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Abstract. The aim of this paper is to establish random coincidence

point results for weakly increasing random operators in the setting of
ordered metric spaces by using generalized altering distance functions.
Our results present random versions and extensions of some well-known
results in the current literature.

Keywords: Random coincidence point, altering distance function, par-
tially ordered metric space.
MSC(2010): Primary: 47H10 ; Secondary: 47B80, 47H40.

1. Introduction

It is noted that in probabilistic functional analysis, random fixed point and
random fixed point theorems for contractive mappings in Polish spaces are of
fundamental importance. Their study was initiated in the work of Spacek [34]
and Hans [11, 12]. Probabilistic functional analysis is an important mathe-
matical discipline because of its applications to probabilistic models in applied
problems. Random operator theory is needed for the study of various classes
of random equations. The interest in this subject enhanced after publication of
the survey paper by Bharucha Ried [7]. Random fixed point theorems play an
important role in the theory of random differential and random integral equa-
tions [17,20–23]. Sehgal and Singh [33] have proved different stochastic versions
of the well-known Schauder’s fixed point theorem. Random coincidence point
theorems are stochastic generalizations of classical coincidence point theorems.
The existence of fixed points for various multi-valued contractive mappings has
been studied by many authors under different conditions. Abbas et al. [1,2] and
Hussain et al. [16] proved coupled fixed point and coupled coincidence points
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results for nonlinear contractions in partially ordered metric spaces. Recently,
Ćirić and Lakshmikantham [10] and Hussain et al. [15], respectively proved
some coupled random fixed point and coupled random coincidence results in
partially ordered complete metric spaces.

Khan et al. [19] introduced the altering distance function and used it for
solving fixed points problems in metric spaces. Recently, the authors in [4, 5,
9,14,30–32] used altering distance function and obtained some fixed point the-
orems. The altering distance functions and their variants have been employed
for iterative solution of nonlinear operator equations by Berinde [6]. In 2005,
Choudhury [8] introduced a generalized distance function in three variables
and obtained a common fixed point theorem for a pair of self maps in a com-
plete metric space. Nashine and Aydi [27] generalized the results of Nashine
et al. [26] to the case of four variables. They obtained coincidence point and
common fixed point theorems in complete ordered metric spaces for mappings
satisfying a contractive condition which involves two generalized altering dis-
tance functions in four variables. In our results, random coincidence points for
weakly contractive maps are established on an ordered metric space by making
use of generalized altering distance function.

2. Preliminaries

Definition 2.1. [19] A function ϕ : [0,+∞) → [0,+∞) is called an altering
distance function if and only if

(1) ϕ is continuous,
(2) ϕ is nondecreasing,
(3) ϕ (t) = 0 ⇔ t = 0.

Khan et al. [19] proved the following result.

Theorem 2.2. Let (X, d) be a complete metric space, ϕ : [0,+∞) → [0,+∞)
an altering distance function and T : X → X a self-mapping which satisfies
the following inequality

ϕ (d (Tx, Ty)) ≤ cϕ (d (x, y))

for all x, y ∈ X and for some 0 < c < 1. Then T has a unique fixed point.

In 1997, Alber and Guerre-Delabriere [3] introduced the concept of weak
contractions in Hilbert spaces. This concept was extended to metric spaces by
Rhoades in [29].

Definition 2.3. A mapping T : X → X, where (X, d) is a metric space, is
said to be weakly contractive if and only if

d (Tx, Ty) ≤ d (x, y)− ϕ (d (x, y)) ∀ x, y ∈ X

where ϕ : [0,+∞) → [0,+∞) is an altering distance function.
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In [8], Choudhury introduced the concept of a generalized distance function
for three variables.

Definition 2.4. [8] A function ϕ : [0,+∞)× [0,+∞)× [0,+∞) → [0,+∞) is
said to be a generalized altering distance function if and only if

(1) ϕ is continuous,
(2) ϕ is nondecreasing in all three variables,
(3) ϕ (x, y, z) = 0 ⇔ x = y = z = 0.

Define ψ (x) = ϕ (x, x, x) for x ∈ [0,∞). Clearly, ψ (x) = 0 if and only if
x = 0. Examples of ϕ are

ϕ (a, b, c) = kmax {a, b, c} , for k > 0,
ϕ (a, b, c) = ap + bq + cr, p, q, r ≥ 1,
ϕ (a, b, c) = (a+ αbq) r + cs, where p, q, r, s ≥ 1 and α > 0.

Rao et al. [28] generalized the above definition for four variables as follows.

Definition 2.5. A function ϕ : [0,+∞) × [0,+∞) × [0,+∞) × [0,+∞) →
[0,+∞) is said to be a generalized altering distance function if and only if

(1) ϕ is continuous,
(2) ϕ is nondecreasing in all four variables,
(3) ϕ (t1, t2, t3, t4) = 0 ⇔ t1 = t2 = t3 = t4 = 0.

