is a θ-digraph and D ̸= θ(1, 1, n−4). By Lemma 2.2,
we have ρ(D) ≥ ρ(θ(0, 2, n − 4)) with equality only if D = θ(0, 2, n − 4). By
Lemma 2.3, P (θ(1, 1, n−4), x)−P (θ(0, 2, n−4), x) = −2x+x2+1 = (x−1)2 > 0
for x ≥ ρ(θ(0, 2, n− 4)) > 1. Thus ρ(D) ≥ ρ(θ(0, 2, n− 4)) > ρ(θ(1, 1, n− 4)).
If D is a ∞-digraph, then by Lemmas 2.1 and 2.4,

ρ(D) ≥ ρ

(
∞

(⌊
n+ 1

2

⌋
,

⌈
n+ 1

2

⌉))
> ρ(θ(0, 2, n− 4)).

Now the result follows from the first part of Lemma 2.1. □

Theorem 3.2. Let D be a strongly connected digraph of order n ≥ 4 that is
neither a bicyclic digraph nor Cn. Then ρ(D) > ρ(θ(0, 2, n− 4)).

Proof. Let C be a shortest directed cycle in G. Obviously, V (C) ̸= V (D).
There is a vertex u ∈ V (D) \ V (C) such that there is an arc from u to some
vertex, say v, on C. Also, there is a directed path from some vertex on C to
u. Let w be a vertex on C such that the distance from w to u in D is as small
as possible. Let P be such a directed path. Then C and P have exactly one
common vertex w. If w ̸= v, then D has a proper θ-subdigraph, and if w = v,
then D has a proper ∞-subdigraph.

If D has a proper ∞-subdigraph, say ∞(k, l) with k+ l = n1+1 and n1 ≤ n,
then by Lemma 2.6, the second part of Lemma 2.1, and Lemmas 2.4 and 2.5,
we have

ρ(D) > ρ(∞(k, l))

≥ ρ

(
∞

(⌊
n1 + 1

2

⌋
,

⌈
n1 + 1

2

⌉))
> ρ(θ(0, 2, n1 − 4))

≥ ρ(θ(0, 2, n− 4)).

Suppose thatD has a proper θ-subdigraph, say θ(a, b, c) with a+b+c = n2−2
and n2 ≤ n.
Case 1. n2 ≤ n− 1. By Lemma 2.6 and the first part of Lemma 2.1, we have

ρ(D) > ρ(θ(a, b, c)) ≥ ρ(θ(0, 1, n2 − 3)).

By Lemma 2.3, P (θ(0, 2, n− 4), x)−P (θ(0, 1, n2− 3), x) = xn−xn2 −x2+x =
xn2(xn−n2 − 1)− x(x− 1) ≥ xn2(x− 1)− x(x− 1) = (xn2 − x)(x− 1) > 0 for
x ≥ ρ(θ(0, 1, n2 − 3)) > 1. Thus ρ(θ(0, 1, n2 − 3)) > ρ(θ(0, 2, n − 4)). Hence
ρ(D) > ρ(θ(0, 2, n− 4)).
Case 2. n2 = n and θ(a, b, c) ̸= θ(0, 1, n − 3) and θ(1, 1, n − 4). By Lemma
2.6, the first part of Lemma 2.1, and Theorem 3.1,

ρ(D) > ρ(θ(a, b, c)) ≥ ρ(θ(0, 2, n− 4)).
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Case 3. n2 = n and the θ-subdigraph of D can only be θ(0, 1, n − 3) or
θ(1, 1, n − 4). Without loss of generality suppose that D has a θ-subdigraph
θ(0, 1, n − 3) (the proof is similar if D has a θ-subdigraph θ(1, 1, n − 4)). Let
vw, vu1w and wu′

1u
′
2 . . . u

′
n−3v be the basic directed paths of the subdigraph

θ(0, 1, n−3). We consider the possible arc(s) in D (except the arcs in θ(0, 1, n−
3)) as follows.

(i) wv ̸̸∈ E(D); Otherwise, D has a θ-subdigraph θ(0, n− 3, 0), a contradic-
tion.

(ii) u1v ̸̸∈ E(D) and wu1 ̸̸∈ E(D); Otherwise, D has a θ-subdigraph θ(0, n−
2, 0), a contradiction.

(iii) u1u
′
k ̸∈ E(D) and u′

n−k−2u1 ̸∈ E(D) for 2 ≤ k ≤ n − 3; Otherwise, D
has a θ-subdigraph θ(0, k, n− k − 2), a contradiction.

(iv) vu′
k ̸∈ E(D) and u′

n−k−2w ̸∈ E(G) for 1 ≤ k ≤ n− 3; Otherwise, D has
a θ-subdigraph θ(0, k + 1, n− k − 3), a contradiction.

(v) u′
kv ̸∈ E(D) and wu′

n−k−2 ̸∈ E(D) for 1 ≤ k ≤ n− 4; Otherwise, D has
a θ-subdigraph θ(0, 1, k), a contradiction.

