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Abstract. In this paper, the main aim is to introduce the class Up(λ, α,
β, k0) of p-harmonic mappings together with its subclasses Up(λ, α, β, k0)∩
Tp and Up(λ, α, β, k0) ∩ T 0

p , and investigate the properties of the map-

pings in these classes. First, we give a sufficient condition for map-
pings to be in Up(λ, α, β, k0) and also the characterization of mappings in

Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1
} ≤ α ≤ λ. Second, we consider the

starlikeness of mappings in Up(λ, α, β, k0)∩T 0
p for max{0, λ− 1

2
λ+1

} ≤ α ≤ λ.

Third, extreme points of Up(λ, α, β, k0)∩Tp for max{0, λ− 1
2

λ+1
} ≤ α ≤ λ are

found. The support points of Up(λ, α, β, k0)∩Tp for max{0, λ− 1
2

λ+1
} ≤ α ≤

λ and convolution of mappings in Up(λ, α, β, k0)∩Tp for max{0, λ− 1
2

λ+1
} ≤

α ≤ λ are also discussed.
Keywords: p-harmonic mapping, uniform convexity, uniform starlike-

ness, extreme point, support point.
MSC(2010): Primary: 30C65; Secondary: 30C45, 30C20.

1. Introduction

A 2p times continuously differentiable complex-valued function F = u +
iv in a domain D ⊆ C is p-harmonic if F satisfies the p-harmonic equation
∆ · · ·∆︸ ︷︷ ︸

p

F = 0, where p (≥ 1) is an integer and ∆ represents the complex

Laplacian operator

∆ = 4
∂2

∂z∂z̄
=

∂2

∂x2
+

∂2

∂y2
.
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A mapping F is p-harmonic in a simply connected domain D if and only if
F has the following representation:

F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z),

where each Gp−k+1 is harmonic, i.e. ∆Gp−k+1(z) = 0 for k ∈ {1, · · · , p}
(cf. [10, Proposition 1]).

Obviously, when p = 1 (respectively, 2), F is harmonic (respectively, bihar-
monic). The properties of harmonic mappings have been investigated by many
authors, see [6, 11,14,37], etc.

Biharmonic mappings arise in a lot of physical problems, particularly in
fluid dynamics and elasticity problems, and have many important applications
in engineering and biology. See [19, 26, 28] for the details. There exist many
references on biharmonic mappings in literature, see [1–3].

For analytic functions, Goodman first considered uniformly convex functions
( [16]). The class of k0-uniformly convex functions was introduced and investi-
gated by Kanas and Wísniowska ( [24]). Subsequently, both of them introduced
and discussed the class of k0-uniformly starlike functions ( [25]). See [23,29,35]
for other discussions. In [36], it was first to give the classes of k0-uniformly
convex functions of order β and k0-uniformly starlike functions of order β have
been given. Recently, authors considered a new subclass of k0-uniformly convex
functions with negative coefficients, Ǔ(λ, α, β, k0), which generalizes the class
of uniformly convex functions (cf. [38]).

In section 2 of this paper, we mainly discuss properties of mappings which
belong to the class Up(λ, α, β, k0) and a generalization of Ǔ(λ, α, β, k0) for
p-harmonic mappings. In fact, the class Up(λ, α, β, k0) contains many well-
known as well as new classes of harmonic univalent mappings. In particu-
lar, U1(0, 0, β, 0) = SH(β)(cf. [21, 33]), U1(0, 1, β, 0) = KH(β) (cf. [20, 22]),
U1(0, 0, β, k0) = SHD(k0, β) and U1(0, 1, β, k0) = KHD(k0, β), where SHD(k0, β)

(respectively, KHD(k0, β)) (see Section 2 for the definitions) consists of k0-
uniformly starlike (respectively, convex) harmonic mappings of order β which
is a generalization of the corresponding one in [36] for harmonic mappings, and,
in particular, SHD(k0, 0) (respectively, KHD(k0, 0)) consisting of k0-uniformly
starlike (respectively, convex) harmonic mappings have been considered in [5].

In order to discuss the starlikeness, extreme points and support points of
p-harmonic mappings, in Section 2, we will introduce the notations: SHp(β),

SHD(k0, β), KHD(k0, β), Up(λ, α, β, k0), Tp and T 0
p for p-harmonic mappings,

respectively. Other necessary notions and notations will also be presented in
Section 2.

As the first aim of this paper, we prove a sufficient condition for p-harmonic
mappings to be in Up(λ, α, β, k0) in terms of their coefficients, and also give the
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characterization of mappings in Up(λ, α, β, k0)∩Tp with max{0, λ− 1
2

λ+1 } ≤ α ≤ λ.
So our first result is Theorem 3.1.

In Section 4, we discuss the starlikeness of mappings in Up(λ, α, β, k0) ∩T 0
p

for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ. It is proved that mappings in Up(λ, α, β, k0) ∩T 0
p

with max{0, λ− 1
2

λ+1 } ≤ α ≤ λ is starlike of order δ for the constant δ which
depends only on λ, α, β and k0. Our main result is Theorem 4.1.