Definition 2.6. [18] Let (X, d) be a metric space and f, g : X → X. If
γ = fx = gx, for some x ∈ X, then x is called a coincidence point of f and
g, and γ is called a point of coincidence of f and g. The pair {f, g} is said
to be compatible if and only if limn→∞ d (fgxn, gfxn) = 0, whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

Let X be a nonempty set and R : X → X a given mapping. For every
x ∈ X, we denote by R−1 (x) the subset of X defined by

(2.1) R−1 (x) = {u ∈ X | Ru = x} .

Definition 2.7. [25] Let (X,≤) be a partially ordered set and T, S,R : X → X
be given mappings such that TX ⊆ RX and SX ⊆ RX. We say that S and T
are weakly increasing with respect to R if and only if for all x ∈ X, we have

(2.2) Tx ≤ Sy ∀ y ∈ R−1 (Tx) and Sx ≤ Ty ∀ y ∈ R−1 (Sx) .

Definition 2.8. Let (X, d,≤) be a partially ordered metric space. We say
that X is regular if and only if the following hypothesis holds: if {zn} is a
nondecreasing sequence in X with respect to ≤ such that zn → z ∈ X as
n→ +∞, then zn ≤ z for all n ∈ N.

Theorem 2.9. [27] Let (X, d,≤)be an ordered complete metric space. Let
T, S,R : X → Xbe given mappings satisfying the following inequality for every
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pair (x, y) ∈ X ×Xwith Rx and Ry comparable,

ϕ1 (d (Sx, Ty))
≤ ψ1(d (Rx,Ry) , d (Rx, Sx) , d (Ry, Ty) ,

1
2 [d (Rx, Ty) + d (Ry, Sx)])

−ψ2(d (Rx,Ry) , d (Rx, Sx) , d (Ry, Ty) ,
1
2 [d (Rx, Ty) + d (Ry, Sx)])

where ψ1 and ψ2 are generalized altering distance functions and ϕ1 (x) =
ψ1 (x, x, x, x). One assumes the following hypotheses:

(1) either T, S and R are continuous or X is regular,
(2) TX ⊆ RX,SX ⊆ RX,
(3) T and S are weakly increasing with respect to R,
(4) the pairs {T,R} and {S,R} are compatible.

Then, T, S, and R have a coincidence point, that is, there exists u ∈ X such
that Ru = Tu = Su.

3. Random coincidence point results

Let (Ω,Σ) be a measurable space with a Σ sigma algebra of subsets of Ω and
let (X, d) be a metric space. A mapping T : Ω → X is called Σ − measurable
if for any open subset β of X, ζ−1 (β) ∈ Σ. A mapping S : Ω × X → X is
said to be a random map if and only if for each fixed x ∈ X, the mapping
S (., x) : Ω → X is measurable. A random map S : Ω ×X → X is continuous
if for each ω ∈ Ω, the mapping S (ω, .) : X → X is continuous. A measurable
mapping ζ : Ω → X is a random fixed point of the random map S : Ω×X → X
if and only if S (ω, ζ (ω)) = ζ (ω) for each ω ∈ Ω.

Definition 3.1. A measurable mapping ζ : Ω → K, where K be a Polish
subspace of X, is said to be

(i)a random fixed point of R : Ω×K → K, if for each ω ∈ Ω,

ζ (ω) = R (ω, ζ (ω)) .

(ii) A random coincidence point of R : Ω ×K → K, S : Ω ×K → K and
T : Ω×K → K if for each ω ∈ Ω,

R (ω, ζ (ω)) = S (ω, ζ (ω)) = T (ω, ζ (ω)) .

Definition 3.2. Let (X, d) be a separable metric space and (Σ,Ω) be a mea-
surable space. The pair {f, g} is said to be a compatible random operator if and
only if

limn→+∞ d (f (ω, g (ω, xn)) , g (ω, f (ω, xn))) = 0

whenever {xn} is a sequence in X such that

lim
n→+∞

f (ω, xn) = lim
n→+∞

g (ω, xn) = t

for some t ∈ X and for each ω ∈ Ω.