(vi) u′
lu

′
k ̸∈ E(D) for 1 ≤ k < l ≤ n − 3; Otherwise, D has a θ-subdigraph

θ(0, n− l + k − 2, l − k − 1), a contradiction.
(vii) u′

ku
′
l ̸∈ E(D) for 1 ≤ k < l−1 ≤ n−4; Otherwise, D has a θ-subdigraph

θ(0, 1, n− 2− (l − k)), a contradiction.
(viii) {u1u

′
1, u

′
n−3u1} ̸⊆ E(D); Otherwise,D has a θ-subdigraph θ(0, 1, n−4),

a contradiction.
From (i)–(viii), we find that besides these arcs in θ(0, 1, n − 3), D contains

one additional arc u1u
′
1 or u′

n−3u1. Thus D is isomorphic to the digraph D′

obtained from θ(0, 1, n − 3) by adding the arc u1u
′
1. Besides the empty union

and Cn, C(D′) contains two directed cycles on n− 1 vertices. Thus P (D,x) =
P (D′, x) = xn − 2x − 1. Obviously, P (D, 1) < 0, P (D, 2) > 0, and P (D,x) is
strictly increasing for x ≥ 1. Thus 1 < ρ(D) < 2. Similarly, 1 < ρ(θ(0, 2, n −
4)) < 2 by Lemma 2.3. Note that P (θ(0, 2, n−4), x)−P (D,x) = −x2+2x > 0
for 1 < x < 2. Thus ρ(D) > ρ(θ(0, 2, n− 4)). □

From Lemma 2.1 and Theorems 3.1 and 3.2, we have the following theorem.

Theorem 3.3. Among the strongly connected digraphs of order n ≥ 4, θ(0, 1, n−
3), θ(1, 1, n− 4) and θ(0, 2, n− 4) are the unique digraphs that achieve the sec-
ond, the third and the fourth minimum spectral radii respectively.

Thus we answer Problem 1.1 affirmatively.
Finally, we determine the unique digraphs in Bn with the second maximum

spectral radius for n ≥ 4.

Theorem 3.4. For n ≥ 5, ∞(3, n − 2) for 5 ≤ n ≤ 7, and θ(0, n − 2, 0)
for n = 4 and n ≥ 8 are the unique digraphs in Bn which achieve the second
maximum spectral radius.
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Proof. Obviously, B4 = {∞(2, 3), θ(0, 2, 0), θ(1, 1, 0), θ(0, 1, 1)}. By Lemmas
2.1 and 2.8, and Theorem 3.1, we have ρ(∞(2, 3)) > ρ(θ(0, 2, 0)) > ρ(θ(1, 1, 0)) >
ρ(θ(0, 1, 1)). Thus the result follows for n = 4.

Suppose that n ≥ 5. Let D ∈ Bn and D ̸= ∞(3, n−2), θ(0, n−2, 0). If D is a
θ-digraph, then by the second part of Lemma 2.8, ρ(D) < ρ(θ(0, n−2, 0)). If D
is a∞-digraph andD ̸= ∞(2, n−1), then by Lemma 2.9, ρ(D) < ρ(∞(3, n−2)).
Now by the first part of Lemma 2.8, the second maximum spectral radius of
digraphs in Bn is max{ρ(θ(0, n− 2, 0)), ρ(∞(3, n− 2))}, which is only achieved
by θ(0, n− 2, 0) or ∞(3, n− 2).

If 5 ≤ n ≤ 7, then by direct calculation using maple, we have ρ(θ(0, n −
2, 0)) < ρ(∞(3, n− 2)).

Suppose that n ≥ 8. Let ρ = ρ(θ(0, n − 2, 0)). Obviously, ρ > 1. By
Lemma 2.7 and direct calculation using maple, we have ρ ≤ ρ(θ(0, 6, 0)) =
1.1748 . . . < 1.175. For 1 < x < 1.175, let h(x) = 1 + x + x2 − x3 − x4.
Since h′(x) = 1 + 2x − 3x2 − 4x3 < 0, h(x) is strictly decreasing. Thus
h(ρ) > h(1.175) = 0.027265 > 0. By Lemma 2.3, ρn−2 = 1

ρ2−1 , and thus

P (∞(3, n− 2), ρ) = P (∞(3, n− 2), ρ)− P (θ(0, n− 2, 0), ρ)

= ρn−2 + 1− ρn−3 − ρ2

= (ρ− 1)(ρn−3 − ρ− 1)

= (ρ− 1)

(
1

ρ(ρ2 − 1)
− ρ− 1

)
=

h(ρ)

ρ(ρ+ 1)

> 0.

Obviously, P (∞(3, n−2), 1) = −1 < 0 and P (∞(3, n−2), x) is strictly increas-
ing for x > 1. Thus ρ(∞(3, n− 2)) < ρ = ρ(θ(0, n− 2, 0)). □
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