There are many references concerning extreme points of analytic functions
in D in the literature (see [4, 13, 18, 30, 32, 41]). Extreme points of harmonic
mappings also have been discussed by many authors and it is known that some
classes of harmonic mappings are convex hull of their corresponding extreme
points (see [20, 22, 27, 39, 40]). In Section 5, we determine the extreme points

of Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ. And it is proved that the

mappings in Up(λ, α, β, k0) ∩ Tp with max{0, λ− 1
2

λ+1 } ≤ α ≤ λ can be expressed
as the convex combination of extreme points. So our main result is Theorem
5.4.

Support points of analytic functions are critical in solving extremal problems.
It is known that any compact analytic function family contains support points
and the set of support points contains an extreme point at least. This fact
plays an active role in solving extremal problems for various families of analytic
functions (see [7,8,12,13,17,30,31]). No references on this topic have been in the
literature for harmonic mappings. In this paper, we consider the support points

of Up(λ, α, β, k0)∩Tp with max{0, λ− 1
2

λ+1 } ≤ α ≤ λ for p-harmonic mappings and
get Theorem 6.1.

At the end, the convolution of p-harmonic mappings are discussed. We prove

that if F1 ∈ Up(λ1, α1, β1, k0,1) ∩ Tp for max{0, λ1− 1
2

λ1+1 } ≤ α1 ≤ λ1 and F2 ∈
Up(λ2, α2, β2, k0,2)∩Tp for λ2

λ2+1 ≤ α2 ≤ λ2, then F1 ∗F2 ∈ Up(λ1, α1, β1, k0,1)∩
Tp for max{0, λ1− 1

2

λ1+1 } ≤ α1 ≤ λ1. Our last result is Theorem 7.1.

2. Preliminaries

In [3], the properties of the linear complex operator L(f)(z) = zfz(z) −
z̄fz̄(z), which is defined on the class of complex-valued C1 functions in the
plane, are investigated. It is shown that harmonicity and biharmonicity are
invariant under the linear operator L. Also it is easy to deduce that it preserves
p-harmonicity. The operator L can be manipulated to express the conditions
in the definitions of starlikeness and convexity in a convenient way.

Definition 2.1. A univalent sense-preserving harmonic mapping f with f(0) =
fz(0)−1 = 0 is said to be starlike of order β (0 ≤ β < 1) , written as f ∈ SH(β)
if

Re
(L(f)(z)

f(z)

)
> β
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for z ̸= 0.

Proposition 2.2. ( [34]) If F is univalent and sense-preserving, F (0) = 0 and
d
dθ (argF (reiθ)) > β for z = reiθ ̸= 0, then F is starlike of order β with respect
to the origin.

Definition 2.3. A univalent sense-preserving harmonic mapping f with f(0) =
fz(0)− 1 = 0 and L(f)(z) ̸= 0 whenever z ̸= 0 is said to be convex of order β
(0 ≤ β < 1), written as f ∈ KH(β) if

Re
(L(L(f))(z)

L(f)(z)

)
> β

for any z ̸= 0.

Properties of these mappings have been considered in [20–22,33]. If the con-
stant β = 0 in above definitions, we obtain the definitions of starlike harmonic
mappings and convex harmonic mappings (cf. [3, 9] and [15]).

Definition 2.4. If a univalent sense-preserving p-harmonic mapping F with
F (0) = Fz(0)− 1 = 0 satisfying the inequality

(2.1) Re
(L(F )(z)

F (z)

)
> k0

∣∣L(F )(z)

F (z)
− 1

∣∣+ β, z ∈ D \ {0}, k0 ≥ 0, 0 ≤ β < 1,

then we say f is a k0-uniformly starlike harmonic mapping of order β.

Let k0 = 0 in (2.1). We obtain the definition of starlike p-harmonic mappings
of order β and denote this class by SHp(β),

In the case of p = 1, let SHD(k0, β) be the class of univalent sense-preserving
harmonic mappings which are k0-uniformly starlike of order β.

Definition 2.5. Let F be a univalent sense-preserving p-harmonic mapping
with F (0) = Fz(0)− 1 = 0 and L(F )(z) ̸= 0 for z ̸= 0. If F satisfies

Re(
L(L(F ))(z)

L(F )(z)
) > k0

∣∣L(L(F ))(z)

L(F )(z)
− 1

∣∣+ β, z ∈ D \ {0}, k0 ≥ 0, 0 ≤ β < 1,

then F is said to be k0-uniformly convex of order β.

Let KHD(k0, β) be the class that consists of univalent sense-preserving har-
monic mappings which are k0-uniformly convex of order β.