Now, we state and prove our main result.
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Theorem 3.3. Let (X, d,≤) be a separable ordered metric space and K be a
nonempty Polish subspace of X. Let T, S,R : Ω×K → K be random operators
satisfying the following inequality, for every pair (x, y) ∈ K ×K with R (ω, x)
and R (ω, y) comparable,
(3.1)

ϕ1 (d (S (ω, x) , T (ω, y)))
≤ ψ1(d (R (ω, x) , R (ω, y)) , d (R (ω, x) , S (ω, x)) , d (R (ω, y) , T (ω, y)) ,
1
2 [d (R (ω, x) , T (ω, y)) + d (R (ω, y) , S (ω, x))])
−ψ2(d (R (ω, x) , R (ω, y)) , d (R (ω, x) , S (ω, x)) , d (R (ω, y) , T (ω, y)) ,
1
2 [d (R (ω, x) , T (ω, y)) + d (R (ω, y) , S (ω, x))])

where ψ1 and ψ2 are generalized altering distance functions and ϕ1 (x) =
ψ1 (x, x, x, x). Assume that

(1) T, S and R are continuous random operators,
(2) T (ω,K) ⊆ R(ω,K) and S(ω,K) ⊆ R(ω,K) for each ω ∈ Ω,
(3) T (ω, .) and S(ω, .) are weakly increasing with respect to R(ω, .) for each

ω ∈ Ω,
(4) the pairs {T,R} and {S,R} are compatible random operators.

Then there exists a measurable mapping ζ : Ω → K such that

R (ω, ζ (ω)) = T (ω, ζ (ω)) = S (ω, ζ (ω))

for each ω ∈ Ω.

Proof. Let ζ0 : Ω → K be a given measurable map. Since T (ω,K) ⊆ R(ω,K),
there exists ζ1 : Ω → K such that R (ω, ζ1 (ω)) = T (ω, ζ0 (ω)). Since S(ω,K) ⊆
R(ω,K), there exists ζ2 (ω) ∈ Ω such that R (ω, ζ2 (ω)) = S (ω, ζ1 (ω)). Induc-
tively, we construct a sequence of maps {ζn (ω)} from Ω to K such that
(3.2)
R (ω, ζ2n+1 (ω)) = T (ω, ζ2n (ω)) and R (ω, ζ2n+2 (ω)) = S (ω, ζ2n+1 (ω)) .

Since R,S and T are continuous random operators, by a result of Himmelberg
[13], {ζn (ω)} is a measurable sequence. Now, we claim that

(3.3) R (ω, ζn (ω)) ≤ R (ω, ζn+1 (ω)) for all n ∈ N.

Since R (ω, ζ1 (ω)) = T (ω, ζ0 (ω)), therefore (ω, ζ1 (ω)) ∈ R−1 (T (ω, ζ0 (ω))).
By the increasing property of the mappings S(ω, .) and T (ω, .) with respect to
R(ω., ), we get

(3.4) R (ω, ζ1 (ω)) = T (ω, ζ0 (ω)) ≤ S (ω, ζ1 (ω)) = R (ω, ζ2 (ω))

and

(3.5)
R (ω, ζ2 (ω)) = S (ω, ζ1 (ω)) ≤ T (ω, ζ2 (ω)) = R (ω, ζ3 (ω))
for each ω ∈ Ω.
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Hence, by induction (3.3) holds. Without loss of generality, we can assume
that

(3.6) R (ω, ζn (ω)) ̸= R (ω, ζn+1 (ω)) for all n ∈ N and for each ω ∈ Ω.

Now, we prove that

(3.7) lim n→∞d (R (ω, ζn+1 (ω)) , R (ω, ζn+2 (ω))) = 0.

From (3.1), we have
(3.8)
ϕ1 (d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+1 (ω))))
= ϕ1 (d (S (ω, ζ2n+1 (ω)) , T (ω, ζ2n (ω))))
≤ ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , S (ω, ζ2n+1 (ω))) ,
d (R (ω, ζ2n (ω)) , T (ω, ζ2n (ω))) ,

1
2 [d(R (ω, ζ2n+1 (ω)) , T (ω, ζ2n (ω))

+d (R (ω, ζ2n (ω)) , S (ω, ζ2n+1 (ω)))])− ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) ,
d (R (ω, ζ2n+1 (ω)) , S (ω, ζ2n+1 (ω))) , d (R (ω, ζ2n (ω)) , T (ω, ζ2n (ω))) ,
1
2 [d(R (ω, ζ2n+1 (ω)) , T (ω, ζ2n (ω)) + d (R (ω, ζ2n (ω)) , S (ω, ζ2n+1 (ω)))]).
= ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2 [d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω))])

−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2 [d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω))]).

Suppose, for some n ∈ N , that
(3.9)
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) < d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) .

Using (3.9) and triangle inequality, we have

(3.10)

1
2d (R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω)))
≤ 1

2 (d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω)))
+d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))))
< d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) .

Using (3.9) and (3.10) together with a property of the generalized altering
distance function ψ1, we get
(3.11)
ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2 [d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω))])

≤ ϕ1 (d(R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+1 (ω))) .

Hence, we obtain
(3.12)
ϕ1 (d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+1 (ω))))
≤ ϕ1 (d(R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+1 (ω)))
−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2 [d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω))])
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which implies that
(3.13)
ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2 [d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω))])

= 0

Thus, we have

(3.14) d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) = 0

which contradicts (3.6). Hence, we deduce that
(3.15)
d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ≤ d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω)))

for all n ∈ N and for each ω ∈ Ω. Again from (3.1) and (3.3), we have

ϕ1 (d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))))
= ϕ1 (d (S (ω, ζ2n+1 (ω)) , T (ω, ζ2n+2 (ω))))
≤ ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ2n+1 (ω)) , S (ω, ζ2n+1 (ω))) ,
d (R (ω, ζ2n+2 (ω)) , T (ω, ζ2n+2 (ω))) ,

1
2 [d(R (ω, ζ2n+1 (ω)) , T (ω, ζ2n+2 (ω))+

d (R (ω, ζ2n+2 (ω)) , S (ω, ζ2n+1 (ω)))])− ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+1 (ω)) , S (ω, ζ2n+1 (ω))) , d (R (ω, ζ2n+2 (ω)) , T (ω, ζ2n+2 (ω))) ,
1
2 [d(R (ω, ζ2n+1 (ω)) , T (ω, ζ2n+2 (ω)) + d (R (ω, ζ2n+2 (ω)) , S (ω, ζ2n+1 (ω)))])
= ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ,

1
2 [d(R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω))+

d(R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+2 (ω))])− ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ,
1
2 [d(R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω)) + d(R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+2 (ω))]).

(3.16)
ϕ1 (d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))))
≤ ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ,

1
2d(R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω))

−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ,

1
2d(R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω)) .

Suppose, for some n ∈ N , that
(3.17)
d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) < d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) .

Then, by triangle inequality, we have

(3.18)

1
2d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω)))
≤ 1

2 (d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω)))
+d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))))
< d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) .
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Hence, by (3.16), (3.17) and (3.18) together with the property of the generalized
altering function ψ1, we obtain

(3.19)

ϕ1 (d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))))
≤ ϕ1 (d(R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω)))
−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ,
1
2d(R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω)))

which implies that
(3.20)
ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ,

1
2d(R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+3 (ω)))

= 0,

which leads to d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) = 0. Hence, we obtain a
contradiction to (3.6). So we deduce that
(3.21)
d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+3 (ω))) ≤ d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω)))

for all n ∈ N and for each ω ∈ Ω. Combining (3.15) and (3.21), we obtain
(3.22)

d (R (ω, ζn+2 (ω)) , R (ω, ζn+3 (ω))) ≤ d (R (ω, ζn+1 (ω)) , R (ω, ζn+2 (ω)))

for all n ∈ N and for each ω ∈ Ω.
Thus {R (ω, ζn+1 (ω)) , R (ω, ζn+2 (ω))} is a nonincreasing sequence of posi-

tive real numbers for each ω ∈ Ω. This implies that there exists r ≥ 0 such
that

(3.23) limn→∞ d (R (ω, ζn+1 (ω)) , R (ω, ζn+2 (ω))) = r.

By (3.8), we have
(3.24)
ϕ1 (d (R (ω, ζ2n+2 (ω)) , R (ω, ζ2n+1 (ω))))
≤ ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω)))

−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2d(R (ω, ζ2n (ω)) , R (ω, ζ2n+2 (ω)))

≤ ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,
d(R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))), d(R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))))
−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) , 0)
= ϕ1 (d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))))
−ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) , 0).
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Letting n→ +∞ in (3.24) and using the continuity of ϕ1 and ψ2, we obtain

(3.25) ϕ1 (r) ≤ ϕ1 (r)− ψ2 (r, r, r, 0)

which implies that ψ2 (r, r, r, 0) = 0, so r = 0. Hence

limn→+∞ d (R (ω, ζn+1 (ω)) , R (ω, ζn+2 (ω))) = 0 for each ω ∈ Ω.

Thus (3.7) holds. Now, we claim that for ω ∈ Ω ,{R (ω, ζn (ω))} is a Cauchy
sequence. From (3.7), it will be sufficient to prove that {R (ω, ζ2n (ω))} is a
Cauchy sequence. We proceed by negation and suppose that {R (ω, ζ2n (ω))}
is not a Cauchy sequence. Then, there exists ϵ > 0 for which we can find two
sequences of positive integers {mi} and {ni} such that, for all positive integers
i,

(3.26)
n (i) > m (i) , d

(
R
(
w, ζ2m(i) (ω)

)
, R

(
w, ζ2n(i) (ω)

))
≥ ϵ

and
d
(
R
(
w, ζ2m(i) (ω)

)
, R

(
w, ζ2n(i)−2 (ω)

))
< ϵ.