The above two definitions generalize the corresponding ones in [36].
In the following, we give the generalized class of the corresponding one in [38]

for p-harmonic mappings.
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Definition 2.6. Let

F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z)(2.2)

= z +
∞∑

n=2

an,pz
n +

∞∑
n=1

bn,pz̄
n

+

p∑
k=2

|z|2(k−1)
( ∞∑
n=1

an,p−k+1z
n +

∞∑
n=1

bn,p−k+1z̄
n
)

be a univalent sense-preserving p-harmonic mapping and

F(z) = λαL(L(F ))(z) + (λ− α− λα)L(F )(z) + (1− λ+ α)F (z)

with 0 ≤ α ≤ λ ≤ 1, 0 ≤ β < 1, k0 ≥ 0. We say F is in the class Up(λ, α, β, k0)
if F(z) ̸= 0 for z ̸= 0 and for any z ∈ D \ {0},

(2.3) Re
(L(F)(z)

F(z)

)
> k0

∣∣L(F)(z)

F(z)
− 1

∣∣+ β.

Through straight computation, we have

F(z) =

p∑
k=1

((
λαz2h

′′

p−k+1(z) + (λ− α)zh
′

p−k+1(z)

+(1− λ+ α)hp−k+1(z)
)

+
(
λαz2g

′′
p−k+1(z)− (λ− α− 2λα)zg

′
p−k+1(z)

+(1− λ+ α)gp−k+1(z)
))

=

p∑
k=1

|z|2(k−1)
( ∞∑

n=1

(
(n− 1)(λαn+ λ− α) + 1

)
an,p−k+1z

n

+

∞∑
n=1

(
(n+ 1)(λαn− λ+ α) + 1

)
bn,p−k+1z̄

n
)

=

p∑
k=1

|z|2(k−1)
( ∞∑

n=1

An,p−k+1z
n +

∞∑
n=1

Bn,p−k+1z̄
n
)
.

Let Tp denote the subclass of univalent p-harmonic mapping family consist-
ing of mappings given by
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F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z)

= z −
p∑

k=2

|z|2(k−1)a1,p−k+1z

−
p∑

k=1

|z|2(k−1)
( ∞∑
n=2

an,p−k+1z
n −

∞∑
n=1

bn,p−k+1z̄
n
)

such that a1,p−k+1 ≥ 0 (k ∈ {2, · · · , p}), an,p−k+1 ≥ 0 (k ∈ {1, · · · , p}, n ≥ 2)
and bn,p−k+1 ≥ 0 (k ∈ {1, · · · , p}, n ≥ 1), and the subclass

T 0
p = {F ∈ Tp : a1,p−k+1 = 0 for k ∈ {2, · · · , p}}.

Denote S the class of univalent analytic functions f with the normalization
f(0) = f ′(0)− 1 = 0 and the subclass

T = T1 = {f ∈ S : f(z) = z −
∞∑

n=2

anz
n, an ≥ 0}.

Furthermore, we introduce the following concepts for p-harmonic mappings.

Definition 2.7. Let X be a topological vector space over the field of complex
numbers, and let D be a set of X. A point x ∈ D is called an extreme point of
D if it has no representation of the form x = ty + (1 − t)z (0 < t < 1) as a
proper convex combination of two distinct points y and z in D.

Definition 2.8. Let X be a topological vector space over the field of complex
numbers, and let D be a subset of X. A point x ∈ D is called a support point
of D if there is a continuous linear functional J , not constant on D, such that
Re(J(x)) ≥ Re(J(y)) for all y ∈ D.

Finally, we give the convolution of two p-harmonic mappings.
Let

F1(z) =

p∑
k=1

|z|2(k−1)
( ∞∑
n=1

an,p−k+1z
n +

∞∑
n=1

bn,p−k+1z̄
n
)

and

F2(z) =

p∑
k=1

|z|2(k−1)
( ∞∑
n=1

cn,p−k+1z
n +

∞∑
n=1

dn,p−k+1z̄
n
)
.

Then the convolution of F1 and F2 is defined to be the mapping

F1 ∗ F2(z) =

p∑
k=1

|z|2(k−1)
( ∞∑
n=1

an,p−k+1cn,p−k+1z
n +

∞∑
n=1

bn,p−k+1dn,p−k+1z̄
n
)
.
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3. Characterization

In this section, we give a sufficient condition for mappings to be in Up(λ, α,
β, k0) and also the characterization of mappings in Up(λ, α, β, k0) ∩ Tp. Our
main result is the following theorem.

Theorem 3.1. A univalent sense-preserving p-harmonic mapping F with the
form (2.2) is in the class Up(λ, α, β, k0) if

(3.1)
p∑

k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
|an,p−k+1|

+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)∣∣(n+ 1)(λαn− λ+ α) + 1
∣∣|bn,p−k+1|

+

p∑
k=2

(1− β)|a1,p−k+1|

≤ 1− β.

Conversely, if F ∈ Up(λ, α, β, k0)∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ, then (3.1)
holds.

Proof. Assume that the univalent sense-preserving p-harmonic mapping F sat-
isfies (3.1).