From (3.26) and using the triangle inequality, we get

(3.27)

ϵ ≤ d
(
R
(
w, ζ2m(i) (ω)

)
, R

(
w, ζ2n(i) (ω)

))
≤ d

(
R
(
w, ζ2m(i) (ω)

)
, R

(
w, ζ2n(i)−2 (ω)

))
+d

(
R
(
w, ζ2n(i)−2 (ω)

)
, R

(
w, ζ2n(i)−1 (ω)

))
+d

(
R
(
w, ζ2n(i)−1 (ω)

)
, R

(
w, ζ2n(i) (ω)

))
< ϵ+ d

(
R
(
w, ζ2n(i)−2 (ω)

)
, R

(
w, ζ2n(i)−1 (ω)

))
+d

(
R
(
w, ζ2n(i)−1 (ω)

)
, R

(
w, ζ2n(i) (ω)

))
.

Letting i→ +∞ in the above inequality and using (3.7), we obtain

(3.28) limi→+∞ d
(
R
(
w, ζ2m(i) (ω)

)
, R

(
w, ζ2n(i) (ω)

))
= ϵ.

Again, triangle inequality gives

| d
(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2m(i)−1 (ω)

))
−d

(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2m(i) (ω)

))
|

≤ d
(
R
(
w, ζ2m(i)−1 (ω)

)
, R

(
w, ζ2m(i) (ω)

))
.

Letting i→ +∞ in the above inequality and using (3.7) and (3.28), we get

(3.29) limi→+∞ d
(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2m(i)−1 (ω)

))
= ϵ.

On the other hand, we have

(3.30)

ϕ1
(
d
(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2m(i) (ω)

)))
≤ ϕ1(d

(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2n(i)+1 (ω)

))
+d

(
R
(
w, ζ2n(i)+1 (ω)

)
, R

(
w, ζ2m(i) (ω)

))
)

= ϕ1(d
(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2n(i)+1 (ω)

))
+d

(
T
(
w, ζ2n(i) (ω)

)
, S

(
w, ζ2m(i)−1 (ω)

))
).
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Then, from (3.7), (3.28) and the continuity of ϕ1, we get by letting i → ∞ in
the above inequality

(3.31) ϕ1 (ϵ) ≤ limi→+∞ ϕ1
(
d
(
T
(
w, ζ2n(i) (ω)

)
, S

(
w, ζ2m(i)−1 (ω)

)))
.

Now, using the contractive condition (3.1), we have

(3.32)

ϕ1
(
d
(
S
(
w, ζ2m(i)−1 (ω)

)
, T

(
w, ζ2n(i) (ω)

)))
≤ ψ1(d

(
R
(
w, ζ2m(i)−1 (ω)

)
, T

(
w, ζ2n(i) (ω)

))
,

d
(
R
(
w, ζ2m(i)−1 (ω)

)
, R

(
w, ζ2m(i) (ω)

))
d
(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2n(i)+1 (ω)

))
,

1
2 [d

(
R
(
w, ζ2m(i)−1 (ω)

)
, R

(
w, ζ2n(i)+1 (ω)

))
+

d
(
R
(
w, ζ2n(i) (ω)

)
, T

(
w, ζ2m(i) (ω)

))
])

−ψ2(d
(
R
(
w, ζ2m(i)−1 (ω)

)
, R

(
w, ζ2n(i) (ω)

))
,

d
(
R
(
w, ζ2m(i)−1 (ω)

)
, R

(
w, ζ2m(i) (ω)

))
,

d
(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2n(i)+1 (ω)

))
,

1
2 [d

(
R
(
w, ζ2m(i)−1 (ω)

)
, R

(
w, ζ2n(i)+1 (ω)

))
+d

(
R
(
w, ζ2n(i) (ω)

)
, R

(
w, ζ2m(i) (ω)

))
]).

From (3.7), (3.29) and the continuity of ψ1 and ψ2, we get by letting i→ +∞
in the above inequality

(3.33)
limi→+∞ ϕ1

(
d
(
S
(
w, ζ2m(i)−1 (ω)

)
, T

(
w, ζ2n(i) (ω)

)))
≤ ψ1 (ϵ, 0, 0, ϵ)− ψ2 (ϵ, 0, 0, ϵ)
≤ ϕ1 (ϵ)− ψ2 (ϵ, 0, 0, ϵ) .

Now, combining (3.31) with (3.33), we get

(3.34) ϕ1 (ϵ) ≤ ϕ1 (ϵ)− ψ2 (ϵ, 0, 0, ϵ)

which implies that ψ2 (ϵ, 0, 0, ϵ) = 0, and contradicts the inequality ϵ > 0.
We deduce that for ω ∈ Ω, {R (ω, ζn (ω))} is a Cauchy sequence. Since
{R (ω, ζn (ω))} is a Cauchy sequence in the complete metric space K, so there
exists ζ : Ω → K such that

(3.35) limn→+∞R (ω, ζn (ω)) = ζ (ω) .

From (3.35) and the continuity of R, we get

(3.36) limn→+∞R (ω,R (ω, ζn (ω))) = R (ω, ζ (ω)) .

By the triangle inequality, we have

(3.37)

d (R (ω, ζ (ω)) , T (ω, ζ (ω)))
≤ d (R (ω, ζ (ω)) , R (ω,R (ω, ζ2n+1 (ω))))
+d (R (ω, T (ω, ζ2n (ω))) , T (ω,R (ω, ζ2n (ω))))
+d (T (ω,R (ω, ζ2n (ω))) , T (ω, ζ (ω))) .

On the other hand, we have R (ω, ζ2n (ω)) → ζ (ω), T (ω, ζ2n (ω)) → ζ (ω) as
n→ ∞. As R and T are compatible random mappings, so we have

(3.38) limn→+∞ d (R (ω, T (ω, ζ2n (ω))) , T (ω,R (ω, ζ2n (ω)))) = 0.
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Now, from the continuity of T and (3.35), we have

(3.39) limn→+∞ d (T (ω,R (ω, ζ2n (ω))) , T (ω, ζ (ω))) = 0.

Combining (3.36), (3.38) and (3.39) and letting n→ +∞ in (3.37), we have

(3.40) d (R (ω, ζ (ω)) , T (ω, ζ (ω))) ≤ 0

that is,

(3.41) R (ω, ζ (ω)) = T (ω, ζ (ω)) .

Again, by triangle inequality, we have

(3.42)

d (R (ω, ζ (ω)) , S (ω, ζ (ω)))
≤ d (R (ω, ζ (ω)) , R (ω,R (ω, ζ2n+2 (ω))))
+d (R (ω, S (ω, ζ2n+1 (ω))) , S (ω,R (ω, ζ2n+1 (ω))))
+d (S (ω,R (ω, ζ2n+1 (ω))) , S (ω, ζ (ω))) .

On the other hand, we have R (ω, ζ2n+1 (ω)) → ζ (ω), S (ω, ζ2n+1 (ω)) → ζ (ω)
as n→ ∞. Since R and S are compatible mappings, therefore we get

(3.43) limn→+∞ d (R (ω, S (ω, ζ2n+1 (ω))) , S (ω,R (ω, ζ2n+1 (ω)))) = 0.

Now, from the continuity of S and (3.35), we have

(3.44) limn→+∞ d (S (ω,R (ω, ζ2n+1 (ω))) , S (ω, ζ (ω))) = 0.

Combining (3.36), (3.43) and (3.44) and letting n→ ∞ in (3.42), we obtain

(3.45) d (R (ω, ζ (ω)) , S (ω, ζ (ω))) ≤ 0

that is,

(3.46) R (ω, ζ (ω)) = S (ω, ζ (ω)) .

Finally, from (3.41) and (3.46), we have

T (ω, ζ (ω)) = R (ω, ζ (ω)) = S (ω, ζ (ω))

that is, ζ (ω) is a random coincidence point of T, S and R. □

Corollary 3.4. Let (X, d,≤) be a separable ordered metric space and K be a
nonempty Polish subspace of X. Let T, S,R : Ω×K → K be random operators
satisfying (3.1). Assume that

(1) T, S and R are continuous random operators,
(2) T (ω,K) ⊆ R(ω,K) and S(ω,K) ⊆ R(ω,K) for each ω ∈ Ω,
(3) T (ω, .) and S(ω, .) are weakly increasing with respect to R(ω, .) for each

ω ∈ Ω,
(4) the pairs {T,R} and {S,R} are commuting random operators.

Then there exists a measurable mapping ζ : Ω → K such that

R (ω, ζ (ω)) = T (ω, ζ (ω)) = S (ω, ζ (ω))

for each ω ∈ Ω.
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Corollary 3.5. Let (X, d,≤) be a separable ordered metric space and K be a
nonempty Polish subspace of X. Let T, S : Ω ×K → K be random operators
satisfying the following inequality, for every pair (x, y) ∈ K ×K with x and y
comparable,
(3.47)
ϕ1 (d (S (ω, x) , T (ω, y)))
≤ ψ1(d (x, y) , d (x, S (ω, x)) , d (y, T (ω, y)) , 12 [d (x, T (ω, y)) + d (y, S (ω, x))])
−ψ2(d (x, y) , d (x, S (ω, x)) , d (y, T (ω, y)) , 12 [d (x, T (ω, y)) + d (y, S (ω, x))])

where ψ1 and ψ2 are generalized altering distance functions and ϕ1 (x) =
ψ1 (x, x, x, x). Assume that T and S are continuous random operators and
T (ω, .) and S(ω, .) are weakly increasing for each ω ∈ Ω. Then, there exists a
measurable mapping ζ : Ω → K such that

T (ω, ζ (ω)) = S (ω, ζ (ω)) for each ω ∈ Ω.