Since for any z ̸= 0,

|z|
(
1− β −

p∑
k=2

(1− β)|a1,p−k+1|

−
p∑

k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
|an,p−k+1|

−
p∑

k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)∣∣(n+ 1)(λαn− λ+ α) + 1
∣∣|bn,p−k+1|

)
< (1− β)|z| −

p∑
k=2

(1− β)|a1,p−k+1||z|2k−1

−
p∑

k=1

∞∑
n=2

(1− β)
(
(n− 1)(λαn+ λ− α) + 1

)
|an,p−k+1||z|2(k−1)+n

−
p∑

k=1

∞∑
n=1

(1− β)
∣∣(n+ 1)(λαn− λ+ α) + 1

∣∣|bn,p−k+1||z|2(k−1)+n

≤ (1− β)|F(z)|,
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we see that F(z) ̸= 0 whenever z ̸= 0 by (3.1).
Next, we will prove that for any z ̸= 0,

Re
(L(F)(z)

F(z)

)
> k0

∣∣L(F)(z)

F(z)
− 1

∣∣+ β

which is equivalent to

(3.2) Re
(L(F)(z)

F(z)
(1 + k0e

iθ)− k0e
iθ
)
> β

for each θ ∈ [0, 2π).
Let G(z) = L(F)(1 + k0e

iθ)− k0e
iθF(z). Then (3.2) is equivalent to

|G(z) + (1− β)F(z)| > |G(z)− (1 + β)F(z)|.

Since

|G(z) + (1− β)F(z)|
= |L(F) + k0e

iθ(L(F)−F(z)) + (1− β)F(z)|

=
∣∣∣ p∑
k=1

|z|2(k−1)
( ∞∑

n=1

(n+ 1− β)An,p−k+1z
n

−
∞∑

n=1

(n− 1 + β)Bn,p−k+1z̄
n

+k0e
iθ
( ∞∑
n=2

(n− 1)An,p−k+1z
n −

∞∑
n=1

(n+ 1)Bn,p−k+1z̄
n
))∣∣∣

≥ (2− β)
∣∣z + p∑

k=2

A1,p−k+1|z|2(k−1)z
∣∣

−
p∑

k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β) + 1

)
|An,p−k+1||z|2(k−1)+n

−
p∑

k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)− 1

)
|Bn,p−k+1||z|2(k−1)+n
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and

|G(z)− (1 + β)F(z)|
= |L(F) + k0e

iθ(L(F)−F(z))− (1 + β)F(z)|

=
∣∣∣ p∑
k=1

|z|2(k−1)
(
− βA1,p−k+1z +

∞∑
n=2

(n− 1− β)An,p−k+1z
n

−
∞∑

n=1

(n+ 1 + β)Bn,p−k+1z̄
n

+k0e
iθ
( ∞∑
n=2

(n− 1)An,p−k+1z
n −

∞∑
n=1

(n+ 1)Bn,p−k+1z̄
n
))∣∣∣

≤ β
∣∣z + p∑

k=2

A1,p−k+1|z|2(k−1)z
∣∣

+

p∑
k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)− 1

)
|An,p−k+1||z|2(k−1)+n

+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β) + 1

)
|Bn,p−k+1||z|2(k−1)+n,

we see that

|G(z) + (1− β)F(z)| − |G(z)− (1 + β)F(z)|

≥ (2− 2β)|z| −
p∑

k=2

(2− 2β)|A1,p−k+1||z|2k−1

−
p∑

k=1

∞∑
n=2

2
(
n(k0 + 1)− (k0 + β)

)
|An,p−k+1||z|2(k−1)+n

−
p∑

k=1

∞∑
n=1

2
(
n(k0 + 1) + (k0 + β)

)
|Bn,p−k+1||z|2(k−1)+n

> 0

by (3.1), which implies

Re
(L(F)(z)

F(z)

)
> k0

∣∣L(F)(z)

F(z)
− 1

∣∣+ β.
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Conversely, assume F ∈ Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ. Let

z = r
(
r ∈ (0, 1)

)
. Then (3.2) reduces to the following form

Re
(L(F)(r)− βF(r) + k0e

iθ(L(F)(r)−F(r))

F(r)

)
(3.3)

=
ReA(r)

C(r)

> 0,

where

A(r) = 1− β −
p∑

k=2

(1− β)A1,p−k+1r
2(k−1)

−
p∑

k=1

∞∑
n=2

(
(n− β) + k0e

iθ(n− 1)
)
An,p−k+1r

2(k−1)+n−1

−
p∑

k=1

∞∑
n=1

(
(n+ β) + k0e

iθ(n+ 1)
)
Bn,p−k+1r

2(k−1)+n−1

and

C(r) = 1−
p∑

k=2

A1,p−k+1r
2(k−1) −

p∑
k=1

∞∑
n=2

An,p−k+1r
2(k−1)+n−1

−
p∑

k=1

∞∑
n=1

Bn,p−k+1r
2(k−1)+n−1.