Definition 3.6. Let (X, d,≤) be a separable partially ordered metric space and
K be a nonempty Polish subspace of X. We say that K is regular if and only
if the following hypothesis holds: if {ζn (ω)} is a nondecreasing sequence in K
with respect to ≤ and ζ : Ω → K such that ζn (ω) → ζ (ω) ∈ K as n → +∞,
then ζn (ω) ≤ ζ (ω) for all n ∈ N and for each ω ∈ Ω.

Theorem 3.7. Let (X, d,≤) be a separable ordered metric space and K be a
nonempty Polish subspace of X. Let T, S,R : Ω×K → K be random operators
satisfying inequality (3.1). Assume that

(1) T (ω,K) ⊆ R(ω,K) and S(ω,K) ⊆ R(ω,K) for each ω ∈ Ω,
(2) T (ω, .) and S(ω, .) are weakly increasing with respect to R(ω, .) for each

ω ∈ Ω,
(3) K is regular,
(4) R(ω,K) is a complete subspace of K.

Then there exists a measurable mapping ζ : Ω → K such that

R (ω, ζ (ω)) = T (ω, ζ (ω)) = S (ω, ζ (ω)) for each ω ∈ Ω.

Proof. As in the proof of Theorem 3.3, we have {R (ω, ζn (ω))} is a Cauchy se-
quence in the complete metric space (R(ω,K), d), therefore there exists θ (ω) =
R (ω, ζ (ω)), ζ (ω) ∈ K such that

(3.48) limn→+∞ {R (ω, ζn (ω))} = θ (ω) = R (ω, ζ (ω)) for each ω ∈ Ω.

Since {R (ω, ζn (ω))} is a nondecreasing sequence and K is regular, it follows
from (3.48) that R (ω, ζn (ω)) ≤ R (ω, ζ (ω)) for all n ∈ N and for each ω ∈ Ω.
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So, by contractive condition (3.1), we have

ϕ1 (d (S (ω, ζ (ω)) , R (ω, ζ2n+1 (ω)))) = ϕ1 (d (S (ω, ζ (ω)) , T (ω, ζ2n (ω))))
≤ ψ1(d (R (ω, ζ (ω)) , R (ω, ζ2n (ω))) , d (R (ω, ζ (ω)) , S (ω, ζ (ω))) ,
d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,

1
2 [d (R (ω, ζ (ω)) , T (ω, ζ2n (ω)))

+d (R (ω, ζ2n (ω)) , S (ω, ζ (ω)))])− ψ2(d (R (ω, ζ (ω)) , R (ω, ζ2n (ω))) ,
d (R (ω, ζ (ω)) , S (ω, ζ (ω))) , d (R (ω, ζ2n (ω)) , R (ω, ζ2n+1 (ω))) ,
1
2 [d (R (ω, ζ (ω)) , T (ω, ζ2n (ω))) + d (R (ω, ζ2n (ω)) , S (ω, ζ (ω)))]).

Letting n→ +∞ in the above inequality and using (3.7), (3.48) and the prop-
erties of ψ1and ψ2, we obtain

ϕ1 (d (S (ω, ζ (ω)) , R (ω, ζ (ω))))
≤ ψ1(0, d (R (ω, ζ (ω)) , S (ω, ζ (ω))) , 0, 12d (R (ω, ζ (ω)) , S (ω, ζ (ω))))
−ψ2(0, d (R (ω, ζ (ω)) , S (ω, ζ (ω))) , 0, 12d (R (ω, ζ (ω)) , S (ω, ζ (ω)))
≤ ϕ1 (d (S (ω, ζ (ω)) , R (ω, ζ (ω))))− ψ2(0, d (R (ω, ζ (ω)) , S (ω, ζ (ω))) , 0,
1
2d (R (ω, ζ (ω)) , S (ω, ζ (ω))) .

This implies that

ψ2(0, d (R (ω, ζ (ω)) , S (ω, ζ (ω))) , 0,
1

2
d (R (ω, ζ (ω)) , S (ω, ζ (ω))) = 0,

which gives that

d (R (ω, ζ (ω)) , S (ω, ζ (ω))) = 0,

that is,

(3.49) R (ω, ζ (ω)) = S (ω, ζ (ω)) .