Since, for θ = 0, we see that

Re(A(r)) = B(r)

= 1− β −
p∑

k=2

(1− β)A1,p−k+1r
2(k−1)

−
p∑

k=1

∞∑
n=2

(
(n− β) + k0(n− 1)

)
An,p−k+1r

2(k−1)+n−1

−
p∑

k=1

∞∑
n=1

(
(n+ β) + k0(n+ 1)

)
Bn,p−k+1r

2(k−1)+n−1.

Then, by (3.3), we have

(3.4)
B(r)

C(r)
> 0.

If the inequality (3.1) does not hold, then the numerator in (3.4) is negative
for r sufficiently close to 1. Thus there exists a z0 = r0 in (0, 1) for which
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the quotient in (3.4) is negative, which contradicts the condition that F ∈
Up(λ, α, β, k0). □

Take λ = 0, α = 0 and p = 1 in Theorem 3.1, we can deduce the following
corollary.

Corollary 3.2. If f(z) = z +
∑∞

n=2 anz
n +

∑∞
n=1 bnz̄

n is a univalent sense-
preserving harmonic mapping such that

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)
|an|+

∞∑
n=1

(
n(k0 + 1) + k0 + β

)
|bn| < 1− β,

then f ∈ SHD(k0, β).
Conversely, if f ∈ SHD(k0, β) ∩ T1, then the above inequality also holds.

Remark 3.3. If f ∈ S, that is bn = 0 (n ≥ 1), [36, Theorem 2.1] follows from
Corollary 3.2.

Remark 3.4. Take k0 = 0 in Corollary 3.2, we obtain the characterization of
mappings belonging to SH(β) ∩ T1 which is given in [21].

Let λ = 0, α = 1 and p = 1 in Theorem 3.1. We can get a sufficient condition
for f to be in KHD(k0, β).

Corollary 3.5. If f(z) = z +
∑∞

n=2 anz
n +

∑∞
n=1 bnz̄

n is a univalent sense-
preserving harmonic mapping such that

∞∑
n=2

n
(
n(k0 + 1)− (k0 + β)

)
|an|+

∞∑
n=1

n
(
n(k0 + 1) + k0 + β

)
|bn| < 1− β,

then f ∈ KHD(k0, β).
Conversely, if f ∈ KHD(k0, β) ∩ T1, then the above inequality also holds.

Remark 3.6. If f ∈ S, that is bn = 0 (n ≥ 1), [36, Theorem 2.2] is the direct
consequence of the above corollary.

Corollary 3.7. Suppose that f(z) = z −
∑∞

n=1 anz
n ∈ T . If

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
an ≤ 1− β,

then f(z) ∈ Ǔ(λ, α, β, k0), where Ǔ(λ, α, β, k0) is defined in [38].

Remark 3.8. This result coincides with [38, Theorem 1].
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4. Starlikeness

In this section, we consider the starlikeness of mappings in Up(λ, α, β, k0) ∩
T 0
p .

Theorem 4.1. If F ∈ Up(λ, α, β, k0) ∩ T 0
p for max{0, λ− 1

2

λ+1 } ≤ α ≤ λ, then

F ∈ SHp(δ) where δ = min{m1,m2} with

m1 = 1− 1− β

(2 + k0 − β)(2λα+ λ− α+ 1)− (1− β)

and

m2 = 1− 2(1− β)

(2k0 + 1 + β)(2(λα− λ+ α) + 1) + (1− β)
.

Proof. Assume

F (z) = z +

p∑
k=1

|z|2(k−1)
(
−

∞∑
n=2

an,p−k+1z
n +

∞∑
n=1

bn,p−k+1z̄
n
)

belongs to Up(λ, α, β, k0) ∩ T 0
p for max{0, λ− 1

2

λ+1 } ≤ α ≤ λ which implies

p∑
k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
an,p−k+1

+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
bn,p−k+1

≤ 1− β.

Let r ∈ (0, 1) and

Fr(z) = z +

p∑
k=1

r2(k−1)
(
−

∞∑
n=2

an,p−k+1z
n +

∞∑
n=1

bn,p−k+1z̄
n
)
.

Obviously, Fr is harmonic.
In [21], it has proved that if

(4.1)
∞∑

n=2

n− δ0
1− δ0

|an|+
∞∑

n=1

n+ δ0
1− δ0

|bn| ≤ 1,

then f ∈ SH(δ0).
Let

φ(n) = 1− (n− 1)(1− β)(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
− (1− β)

.

with n ≥ 2. Then

δ ≤ m1 = φ(2) = 1− 1− β

(2 + k0 − β)(2λα+ λ− α+ 1)− (1− β)
.
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Thus, It follows from

φ(n) ≥ φ(2) (n ≥ 2)

that

δ ≤ φ(n)

= 1− (n− 1)(1− β)(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
− (1− β)

which is equivalent to

n− δ

1− δ
≤

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
1− β

(n ≥ 2).

Let

Φ(n) = 1− (n+ 1)(1− β)(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
+ (1− β)

with n ≥ 1. It is easy to deduce that Φ(n) ≥ m2 ≥ δ for n ≥ 1 which implies

n+ δ

1− δ
≤

(
n(k0 + 1) + k0 + β

)(
(n+ 1)(λαn− λ+ α) + 1

)
1− β

(n ≥ 1).

Then by Theorem 3.1 and (4.1), we have Fr ∈ SH(δ), that is

d

dθ
(argFr(r1e

iθ)) > δ

for r1 ∈ (0, 1). Let r1 = r, we have d
dθ (argF (reiθ)) > δ. By Proposition 2.2,

we have F ∈ SHp(δ).
The proof is complete. □

5. Extreme points

We begin this section with two lemmas, one gives the distortion bounds for
mappings in Up(λ, α, β, k0) ∩ Tp and the other shows that this class is closed
under the convex combination.

Lemma 5.1. If F ∈ Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ, then

|F (z)| ≤
p∑

k=1

(
a1,p−k+1 + b1,p−k+1

)
|z|

+m0

(
1− β −

p∑
k=1

(2k0 + β + 1)(2λα− 2λ+ 2α+ 1)b1,p−k+1

−
p∑

k=2

(1− β)a1,p−k+1

)
|z|2,

where m0 = max{ 1
(k0+2−β)(2λα+λ−α+1) ,

1
(3k0+β+2)(6λα−3λ+3α+1)}.
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Proof. For

F (z) = z −
∞∑

n=2

an,pz
n +

∞∑
n=1

bn,pz̄
n

−
p∑

k=2

|z|2(k−1)
( ∞∑
n=1

an,p−k+1z
n −

∞∑
n=1

bn,p−k+1z̄
n
)
,

obviously,

|F (z)| ≤
p∑

k=1

(
a1,p−k+1 + b1,p−k+1

)
|z|+

p∑
k=1

∞∑
n=2

(
an,p−k+1 + bn,p−k+1

)
|z|2.

By Theorem 3.1,

p∑
k=1

∞∑
n=2

(
an,p−k+1 + bn,p−k+1

)
≤ 1

(k0 + 2− β)(2λα+ λ− α+ 1)

p∑
k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)
(
(n− 1)(λαn+ λ− α) + 1

)
an,p−k+1

+
1

(3k0 + β + 2)(6λα− 3λ+ 3α+ 1)
p∑

k=1

∞∑
n=2

(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
bn,p−k+1

≤ m0

(
1− β −

p∑
k=2

(1− β)a1,p−k+1

−
p∑

k=1

(2k0 + β + 1)(2λα− 2λ+ 2α+ 1)b1,p−k+1

)
with m0 = max{ 1

(k0+2−β)(2λα+λ−α+1) ,
1

(3k0+β+2)(6λα−3λ+3α+1)}. Hence

|F (z)| ≤
p∑

k=1

(
a1,p−k+1 + b1,p−k+1

)
|z|

+m0

(
1− β −

p∑
k=1

(2k0 + β + 1)(2λα− 2λ+ 2α+ 1)b1,p−k+1

−
p∑

k=2

(1− β)a1,p−k+1

)
|z|2.

□
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Remark 5.2. If F ∈ Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ, then for

each k ∈ {1, · · · , p},

|Gp−k+1(z)|

≤
p∑

k=1

(
a1,p−k+1 + b1,p−k+1

)
|z|

+m0

(
1− β −

p∑
k=1

(2k0 + β + 1)(2λα− 2λ+ 2α+ 1)b1,p−k+1

−
p∑

k=2

(1− β)a1,p−k+1

)
|z|2,

where m0 = max{ 1
(k0+2−β)(2λα+λ−α+1) ,

1
(3k0+β+2)(6λα−3λ+3α+1)}.

Lemma 5.3. The family Up(λ, α, β, k0)∩Tp is closed under convex combination

for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ.

Proof. For i = 1, 2, 3, · · ·, suppose that Fi ∈ Up(λ, α, β, k0) ∩ Tp and

Fi(z) = z −
p∑

k=2

|z|2(k−1)ai,1,p−k+1z

−
p∑

k=1

|z|2(k−1)
( ∞∑
n=2

ai,n,p−k+1z
n −

∞∑
n=1

bi,n,p−k+1z̄
n
)
.

By Theorem 3.1,

p∑
k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
ai,n,p−k+1

+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
bi,n,p−k+1

+

p∑
k=2

(1− β)ai,1,p−k+1

≤ 1− β.
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For
∑∞

i=1 ti = 1 with ti ∈ [0, 1], from Lemma 5.1 and Remark 5.2, we have
that

∑∞
i=1 tiFi is p-harmonic. Obviously,

∞∑
i=1

tiFi(z) = z −
p∑

k=2

|z|2(k−1)
( ∞∑
i=1

tiai,1,p−k+1

)
z

−
p∑

k=1

|z|2(k−1)
( ∞∑

n=2

( ∞∑
i=1

tiai,n,p−k+1

)
zn

−
∞∑

n=1

( ∞∑
i=1

tibi,n,p−k+1

)
z̄n

)
.