Again, by (3.1), we have

ϕ1 (d (R (ω, ζ2n+2 (ω)) , T (ω, ζ (ω)))) = ϕ1 (d (S (ω, ζ2n+1 (ω)) , T (ω, ζ (ω))))
≤ ψ1(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ (ω))) , d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) ,
d (R (ω, ζ (ω)) , T (ω, ζ (ω))) , 12 [d (R (ω, ζ2n+1 (ω)) , T (ω, ζ (ω)))
+d (R (ω, ζ (ω)) , S (ω, ζ2n+1 (ω)))])− ψ2(d (R (ω, ζ2n+1 (ω)) , R (ω, ζ (ω))) ,
d (R (ω, ζ2n+1 (ω)) , R (ω, ζ2n+2 (ω))) , d (R (ω, ζ (ω)) , T (ω, ζ (ω))) ,
1
2 [d (R (ω, ζ2n+1 (ω)) , T (ω, ζ (ω))) + d (R (ω, ζ (ω)) , S (ω, ζ2n+1 (ω)))]).

Letting n→ +∞ in the above inequality, we get

ϕ1 (d (R (ω, ζ (ω)) , T (ω, ζ (ω))))
≤ ψ1(0, 0, d (R (ω, ζ (ω)) , T (ω, ζ (ω))) , 12d (R (ω, ζ (ω)) , T (ω, ζ (ω))))
−ψ2(0, 0, d (R (ω, ζ (ω)) , T (ω, ζ (ω))) , 12d (R (ω, ζ (ω)) , T (ω, ζ (ω))))
≤ ϕ1 (d (R (ω, ζ (ω)) , T (ω, ζ (ω))))− ψ2(0, 0, d (R (ω, ζ (ω)) , T (ω, ζ (ω)))
1
2d (R (ω, ζ (ω)) , T (ω, ζ (ω)))).

This implies that

ψ2(0, 0, d (R (ω, ζ (ω)) , T (ω, ζ (ω))) ,
1

2
d (R (ω, ζ (ω)) , T (ω, ζ (ω))) = 0
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and so,

(3.50) R (ω, ζ (ω)) = T (ω, ζ (ω)) .

Now, combining (3.49) and (3.50), we obtain

R (ω, ζ (ω)) = T (ω, ζ (ω)) = S (ω, ζ (ω))

for each ω ∈ Ω. Hence, ζ (ω) is a random coincidence point of T , S, and R □
Corollary 3.8. Let (X, d,≤) be a separable ordered metric space and K be a
nonempty Polish subspace of X. Let T, S : Ω ×K → K be random operators
satisfying the following inequality for every pair (x, y) ∈ K ×K with x and y
comparable,

ϕ1 (d (S (ω, x) , T (ω, y)))
≤ ψ1(d (x, y) , d (x, S (ω, x)) , d (y, T (ω, y)) , 12 [d (x, T (ω, y)) + d (y, S (ω, x))])
−ψ2(d (x, y) , d (x, S (ω, x)) , d (y, T (ω, y)) , 12 [d (x, T (ω, y)) + d (y, S (ω, x))])

where ψ1 and ψ2 are generalized altering distance functions and ϕ1 (x) =
ψ1 (x, x, x, x). Assume that T (ω, .) and S(ω, .) are weakly increasing. If K
is regular, then there exists a measurable mapping ζ : Ω → K such that

T (ω, ζ (ω)) = S (ω, ζ (ω)) for each ω ∈ Ω.

Corollary 3.9. Let (X, d,≤) be a separable ordered metric space and K be a
nonempty Polish subspace of X. Let T : Ω × K → K be a random operator
satisfying the following inequality, for every comparable pair (x, y) ∈ K ×K

ϕ1 (d (T (ω, x) , T (ω, y)))
≤ ψ1(d (x, y) , d (x, T (ω, x)) , d (y, T (ω, y)) , 12 [d (x, T (ω, y)) + d (y, T (ω, x))])
−ψ2(d (x, y) , d (x, T (ω, x)) , d (y, T (ω, y)) , 12 [d (x, T (ω, y)) + d (y, T (ω, x))])

where ψ1 and ψ2 are generalized altering distance functions and ϕ1 (x) =
ψ1 (x, x, x, x). Suppose T (ω, .) is weakly increasing for each ω ∈ Ω. Assume
that either T is continuous random operator or K is regular, then, T has a
random fixed point, that is, there exists a measurable mapping ζ : Ω → K such
that

ζ(ω) = T (ω, ζ (ω)) for each ω ∈ Ω.

4. Results and discussion

Our results provide random versions of Theorem 2.9 and corresponding re-
sults in [8] and [19]. Theorem 3.3 is a generalization of Theorem 2.2 in [24]
for three maps considering generalized altering distance functions. Corollary
3.5 is an extension of Theorem 2.4 in [24]. Consequently, Our results present
random versions, improvement, extension and generalization of recent results
in the literature.
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