Then
p∑

k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
( ∞∑
i=1

tiai,n,p−k+1

)
+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
( ∞∑
i=1

tibi,n,p−k+1

)
+

p∑
k=2

(1− β)
( ∞∑
i=1

tiai,1,p−k+1

)
≤

∞∑
i=1

ti

( p∑
k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
ai,n,p−k+1

+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
bi,n,p−k+1 +

p∑
k=2

(1− β)ai,1,p−k+1

)
≤

∞∑
i=1

ti(1− β)

= (1− β).

Using Theorem 3.1, we have
∑∞

i=1 tiFi ∈ Up(λ, α, β, k0) ∩ Tp. □

Obviously, for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ, it follows from Remark 5.2 and [14,

P80] that Up(λ, α, β, k0) ∩ Tp is normal. By Remark 5.2 and Lemma 5.3, this
class is also convex and compact. It follows that this class contains some
extreme points (cf. [13, P281]). Now we are ready to find the forms of extreme
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points of Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ and show that these
mappings can be expressed as the convex combination of the extreme points.

Theorem 5.4. If F ∈ Tp, then, for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ, F ∈ Up(λ, α, β, k0)
if and only if

F (z) =

p∑
k=1

∞∑
n=1

(
Xknhkn(z) + Ykngkn(z)

)
,

where

hkn(z) = z − |z|2(k−1) 1− β(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)zn
with k ∈ {2, · · · , p}, n ≥ 1,

h11(z) = z,

h1n(z) = z − 1− β(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)zn (n ≥ 2),

gkn(z) = z + |z|2(k−1) 1− β(
n(k0 + 1) + k0 + β

)(
(n+ 1)(λαn− λ+ α) + 1

) z̄n
with k ∈ {1, · · · , p}, n ≥ 1, and

p∑
k=1

∞∑
n=1

(Xkn + Ykn) = 1 (Xkn ≥ 0, Ykn ≥ 0).

In particular, the extreme points of Up(λ, α, β, k0)∩ Tp with max{0, λ− 1
2

λ+1 } ≤
α ≤ λ are {hkn} and {gkn}.

Proof. Since

F (z) =

p∑
k=1

∞∑
n=1

(
Xknhkn(z) + Ykngkn(z)

)
= z +

p∑
k=2

|z|2(k−1)

(
−

∞∑
n=2

(1− β)Xkn(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)zn
+

∞∑
n=1

(1− β)Ykn(
n(k0 + 1) + k0 + β

)(
(n+ 1)(λαn− λ+ α) + 1

) z̄n)
−

p∑
k=2

(1− β)Xk1(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)z
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and

p∑
k=1

∞∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
(1− β)Xkn(

n(k0 + 1)− (k0 + β)
)(
(n− 1)(λαn+ λ− α) + 1

)
+

p∑
k=1

∞∑
n=1

(
n(k0 + 1) + (k0 + β)

)(
(n+ 1)(λαn− λ+ α) + 1

)
(1− β)Ykn(

n(k0 + 1) + k0 + β
)(
(n+ 1)(λαn− λ+ α) + 1

)
+

p∑
k=2

(1− β)Xk1

= (1− β)(1−X11)

≤ 1− β,

it follows from Theorem 3.1 that F ∈ Up(λ, α, β, k0) ∩ Tp.
Conversely, assuming F ∈ Up(λ, α, β, k0) ∩ Tp with max{0, λ− 1

2

λ+1 } ≤ α ≤ λ
and setting

Xkn =
1− β(

n(k0 + 1)− (k0 + β)
)(
(n− 1)(λαn+ λ− α) + 1

)an,p−k+1 ,

with 2 ≤ k ≤ p and n ≥ 1,

X1n =
1− β(

n(k0 + 1)− (k0 + β)
)(
(n− 1)(λαn+ λ− α) + 1

)an,p (n ≥ 2),

Ykn =
1− β(

n(k0 + 1) + k0 + β
)(
(n+ 1)(λαn− λ+ α) + 1

)bn,p−k+1

with 1 ≤ k ≤ p and n ≥ 1,

X11 = 1−
p∑

k=1

∞∑
n=2

(Xkn + Ykn)−
p∑

k=2

(Xk1 + Yk1)− Y11,

we obtain

F (z) =

p∑
k=1

∞∑
n=1

(
Xknhkn(z) + Ykngkn(z)

)
.

The proof is complete. □
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6. Support points

Theorem 6.1. Suppose F ∈ Up(λ, α, β, k0)∩Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ and

F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z)

= z −
p∑

k=2

|z|2(k−1)a1,p−k+1z

−
p∑

k=1

|z|2(k−1)
( ∞∑

n=2

an,p−k+1z
n −

∞∑
n=1

bn,p−k+1z̄
n
)
.

If there is some integer m ≥ 2 such that

p∑
k=1

m∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
an,p−k+1

+

p∑
k=1

m∑
n=1

(
n(k0 + 1) + (k0 + β)

)∣∣(n+ 1)(λαn− λ+ α) + 1
∣∣bn,p−k+1

+

p∑
k=2

(1− β)a1,p−k+1

= 1− β,

then F is a support point of Up(λ, α, β, k0) ∩ Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ.

Proof. For F1 ∈ Up(λ, α, β, k0) ∩ Tp with max{0, λ− 1
2

λ+1 } ≤ α ≤ λ and the ex-
pression:

F1(z) =

p∑
k=1

|z|2(k−1)G∗
p−k+1(z)

= z −
p∑

k=2

|z|2(k−1)c1,p−k+1z

−
p∑

k=1

|z|2(k−1)
( ∞∑

n=2

cn,p−k+1z
n −

∞∑
n=1

dn,p−k+1z̄
n
)
,
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let

Jm(F1)

=

p∑
k=1

m∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
1− β

cn,p−k+1

+

p∑
k=1

m∑
n=1

(
n(k0 + 1) + (k0 + β)

)∣∣(n+ 1)(λαn− λ+ α) + 1
∣∣

1− β
dn,p−k+1

+

p∑
k=2

c1,p−k+1.

It is easy to deduce that Jm is a continuous linear functional and not a
constant on Up(λ, α, β, k0) ∩ Tp.

Re(Jm(F1))

=

p∑
k=1

m∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
1− β

cn,p−k+1

+

p∑
k=1

m∑
n=1

(
n(k0 + 1) + (k0 + β)

)∣∣(n+ 1)(λαn− λ+ α) + 1
∣∣

1− β
dn,p−k+1

+

p∑
k=2

c1,p−k+1

≤ 1.

Obviously,

Re
(
Jm(F )

)
=

p∑
k=1

m∑
n=2

(
n(k0 + 1)− (k0 + β)

)(
(n− 1)(λαn+ λ− α) + 1

)
1− β

an,p−k+1

+

p∑
k=1

m∑
n=1

(
n(k0 + 1) + (k0 + β)

)∣∣(n+ 1)(λαn− λ+ α) + 1
∣∣

1− β
bn,p−k+1

+

p∑
k=2

a1,p−k+1

= 1.

Hence F is a support point of Up(λ, α, β, k0)∩Tp for max{0, λ− 1
2

λ+1 } ≤ α ≤ λ. □
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7. Convolution

Theorem 7.1. Suppose

F1(z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z)

= z −
p∑

k=2

|z|2(k−1)a1,p−k+1z

−
p∑

k=1

|z|2(k−1)( ∞∑
n=2

an,p−k+1z
n −

∞∑
n=1

bn,p−k+1z̄
n)

belongs to Up(λ1, α1, β1, k0,1) ∩ Tp for max{0, λ1− 1
2

λ1+1 } ≤ α1 ≤ λ1 and

F2(z) =

p∑
k=1

|z|2(k−1)G∗
p−k+1(z)

= z −
p∑

k=2

|z|2(k−1)c1,p−k+1z

−
p∑

k=1

|z|2(k−1)( ∞∑
n=2

cn,p−k+1z
n −

∞∑
n=1

dn,p−k+1z̄
n)

is in the class Up(λ2, α2, β2, k0,2) ∩ Tp for λ2

λ2+1 ≤ α2 ≤ λ2. Then F1 ∗ F2 ∈
Up(λ1, α1, β1, k0,1) ∩ Tp for max{0, λ1− 1

2

λ1+1 } ≤ α1 ≤ λ1.

Proof. By Theorem 3.1 and assumptions, we know that F1 satisfies (3.1) with
constants λ1, α1, β1, k0,1, and F2 subject to (3.1) with λ2, α2, β2, k0,2. Since
λ2

λ2+1 ≤ α2 ≤ λ2, it follows that cn,p−k+1 ≤ 1 and dn,p−k+1 ≤ 1. Hence

sump
k=1

∞∑
n=2

(
n(k0,1 + 1)− (k0,1 + β1)

)(
(n− 1)(λ1α1n+ λ1 − α1) + 1

)
an,p−k+1cn,p−k+1

+

p∑
k=1

∞∑
n=1

(
n(k0,1 + 1) + (k0,1 + β1)

)(
(n+ 1)(λ1α1n− λ1 + α1) + 1

)
bn,p−k+1dn,p−k+1

+

p∑
k=2

(1− β1)a1,p−k+1c1,p−k+1

≤ 1− β1.

By Theorem 3.1, we have F1∗F2 ∈ Up(λ1, α1, β1, k0,1)∩Tp for max {0, λ1− 1
2

λ1+1 } ≤
α1 ≤ λ1. □
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